Articles | Volume 26, issue 7
https://doi.org/10.5194/hess-26-1745-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-1745-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
Zhuoyi Tu
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
Michael L. Roderick
Research School of Earth Sciences, Australian National University,
Canberra, ACT, Australia
Related authors
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Zhuoyi Tu, Taihua Wang, Juntai Han, Hansjörg Seybold, Shaozhen Liu, Cansu Culha, Yuting Yang, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3018, https://doi.org/10.5194/egusphere-2025-3018, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study provides the first event-scale observational evidence that runoff sensitivity to precipitation decreases significantly in degrading permafrost regions of the Tibetan Plateau. Data-driven analysis reveals that permafrost thaw enhances infiltration and subsurface storage, reducing peak runoff and runoff coefficients, especially during heavy rainfall. These results are important for drought and flood risk management under climate change.
Michael L. Roderick and Callum J. Shakespeare
Hydrol. Earth Syst. Sci., 29, 2097–2108, https://doi.org/10.5194/hess-29-2097-2025, https://doi.org/10.5194/hess-29-2097-2025, 2025
Short summary
Short summary
Earth scientists assume that evaporation depends on the gradient in water vapour concentration (Fick’s law), but this is only true in an isothermal system. Temperature gradients can impact evaporation via the Soret effect. Here we evaluate the relative magnitude of the Soret effect and find that it is at least 2 orders of magnitude smaller than classical concentration-dependent mass (“Fickian”) diffusion. This result justifies the standard practice of assuming evaporation follows Fick’s law.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Michael L. Roderick, Chathuranga Jayarathne, Angus J. Rummery, and Callum J. Shakespeare
Atmos. Meas. Tech., 16, 4833–4859, https://doi.org/10.5194/amt-16-4833-2023, https://doi.org/10.5194/amt-16-4833-2023, 2023
Short summary
Short summary
Terrestrial radiation emitted by the Earth's atmosphere (long wave) is a key component of the energy balance at the Earth's surface. An important research question is how this terrestrial radiation is coupled to the evaporation of water at the surface. In this work, we evaluate a new laboratory wind tunnel system designed to measure the evaporation rate of a water surface exposed to different levels of terrestrial radiation.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for computing crop water requirements, FAO
Irrigation and Drainage Paper No. 56, FAO – Food and Agriculture Organization of the United Nations, Rome, Italy, https://www.fao.org/3/X0490E/x0490e00.htm#Contents (last access: 4 April 2022), 1998.
Aminzadeh, M., Roderick, M. L., and Or, D.: A generalized complementary
relationship between actual and potential evaporation defined by a reference
surface temperature, Water. Resour. Res., 52, 385–406, https://doi.org/10.1002/2015WR017969, 2016.
Andreas, E. L., Jordan, R. E., Mahrt, L., and Vickers, D.: Estimating the
Bowen ratio over the open and ice-covered ocean, J. Geophys. Res.-Oceans, 118, 4334–4345, https://doi.org/10.1002/jgrc.20295, 2013.
Bowen, I. S.: The ratio of heat losses by conduction and by evaporation from
any water surface, Phys. Rev., 27, 779, https://doi.org/10.1103/PhysRev.27.779, 1926.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water. Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975.
Brutsaert, W.: Hydrology: an introduction, Cambridge University Press,
Cambridge, UK, ISBN 9780521824798, 2005.
Brutsaert, W.: A generalized complementary principle with physical constraints for land-surface evaporation, Water. Resour. Res., 51, 8087–8093, https://doi.org/10.1002/2015WR017720, 2015.
Donohue, R. J., McVicar, T. R., and Roderick, M. L.: Assessing the ability
of potential evaporation formulations to capture the dynamics in evaporative
demand within a changing climate, J. Hydrol., 386, 186–197,
https://doi.org/10.1016/j.jhydrol.2010.03.020, 2010.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.:
Multi-site evaluation of terrestrial evaporation models using FLUXNET data, Agr. Forest Meteorol., 187, 46–61, https://doi.org/10.1016/j.agrformet.2013.11.008, 2014.
FLUXNET: FLUXNET2015 Dataset, http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/ (last access: 12 November 2020), 2016.
Granger, R. J.: An examination of the concept of potential evaporation, J.
Hydrol., 111, 9–19, https://doi.org/10.1016/0022-1694(89)90248-5, 1989.
Guo, X., Liu, H., and Yang, K.: On the application of the Priestley–Taylor
relation on sub-daily time scales, Bound.-Lay. Meteorol., 156, 489–499, https://doi.org/10.1007/s10546-015-0031-y, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and
Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D., Huang, X., Smith, W. L., Su, W., and Ham, S.: Surface irradiances of edition 4.0 Clouds and the Earth' s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product, J. Climate, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.
Kleidon, A. and Renner, M.: An Explanation for the Different Climate Sensitivities of Land and Ocean Surfaces Based on the Diurnal Cycle, Earth
Syst. Dynam., 8, 849–864, https://doi.org/10.5194/esd-8-849-2017, 2017.
