Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-927-2021
https://doi.org/10.5194/hess-25-927-2021
Research article
 | 
24 Feb 2021
Research article |  | 24 Feb 2021

Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning

Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby

Related authors

Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021,https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, 1998. a
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. a
Amt für Statistik Berlin-Brandenburg: Bevölkerungsstand 2018, available at: https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas-Bevoelkerungsstand.asp?Ptyp=300&Sageb=12015&creg=BBB&anzwer=6, last access: 10 August 2020. a
Asawa, T., Kiyono, T., and Hoyano, A.: Continuous measurement of whole-tree water balance for studying urban tree transpiration, Hydrol. Process, 31, 3056–3068, https://doi.org/10.1002/hyp.11244, 2017. a, b
Bijoor, N. S., McCarthy, H. R., Zhang, D., and Pataki, D. E.: Water sources of urban trees in the Los Angeles metropolitan area, Urban Ecosyst., 15, 195–214, https://doi.org/10.1007/s11252-011-0196-1, 2011. a, b
Download
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Share