Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4741-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4741-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China
Hailong Wang
CORRESPONDING AUTHOR
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519082, China
Kai Duan
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519082, China
Bingjun Liu
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Xiaohong Chen
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Related authors
No articles found.
Tongtiegang Zhao, Qiang Li, Tongbi Tu, and Xiaohong Chen
Geosci. Model Dev., 18, 5781–5799, https://doi.org/10.5194/gmd-18-5781-2025, https://doi.org/10.5194/gmd-18-5781-2025, 2025
Short summary
Short summary
The recent WeatherBench 2 provides a versatile framework for the verification of deterministic and ensemble forecasts. In this paper, we present an explicit extension to binary forecasts of hydroclimatic extremes. Seventeen verification metrics for binary forecasts are employed, and scorecards are generated to showcase the predictive performance. The extension facilitates more comprehensive comparisons of hydroclimatic forecasts and provides useful information for forecast applications.
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci., 29, 427–445, https://doi.org/10.5194/hess-29-427-2025, https://doi.org/10.5194/hess-29-427-2025, 2025
Short summary
Short summary
We assess changes in blue and green water scarcity in an anthropogenic highly impacted watershed and their association with climate change and land use change, using the multi-water-flux validated Soil and Water Assessment Tool. Observed streamflow, evapotranspiration, and soil moisture are integrated into model calibration and validation. Results show that both climate change and land use change decrease blue water, while land use change increases green water.
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
Hydrol. Earth Syst. Sci., 28, 4085–4098, https://doi.org/10.5194/hess-28-4085-2024, https://doi.org/10.5194/hess-28-4085-2024, 2024
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage–discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Cited articles
A, G., Velicogna, I., Kimball, J. S., Du, J., Kim, Y., Colliander, A., and
Njoku, E.: Satellite-observed changes in vegetation sensitivities to surface
soil moisture and total water storage variations since the 2011 Texas
drought, Environ. Res. Lett., 12, 054006, https://doi.org/10.1088/1748-9326/aa6965, 2017.
Adhami, M., Sadeghi, S. H., Duttmann, R., and Sheikhmohammady, M.: Changes in
watershed hydrological behavior due to land use comanagement scenarios, J.
Hydrol., 577, 124001, https://doi.org/10.1016/j.jhydrol.2019.124001, 2019.
Anderson, M. C., Kustas, W. P., and Norman, J. M.: Upscaling and Downscaling
– A Regional View of the Soil-Plant-Atmosphere Continuum, Agron. J., 95,
1408–1423, https://doi.org/10.2134/agronj2003.1408, 2003.
Aranda, I., Forner, A., Cuesta, B., and Valladares, F.: Species-specific water use by forest tree species: From the tree to the stand, Agr. Water Managr., 114, 67–77, https://doi.org/10.1016/j.agwat.2012.06.024, 2012.
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D. R., Gómez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological
advances and applications in plant-water relations research: A review, J. Plant Ecol., 4, 3–22, https://doi.org/10.1016/j.soildyn.2016.02.004, 2011.
Bai, J., Shi, H., Yu, Q., Xie, Z., Li, L., Luo, G., Jin, N., and Li, J.:
Satellite-observed vegetation stability in response to changes in climate
and total water storage in Central Asia, Sci. Total Environ., 659, 862–871,
https://doi.org/10.1016/j.scitotenv.2018.12.418, 2019.
Blaschke, P., Hicks, D., and Meister, A.: Quantification of the Flood and Erosion Reduction Benefits, and Costs, of Climate Change Mitigation Measures
in New Zealand, Wellington, available at: https://environment.govt.nz/
(last access: 27 April 2020), 2008.
Brookshire, E. N. J. and Weaver, T.: Long-term decline in grassland productivity driven by increasing dryness, Nat. Commun., 6, 1–7,
https://doi.org/10.1038/ncomms8148, 2015.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.:
A review of paired catchment studies for determining changes in water yield
resulting from alterations in vegetation, J. Hydrol., 310, 28–61,
https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., and Siddique,
K. H. M.: Regulated deficit irrigation for crop production under drought stress. A review, Agron. Sustain. Dev., 36, 1–21, https://doi.org/10.1007/s13593-015-0338-6, 2016.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Chen, X., Liu, X., Zhou, G., Han, L., Liu, W., and Liao, J.: 50-year
evapotranspiration declining and potential causations in subtropical Guangdong province, southern China, Catena, 128, 185–194,
https://doi.org/10.1016/j.catena.2015.02.001, 2015.
Chen, Y. D., Zhang, Q., Xu, C. Y., Lu, X., and Zhang, S.: Multiscale streamflow variations of the Pearl River basin and possible implications for
the water resource management within the Pearl River Delta, China, Quatern.
Int., 226, 44–53, https://doi.org/10.1016/j.quaint.2009.08.014, 2010.
Chen, Z., Jiang, W., Wu, J., Chen, K., Deng, Y., Jia, K., and Mo, X.: Detection of the spatial patterns of water storage variation over China in
recent 70 years, Sci. Rep., 7, 1–9, https://doi.org/10.1038/s41598-017-06558-5, 2017.
Deng, S., Chen, T., Yang, N., Qu, L., Li, M., and Chen, D.: Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin, Sci. Total Environ., 619–620, 28–41,
https://doi.org/10.1016/j.scitotenv.2017.10.339, 2018.
Déry, S. J. and Wood, E. F.: Decreasing river discharge in northern Canada, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022845, 2005.
DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M.
R., Aakala, T., Amoroso, M. M., Bigler, C., Camarero, J. J., Čufar, K.,
Gea-Izquierdo, G., Gillner, S., Haavik, L. J., Hereş, A. M., Kane, J.
M., Kharuk, V. I., Kitzberger, T., Klein, T., Levanič, T., Linares, J.
