Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning
Lena-Marie Kuhlemann
CORRESPONDING AUTHOR
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Department of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Doerthe Tetzlaff
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Department of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Northern Rivers Institute, University of Aberdeen, St. Mary’s Building, Kings College, Old Aberdeen, AB24 3UE, Scotland
Aaron Smith
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Birgit Kleinschmit
Institute of Landscape Architecture and Environmental Planning, Technical University Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Chris Soulsby
Northern Rivers Institute, University of Aberdeen, St. Mary’s Building, Kings College, Old Aberdeen, AB24 3UE, Scotland
Chair of Water Resources Management and Modeling of Hydrosystems, Technical University Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Related authors
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537, https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach using stable water isotopes, hydrochemistry and microbial and macrophyte diversity, to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBS impacts on water quality and biodiversity in response to hydroclimate and urban water sources.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Katharina Heike Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1380, https://doi.org/10.5194/egusphere-2024-1380, 2024
Short summary
Short summary
In this study we applied Random Forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-east Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % to 71 % showing a moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters for FFS. This study will support regional forest fire prevention and management.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Steve Ahlswede, Christian Schulz, Christiano Gava, Patrick Helber, Benjamin Bischke, Michael Förster, Florencia Arias, Jörn Hees, Begüm Demir, and Birgit Kleinschmit
Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, https://doi.org/10.5194/essd-15-681-2023, 2023
Short summary
Short summary
Imagery from air and space is the primary source of large-scale forest mapping. Our study introduces a new dataset with over 50000 image patches prepared for deep learning tasks. We show how the information for 20 European tree species can be extracted from different remote sensing sensors. Our algorithms can detect single species with precision scores up to 88 %. With a pixel size of 20×20 cm, forestry administration can now derive large-scale tree species maps at a very high resolution.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022, https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Short summary
Evapotranspiration (ET) is a sum of soil evaporation and plant transpiration. ET produces a cooling effect to mitigate heat waves in urban areas. Our method uses a physical model with remote sensing and meteorological data to predict hourly ET. Designed for uniform vegetation, it overestimated urban ET. To correct it, we create a factor using vegetation fraction that proved efficient for reducing bias and improving accuracy. This approach was tested on two Berlin sites and can be used to map ET.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Thea I. Piovano, Doerthe Tetzlaff, Sean K. Carey, Nadine J. Shatilla, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 2507–2523, https://doi.org/10.5194/hess-23-2507-2019, https://doi.org/10.5194/hess-23-2507-2019, 2019
Short summary
Short summary
We adapted the spatially distributed, tracer-aided model, STARR, to a permafrost-influenced catchment in the Yukon Territory, Canada, with a time-variable implementation of field capacity to capture thaw layer spatio-temporal dynamics. We applied a multi-criteria calibration with multi-year field data. This study demonstrates the value of the integration of isotope data in a spatially distributed model to quantify catchment water storage and age dynamics in a permafrost-influenced environment.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Zhicai Zhang, Xi Chen, Qinbo Cheng, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 51–71, https://doi.org/10.5194/hess-23-51-2019, https://doi.org/10.5194/hess-23-51-2019, 2019
Short summary
Short summary
We developed a new tracer-aided hydrological model for karst catchments. This model captured the flow and tracer dynamics within each landscape unit quite well, and we could estimate the storage, fluxes and age of water within each. Such tracer-aided models enhance our understanding of the hydrological connectivity between different landscape units and the mixing processes between various flow sources. It is an encouraging step forward in tracer-aided modelling of karst catchments.