Lee, X., Massman, W., and Law, B.: Handbook of micrometeorology: a guide for
surface flux measurement and analysis, Vol. 29, Springer Science & Business Media, ISBN 1402022646, 2004.
Lhomme, J. P.: A theoretical basis for the Priestley-Taylor coefficient,
Bound.-Lay. Meteorol., 82, 179–191, https://doi.org/10.1023/A:1000281114105, 1997.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P.,
McVicar, T., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., and
Wang, T.: Partitioning global land evapotranspiration using CMIP5 models
constrained by observations, Nat. Clim. Change, 8, 640–646, 2018.
Maes, W. H., Gentine, P., Verhoest, N. E., and Miralles, D. G.: Potential
evaporation at eddy-covariance sites across the globe, Hydrol. Earth. Syst.
Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, 2019.
Milly, P. C. D.: A refinement of the combination equations for evaporation,
Surv. Geophys., 12, 145–154, https://doi.org/10.1007/BF01903416, 1991.
Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, e187, 1954.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965.
Monteith, J. L. and Unsworth, M.: Principles of environmental physics:
plants, animals, and the atmosphere, Academic Press, San Diego, USA, ISBN 0123869102, 2013.
Nash, J. E.: Potential evaporation and “the complementary relationship”,
J. Hydrol., 111, 1–7, https://doi.org/10.1016/0022-1694(89)90247-3, 1989.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, G., Cheah, Y., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., and Billesbach, D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 1–27, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B.: Correction of eddy-covariance measurements incorporating both advective effects and
density fluxes, Bound.-Lay. Meteorol., 97, 487–511, https://doi.org/10.1023/A:1002786702909, 2000.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A, 193, 120–145, https://doi.org/10.1098/rspa.1948.0037,
1948.
Philip, J. R.: A physical bound on the Bowen ratio, J. Clim. Appl. Meteorol., 26, 1043–1045, https://doi.org/10.1175/1520-0450(1987)026<1043:APBOTB>2.0.CO;2, 1987.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat
flux and evaporation using large-scale parameters, Mon. Weather. Rev., 100,
81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Roderick, M. L., Greve, P., and Farquhar, G. D.: On the assessment of
aridity with changes in atmospheric CO2, Water. Resour. Res., 51,
5450–5463, https://doi.org/10.1002/2015WR017031, 2015.
Scheff, J. and Frierson, D. M. W.: Scaling potential evapotranspiration with greenhouse warming, J. Climate, 27, 1539–1558, https://doi.org/10.1175/JCLI-D-13-00233.1, 2014.
Schellekens, J., Dutra, E., Martinez-de la Torre, A., Balsamo, G., van Dijk,
A., Weiland, F. S., Minvielle, M., Calvet, J. C., Decharme, B., Eisner, S.,
Fink, G., Florke, M., Pessenteiner, S., van Beek, R., Polcher, J., Beck, H.,
Orth, R., Calton, B., Burke, S., Dorigo, W., and Weedon, G. P.: A global
water resources ensemble of hydrological models: the eartH2Observe Tier-1
dataset, Earth. Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, 2017.
Shakespeare, C. J. and Roderick, M. L.: The clear-sky downwelling longwave radiation at the surface in current and future climates, Q. J. Roy. Meteorol. Soc., 147, 4251–4268, https://doi.org/10.1002/qj.4176, 2021.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438, https://doi.org/10.1038/nature11575, 2012.
Shuttleworth, W. J.: Evaporation, in Handbook of Hydrology, chap. 4, edited
by: Maidment, D. R., McGraw-Hill Education, New York, USA, ISBN 0070397325, 1993.
Slatyer, R. O. and McIlroy, I. C.: Practical microclimatology, Commonwealth
Scientific and Industrial Research Organisation, Canberra, Australia, https://doi.org/10.1016/0002-1571(65)90036-1, 1961.
Swann, A. L., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant
responses to increasing CO2 reduce estimates of climate impacts on
drought severity, P. Natl. Acad. Sci. USA, 113, 10019–10024,
https://doi.org/10.1073/pnas.1604581113, 2016.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55–94, https://doi.org/10.2307/210739, 1948.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Srarks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S.,
Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo,
A.: Response of vegetation to drought time-scales across global land biomes,
P. Natl. Acad. Sci. USA, 110, 52–57, https://doi.org/10.1073/pnas.1207068110, 2013.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373, 2012.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Yang, Y. and Roderick, M. L.: Radiation, surface temperature and evaporation over wet surfaces, Q. J. Roy. Meteorol. Soc., 145, 1118–1129,
https://doi.org/10.1002/qj.3481, 2019.
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in
climate projections, Nat. Clim. Change, 9, 44–48, https://doi.org/10.1038/s41558-018-0361-0, 2019.
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Here we test a maximum evaporation theory that acknowledges the interdependence between...