Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1745-2022
https://doi.org/10.5194/hess-26-1745-2022
Research article
 | 
06 Apr 2022
Research article |  | 06 Apr 2022

Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation

Zhuoyi Tu, Yuting Yang, and Michael L. Roderick

Related authors

CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024,https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Potential for historically unprecedented Australian droughts from natural variability and climate change
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024,https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Flood risk assessment for Indian sub-continental river basins
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024,https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024,https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024,https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, FAO – Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/X0490E/x0490e00.htm#Contents (last access: 4 April 2022), 1998. 
Aminzadeh, M., Roderick, M. L., and Or, D.: A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature, Water. Resour. Res., 52, 385–406, https://doi.org/10.1002/2015WR017969, 2016. 
Andreas, E. L., Jordan, R. E., Mahrt, L., and Vickers, D.: Estimating the Bowen ratio over the open and ice-covered ocean, J. Geophys. Res.-Oceans, 118, 4334–4345, https://doi.org/10.1002/jgrc.20295, 2013. 
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev., 27, 779, https://doi.org/10.1103/PhysRev.27.779, 1926. 
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water. Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975. 
Download
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.