Sylvain Kuppel, Doerthe Tetzlaff, Marco P. Maneta, and Chris Soulsby
Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, https://doi.org/10.5194/gmd-11-3045-2018, 2018
Short summary
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Aaron A. Smith, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-57, https://doi.org/10.5194/hess-2018-57, 2018
Preprint withdrawn
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
J. R. Poulsen, E. Sebok, C. Duque, D. Tetzlaff, and P. K. Engesgaard
Hydrol. Earth Syst. Sci., 19, 1871–1886, https://doi.org/10.5194/hess-19-1871-2015, https://doi.org/10.5194/hess-19-1871-2015, 2015
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Instruments and observation techniques
A Bayesian updating framework for calibrating the hydrological parameters of road networks using taxi GPS data
Assessing specific differential phase (KDP)-based quantitative precipitation estimation for the record- breaking rainfall over Zhengzhou city on 20 July 2021
Sources and pathways of biocides and their transformation products in urban storm water infrastructure of a 2 ha urban district
Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model
Reconstituting past flood events: the contribution of citizen science
Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network
Technical note: Laboratory modelling of urban flooding: strengths and challenges of distorted scale models
Weather radar rainfall data in urban hydrology
The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam
Gauge-adjusted rainfall estimates from commercial microwave links
Improving the precipitation accumulation analysis using lightning measurements and different integration periods
Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes
Variability of drainage and solute leaching in heterogeneous urban vegetation environs
Technical note on measuring run-off dynamics from pavements using a new device: the weighable tipping bucket
Xiangfu Kong, Jiawen Yang, Ke Xu, Bo Dong, and Shan Jiang
Hydrol. Earth Syst. Sci., 27, 3803–3822, https://doi.org/10.5194/hess-27-3803-2023, https://doi.org/10.5194/hess-27-3803-2023, 2023
Short summary
Short summary
To solve the issue of sparsity of field-observed runoff data, we propose a methodology that leverages taxi GPS data to support hydrological parameter calibration for road networks. Novel to this study is that a new kind of data source, namely floating car data, is introduced to tackle the ungauged catchment problem, providing alternative flooding early warning supports for cities that have little runoff data but rich taxi data.
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci., 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023, https://doi.org/10.5194/hess-27-1033-2023, 2023
Short summary
Short summary
A rainfall event that occurred at Zhengzhou on 20 July 2021 caused tremendous loss of life and property. This study compares different KDP estimation methods as well as the resulting QPE outcomes. The results show that the selection of the KDP estimation method has minimal impact on QPE, whereas the inadequate assumption of rain microphysics and unquantified vertical air motion may explain the underestimated 201.9 mm h−1 record.
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Juan Naves, Juan T. García, Jerónimo Puertas, and Jose Anta
Hydrol. Earth Syst. Sci., 25, 885–900, https://doi.org/10.5194/hess-25-885-2021, https://doi.org/10.5194/hess-25-885-2021, 2021
Short summary
Short summary
Surface water velocities are key in the calibration of physically based urban drainage models, but the shallow depths developed during non-extreme rainfall and the risks during floods limit the availability of this type of data. This study proves the potential of different imaging velocimetry techniques to measure water runoff velocities in urban catchments during rain events, highlighting the importance of considering rain properties to interpret and assess the results obtained.
Bocar Sy, Corine Frischknecht, Hy Dao, David Consuegra, and Gregory Giuliani
Hydrol. Earth Syst. Sci., 24, 61–74, https://doi.org/10.5194/hess-24-61-2020, https://doi.org/10.5194/hess-24-61-2020, 2020
Matthew Moy de Vitry, Simon Kramer, Jan Dirk Wegner, and João P. Leitão
Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019, https://doi.org/10.5194/hess-23-4621-2019, 2019
Short summary
Short summary
This work demonstrates a new approach to obtain flood level trend information from surveillance footage with minimal prior information. A neural network trained to detect flood water is applied to video frames to create a qualitative flooding metric (namely, SOFI). The correlation between the real water trend and SOFI was found to be 75 % on average (based on six videos of flooding under various circumstances). SOFI could be used for flood model calibration, to increase model reliability.
