Articles | Volume 25, issue 2
Hydrol. Earth Syst. Sci., 25, 927–943, 2021
https://doi.org/10.5194/hess-25-927-2021

Special issue: Water, isotope and solute fluxes in the soil–plant–atmosphere...

Hydrol. Earth Syst. Sci., 25, 927–943, 2021
https://doi.org/10.5194/hess-25-927-2021

Research article 24 Feb 2021

Research article | 24 Feb 2021

Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning

Lena-Marie Kuhlemann et al.

Related authors

Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021,https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Instruments and observation techniques
Sources and pathways of biocides and their transformation products in urban storm water infrastructure of a 2 ha urban district
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021,https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model
Juan Naves, Juan T. García, Jerónimo Puertas, and Jose Anta
Hydrol. Earth Syst. Sci., 25, 885–900, https://doi.org/10.5194/hess-25-885-2021,https://doi.org/10.5194/hess-25-885-2021, 2021
Short summary
Reconstituting past flood events: the contribution of citizen science
Bocar Sy, Corine Frischknecht, Hy Dao, David Consuegra, and Gregory Giuliani
Hydrol. Earth Syst. Sci., 24, 61–74, https://doi.org/10.5194/hess-24-61-2020,https://doi.org/10.5194/hess-24-61-2020, 2020
Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network
Matthew Moy de Vitry, Simon Kramer, Jan Dirk Wegner, and João P. Leitão
Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019,https://doi.org/10.5194/hess-23-4621-2019, 2019
Short summary
Technical note: Laboratory modelling of urban flooding: strengths and challenges of distorted scale models
Xuefang Li, Sébastien Erpicum, Martin Bruwier, Emmanuel Mignot, Pascal Finaud-Guyot, Pierre Archambeau, Michel Pirotton, and Benjamin Dewals
Hydrol. Earth Syst. Sci., 23, 1567–1580, https://doi.org/10.5194/hess-23-1567-2019,https://doi.org/10.5194/hess-23-1567-2019, 2019
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, 1998. a
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. a
Amt für Statistik Berlin-Brandenburg: Bevölkerungsstand 2018, available at: https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas-Bevoelkerungsstand.asp?Ptyp=300&Sageb=12015&creg=BBB&anzwer=6, last access: 10 August 2020. a
Asawa, T., Kiyono, T., and Hoyano, A.: Continuous measurement of whole-tree water balance for studying urban tree transpiration, Hydrol. Process, 31, 3056–3068, https://doi.org/10.1002/hyp.11244, 2017. a, b
Bijoor, N. S., McCarthy, H. R., Zhang, D., and Pataki, D. E.: Water sources of urban trees in the Los Angeles metropolitan area, Urban Ecosyst., 15, 195–214, https://doi.org/10.1007/s11252-011-0196-1, 2011. a, b
Download
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.