Xuefang Li, Sébastien Erpicum, Martin Bruwier, Emmanuel Mignot, Pascal Finaud-Guyot, Pierre Archambeau, Michel Pirotton, and Benjamin Dewals
Hydrol. Earth Syst. Sci., 23, 1567–1580, https://doi.org/10.5194/hess-23-1567-2019, https://doi.org/10.5194/hess-23-1567-2019, 2019
Short summary
Short summary
With a growing urban flood risk worldwide, flood risk management tools need to be validated against reference data. Field and remote-sensing observations provide valuable data on inundation extent and depth but virtually no information on flow velocity. Laboratory scale models have the potential to deliver complementary data, provided that the model scaling is performed carefully. In this paper, we reanalyse existing laboratory data to discuss challenges related to the scaling of urban floods.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Lotte de Vos, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, https://doi.org/10.5194/hess-21-765-2017, 2017
Short summary
Short summary
Recent developments have made it possible to easily crowdsource meteorological measurements from automatic personal weather stations worldwide. This has offered free access to rainfall ground measurements at spatial and temporal resolutions far exceeding those of national operational sensor networks, especially in cities. This paper is the first step to make optimal use of this promising source of rainfall measurements and identify challenges for future implementation for urban applications.
Martin Fencl, Michal Dohnal, Jörg Rieckermann, and Vojtěch Bareš
Hydrol. Earth Syst. Sci., 21, 617–634, https://doi.org/10.5194/hess-21-617-2017, https://doi.org/10.5194/hess-21-617-2017, 2017
Short summary
Short summary
Commercial microwave links (CMLs) can provide rainfall observations with high space–time resolution. Unfortunately, CML rainfall estimates are often biased because we lack detailed information on the processes that attenuate the transmitted microwaves. We suggest removing the bias by continuously adjusting CMLs to cumulative data from rain gauges (RGs), which can be remote from the CMLs. Our approach practically eliminates the bias, which we demonstrate on unique data from several CMLs and RGs.
Erik Gregow, Antti Pessi, Antti Mäkelä, and Elena Saltikoff
Hydrol. Earth Syst. Sci., 21, 267–279, https://doi.org/10.5194/hess-21-267-2017, https://doi.org/10.5194/hess-21-267-2017, 2017
Short summary
Short summary
A new lightning data assimilation method has been implemented and validated within the Finnish Meteorological Institute – Local Analysis and Prediction System. Lightning data do improve the analysis when no radars are available, and even with radar data, lightning data have a positive impact on the results.
We also investigate the usage of different time integration intervals: 1, 6, 12, 24 h and 7 days, where the 1 h integration time length gives the best results.
S. C. Sinang, E. S. Reichwaldt, and A. Ghadouani
Hydrol. Earth Syst. Sci., 19, 2179–2195, https://doi.org/10.5194/hess-19-2179-2015, https://doi.org/10.5194/hess-19-2179-2015, 2015
H. Nouri, S. Beecham, A. M. Hassanli, and G. Ingleton
Hydrol. Earth Syst. Sci., 17, 4339–4347, https://doi.org/10.5194/hess-17-4339-2013, https://doi.org/10.5194/hess-17-4339-2013, 2013
T. Nehls, Y. Nam Rim, and G. Wessolek
Hydrol. Earth Syst. Sci., 15, 1379–1386, https://doi.org/10.5194/hess-15-1379-2011, https://doi.org/10.5194/hess-15-1379-2011, 2011
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, 1998. a
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. a
Amt für Statistik Berlin-Brandenburg: Bevölkerungsstand 2018, available at: https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas-Bevoelkerungsstand.asp?Ptyp=300&Sageb=12015&creg=BBB&anzwer=6, last access: 10 August 2020. a
Asawa, T., Kiyono, T., and Hoyano, A.: Continuous measurement of whole-tree water balance for studying urban tree transpiration, Hydrol. Process, 31, 3056–3068, https://doi.org/10.1002/hyp.11244, 2017. a, b
Bijoor, N. S., McCarthy, H. R., Zhang, D., and Pataki, D. E.: Water sources of urban trees in the Los Angeles metropolitan area, Urban Ecosyst., 15, 195–214, https://doi.org/10.1007/s11252-011-0196-1, 2011. a, b
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, 2020. a, b
Clark, I. and Fritz, P.: Environmental Isotopes in Hydrogeology, Lewis Publishers, CRC Press LLC, Boca Raton, Florida, 1997. a
Douinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte‐Bisping, H., and Soulsby, C.: Ecohydrological modelling with Ech2O‐iso to quantify forest and grassland effects on water partitioning and flux ages, Hydrol. Process., 33, 2174–2191, https://doi.org/10.1002/hyp.13480, 2019. a, b, c
Ehleringer, J. R., Barnette, J. E., Jameel, Y., Tipple, B. J., and Bowen, G. J.: Urban water – a new frontier in isotope hydrology, Isotopes Environ. Health Stud., 52, 477–486, https://doi.org/10.1080/10256016.2016.1171217, 2016. a
Fletcher, T. D., Andrieu, H., and Hamel, P.: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art, Adv. Water Resour., 51, 261–279, https://doi.org/10.1016/j.advwatres.2012.09.001, 2013. a, b, c, d
Friedrich, K. and Kasper, F.: Rückblick auf das Jahr 2018 – das bisher wärmste Jahr in Deutschland, Deutscher Wetterdienst, Abteilung Klimaüberwachung, 2019. a
Geodaten der Deutschen Landesvermessung (GeoBasis-DE)/ Bundesamt für Kartographie und Geodäsie (BKG): Digitale Geodaten, 2013.
Geoportal Berlin: Digitale farbige Orthophotos 2018 (DOP20RGB), available at: https://fbinter.stadt-berlin.de/fb/berlin/service_intern.jsp?id=a_luftbild2018_rgb@senstadt&type=FEED (last access: 3 March 2020), 2018.
Geris, J., Tetzlaff, D., McDonnell, J., and Soulsby, C.: The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments, Hydrol. Process., 29, 1844–1860, https://doi.org/10.1002/hyp.10289, 2015. a, b
Gerstengarbe, F.-W., Badeck, F., Hattermann, F., Krysanova, V., Lahmer, W., Lasch, P., Stock, M., Suckow, F., Wechsung, F., and Werner, P. C.: Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven, Potsdam Institute for Climate Impact Research (PIK), 2003 (in German). a
Gessner, M. O., Hinkelmann, R., Nützmann, G., Jekel, M., Singer, G., Lewandowski, J., Nehls, T., and Barjenbruch, M.: Urban water interfaces, J. Hydrol., 514, 226–232, https://doi.org/10.1016/j.jhydrol.2014.04.021, 2014. a
Gómez‐Navarro, C., Pataki, D. E., Bowen, G. J., and Oerter, E. J.: Spatiotemporal variability in water sources of urban soils and trees in the semiarid, irrigated Salt Lake Valley, Ecohydrology, 12, e2154, https://doi.org/10.1002/eco.2154, 2019. a, b, c, d
Gralher, B., Herbstritt, B., Weiler, M., Wassenaar, L. I., and Stumpp, C.: Correcting for Biogenic Gas Matrix Effects on Laser-Based Pore Water-Vapor Stable Isotope Measurements, Vadose Zone J., 17, 1–10, https://doi.org/10.2136/vzj2017.08.0157, 2018. a
Granier, A.: Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements, Tree Physiol., 3, 309–320, https://doi.org/10.1093/treephys/3.4.309, 1987. a, b
Gunawardena, K. R., Wells, M. J., and Kershaw, T.: Utilising green and bluespace to mitigate urban heat island intensity, Sci. Total Environ., 584–585, 1040–1055, https://doi.org/10.1016/j.scitotenv.2017.01.158, 2017. a, b, c
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez-Baquero, G. F.: Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling, J. Hydrol., 377, 80–91, 2009. a
Hathway, E. A. and Sharples, S.: The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study, Build. Environ., 58, 14–22, https://doi.org/10.1016/j.buildenv.2012.06.013, 2012. a
Hendry, M. J., Schmeling, E., Wassenaar, L. I., Barbour, S. L., and Pratt, D.: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method, Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, 2015. a
Hughes, C. E. and Crawford, J.: A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data, J. Hydrol., 464–465, 344–351, https://doi.org/10.1016/j.jhydrol.2012.07.029, 2012. a
Kendall, C. and McDonnell, J.: Isotope Tracers in Catchment Hydrology, 1 ed., Elsevier Science B.V., Amsterdam, the Netherlands, 1998. a
Kleine, L., Tetzlaff, D., Smith, A., Wang, H., and Soulsby, C.: Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018, Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, 2020. a, b, c, d
Kuhlemann, L. M., Tetzlaff, D., and Soulsby, C.: Urban water systems under climate stress: An isotopic perspective from Berlin, Germany, Hydrol. Process., 34, 3758–3776, https://doi.org/10.1002/hyp.13850, 2020a. a, b, c
Kuhlemann, L.-M., Tetzlaff, D., Smith, A., Kleinschmit, B., and Soulsby, C.: Soil Moisture data for grassland, shrub and trees at the Steglitz Urban Ecohydrological Observatory, https://doi.org/10.18728/566.0, 2020b. a
Langendijk, G. S., Rechid, D., and Jacob, D.: Urban Areas and Urban–Rural Contrasts under Climate Change: What Does the EURO-CORDEX Ensemble Tell Us? – Investigating near Surface Humidity in Berlin and Its Surroundings, Atmosphere-Basel, 10, 730, https://doi.org/10.3390/atmos10120730, 2019. a
Lansu, E. M., van Heerwaarden, C. C., Stegehuis, A. I., and Teuling, A. J.: Atmospheric Aridity and Apparent Soil Moisture Drought in European Forest During Heat Waves, Geophys. Res. Lett., 47, e2020GL087091, https://doi.org/10.1029/2020GL087091, 2020. a
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment transit time modeling, J. Hydrol., 330, 543–563, https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006. a
Miller, D. L., Alonzo, M., Roberts, D. A., Tague, C. L., and McFadden, J. P.: Drought response of urban trees and turfgrass using airborne imaging spectroscopy, Remote Sens. Environ., 240, 111646, https://doi.org/10.1016/j.rse.2020.111646, 2020. a, b, c
Nouri, H., Glenn, E., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alaghmand, S., Noori, B., and Nagler, P.: Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods, Remote Sens., 8, 492, https://doi.org/10.3390/rs8060492, 2016. a
Nouri, H., Chavoshi Borujeni, S., and Hoekstra, A. Y.: The blue water footprint of urban green spaces: An example for Adelaide, Australia, Landscape Urban Plan., 190, 103613, https://doi.org/10.1016/j.landurbplan.2019.103613, 2019. a, b, c, d
Oerter, E. J. and Bowen, G.: In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems, Ecohydrology, 10, e1841, https://doi.org/10.1002/eco.1841, 2017. a, b, c
Oerter, E. J. and Bowen, G. J.: Spatio‐temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems, Hydrol. Process., 33, 1724–1738, https://doi.org/10.1002/hyp.13434, 2019. a, b
Peters, E. B., Hiller, R. V., and McFadden, J. P.: Seasonal contributions of vegetation types to suburban evapotranspiration, J. Geophys. Res., 116, https://doi.org/10.1029/2010jg001463, 2011. a
Schirmer, M., Leschik, S., and Musolff, A.: Current research in urban hydrogeology – A review, Adv. Water Resour., 51, 280–291, https://doi.org/10.1016/j.advwatres.2012.06.015, 2013. a, b, c
Senate Department for Urban Development (SenStadt): Berlin Environmental Atlas: Map 02.07 – Depth to the Water Table, available at: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/eid207.htm (last access: 10 August 2020), 2010a. a
Senate Department for Urban Development (SenStadt): Berlin Environmental Atlas: Map 01.08 – Terrain Elevations, available at: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=ek01_08dgm2009@esenstadt&Szenario=fb_en (last access: 10 August 2020), 2010b. a
Senate Department for Urban Development and Housing (SenStadtWoh): Berlin Environmental Atlas: Map 01.02 Impervious Soil Coverage (Sealing of Soil Surface), Accompanying text, available at: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/e_text/ekd102.pdf (last access: 10 August 2020), 2017. a
Senate Department for Urban Development and Housing (SenStadtWoh): Berlin Environmental Atlas: Map 01.06 – Soil-Scientific Characteristic Values, available at: https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=wmsk01_06_01bodart2015@senstadt (last access: 21 August 2020), 2018. a
Senate Department for Urban Development and Housing (SenStadtWoh): Berlin Environmental Atlas, Map 02.13: Surface Runoff, Percolation, Total Runoff and Evaporation from Precipitation, Accompanying text, available at: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/e_text/ekd213.pdf (last access: 10 December 2020), 2019. a, b
Senate Department for the Environment, Transport and Climate Protection (SenUVK): Grünflächeninformationssystem (GRIS): Anteil öffentlicher Grünflächen in Berlin, available at: https://www.berlin.de/senuvk/umwelt/stadtgruen/gruenanlagen/de/daten_fakten/downloads/ausw_5.pdf (last access: 10 August 2020), 2019a. a, b, c
Senate Department for the Environment, Transport and Climate Protection (SenUVK): Grünflächeninformationssystem (GRIS): Öffentliche Grünflächen in Berlin – Flächenübersicht der Bezirke, 31.12.2019, available at: https://www.berlin.de/senuvk/umwelt/stadtgruen/gruenanlagen/de/daten_fakten/downloads/ausw_13.pdf (last access: 10 August 2020), 2019b. a
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M. P., and Soulsby, C.: Isotope‐aided modelling of ecohydrologic fluxes and water ages under mixed land use in Central Europe: The 2018 drought and its recovery, Hydrol. Process., 34, 3406–3425, https://doi.org/10.1002/hyp.13838, 2020. a, b, c, d
Soulsby, C., Braun, H., Sprenger, M., Weiler, M., and Tetzlaff, D.: Influence of forest and shrub canopies on precipitation partitioning and isotopic signatures, Hydrol. Process., 31, 4282–4296, https://doi.org/10.1002/hyp.11351, 2017. a
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1002/2015rg000515, 2016.
a, b
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017. a, b
Sprenger, M., Llorens, P., Cayuela, C., Gallart, F., and Latron, J.: Mechanisms of consistently disjunct soil water pools over (pore) space and time, Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, 2019a. a
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin, P., Dubbert, M., Hartmann, A., Hrachowitz, M., Kirchner, J. W., McDonnell, J., Orlowski, N., Penna, D., Pfahl, S., Rinderer, M., Rodriguez, N., Schmidt, M., and Werner, C.: The Demographics of Water: A Review of Water Ages in the Critical Zone, Rev. Geophys., 57, 800–834, https://doi.org/10.1029/2018RG000633, 2019b. a
Stackebrandt, W. and Manhenke, V.: Geologie und Geopotenziale in Brandenburg, in: Atlas zur Geologie von Brandenburg, 4. aktualisierte Auflage, Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg (LBGR), Cottbus, 2010. a
Stumpp, C., Klaus, J., and Stichler, W.: Analysis of long-term stable isotopic composition in German precipitation, J. Hydrol., 517, 351–361, https://doi.org/10.1016/j.jhydrol.2014.05.034, 2014. a
Vico, G., Revelli, R., and Porporato, A.: Ecohydrology of street trees: design and irrigation requirements for sustainable water use, Ecohydrology, 7, 508–523, https://doi.org/10.1002/eco.1369, 2014. a, b, c, d
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018. a
Wang, H., Tetzlaff, D., Dick, J. J., and Soulsby, C.: Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment, Agr. Forest Meteorol., 240–241, 58–66, https://doi.org/10.1016/j.agrformet.2017.04.002, 2017. a
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High Resolution Pore Water δ2H and δ18O Measurements by H2O(liquid)-H2O(vapor) Equilibration Laser Spectroscopy, Environ. Sci. Technol., 42, 9262–9267, 2008. a
Zipper, S. C., Schatz, J., Singh, A., Kucharik, C. J., Townsend, P. A., and Loheide, S. P.: Urban heat island impacts on plant phenology: intra-urban variability and response to land cover, Environ. Res. Lett., 11, 054023, https://doi.org/10.1088/1748-9326/11/5/054023, 2016. a
Zipper, S. C., Schatz, J., Kucharik, C. J., and Loheide, S. P.: Urban heat island‐induced increases in evapotranspirative demand, Geophys. Res. Lett., 44, 873–881, https://doi.org/10.1002/2016gl072190, 2017. a, b, c
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
We studied water partitioning under urban grassland, shrub and trees during a warm and dry...