C., Mäkinen, H., Oberhuber, W., Papadopoulos, A., Rohner, B., Sangüesa-Barreda, G., Stojanovic, D. B., Suárez, M. L., Villalba, R.,
and Martínez-Vilalta, J.: Low growth resilience to drought is related to future mortality risk in trees, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-14300-5, 2020.
Deutscher, J., Kupec, P., Dundek, P., Holík, L., Machala, M., and Urban,
J.: Diurnal dynamics of streamflow in an upland forested micro-watershed
during short precipitation-free periods is altered by tree sap flow, Hydrol.
Process., 30, 2042–2049, https://doi.org/10.1002/hyp.10771, 2016.
Eamus, D. and Froend, R.: Groundwater-dependent ecosystems: The where, what and why of GDEs, Aust. J. Bot., 54, 91–96, https://doi.org/10.1071/BT06029, 2006.
Eamus, D., Boulain, N., Cleverly, J., and Breshears, D. D.: Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health, Ecol.
Evol., 3, 2711–2729, https://doi.org/10.1002/ece3.664, 2013.
Fang, O. and Zhang, Q. Bin: Tree resilience to drought increases in the Tibetan Plateau, Global Change Biol., 25, 245–253, https://doi.org/10.1111/gcb.14470,
2019.
Feng, Z., Yang, Y., Zhang, Y., Zhang, P., and Li, Y.: Grain-for-green policy
and its impacts on grain supply in West China, Land Use Policy, 22, 301–312, https://doi.org/10.1016/j.landusepol.2004.05.004, 2005.
Fowler, M. D., Kooperman, G. J., Randerson, J. T., and Pritchard, M. S.: The
effect of plant physiological responses to rising CO2 on global streamflow, Nat. Clim. Change, 9, 873–879, https://doi.org/10.1038/s41558-019-0602-x, 2019.
Gao, X.: Actual Evapotranspiration in the Pearl River Basin: Estimation,
Spatio-Temporal Variations and Climatic Sensitivities, The Chinese University of Hong Kong, Hong Kong, 2010.
Ghestem, M., Sidle, R. C., and Stokes, A.: The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability, Bioscience, 61, 869–879, https://doi.org/10.1525/bio.2011.61.11.6, 2011.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska,
S. R., Berry, J., Joiner, J., and Lyapustin, A. I.: Photosynthetic seasonality of global tropical forests constrained by hydroclimate, Nat.
Geosci., 8, 284–289, https://doi.org/10.1038/ngeo2382, 2015.
Güsewell, S., Furrer, R., Gehrig, R., and Pietragalla, B.: Changes in
temperature sensitivity of spring phenology with recent climate warming in
Switzerland are related to shifts of the preseason, Global Change Biol., 23, 5189–5202, https://doi.org/10.1111/gcb.13781, 2017.
Huang, L. and Zhang, Z.: Effect of rainfall pulses on plant growth and
transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China, Catena, 137, 269–276, https://doi.org/10.1016/j.catena.2015.09.020, 2015.
Hwang, T., Martin, K. L., Vose, J. M., Wear, D., Miles, B., Kim, Y., and Band, L. E.: Nonstationary Hydrologic Behavior in Forested Watersheds Is
Mediated by Climate-Induced Changes in Growing Season Length and Subsequent
Vegetation Growth, Water Resour. Res., 54, 5359–5375, https://doi.org/10.1029/2017WR022279, 2018.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein,
C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J.,
Lanta, V., Manning, P., Meyer, S. T., Mori, A. S., Naeem, S., Niklaus, P. A., Polley, H. W., Reich, P. B., Roscher, C., Seabloom, E. W., Smith, M. D., Thakur, M. P., Tilman, D., Tracy, B. F., Van Der Putten, W. H., Van Ruijven,
J., Weigelt, A., Weisser, W. W., Wilsey, B., and Eisenhauer, N.: Biodiversity
increases the resistance of ecosystem productivity to climate extremes,
Nature, 526, 574–577, https://doi.org/10.1038/nature15374, 2015.
Jarvis, P. G. and Mcnaughton, K. G.: Stomatal Control of Transpiration:
Scaling Up from Leaf to Region, Adv. Ecol. Res., 15, 1–49, https://doi.org/10.1016/S0065-2504(08)60119-1, 1986.
Kirchner, J. W., Godsey, S. E., Solomon, M., Osterhuber, R., McConnell, J. R., and Penna, D.: The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA, Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, 2020.
Kong, D., Zhang, Y., Wang, D., Chen, J., and Gu, X.: Photoperiod Explains the
Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology, J. Geophys. Res.-Biogeo., 125, e2020JG005636, https://doi.org/10.1029/2020JG005636, 2020.
Kuang, W., Hu, Y., Dai, X., and Song, X.: Investigation of changes in water
resources and grain production in China: changing patterns and uncertainties, Theor. Appl. Climatol., 122, 557–565, https://doi.org/10.1007/s00704-014-1315-8, 2015.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H. Y., Wiese, D. N., and Yuan, D. N.: Extending the Global Mass Change Data Record: GRACE
Follow – On Instrument and Science Data Performance, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2020GL088306, 2020.
Li, J., Wang, Z., Wu, X., Guo, S., and Chen, X.: Flash droughts in the Pearl
River Basin, China: Observed characteristics and future changes, Sci. Total
Environ., 707, 136074, https://doi.org/10.1016/j.scitotenv.2019.136074, 2020.
Li, X. and Xiao, J.: A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data,
Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D.,
and Feng, M.: Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in
China's Loess Plateau, Water Resour. Res., 51, 6500–6519, https://doi.org/10.1002/2014WR016589, 2015.
Lin, Q., Wu, Z., Singh, V. P., Sadeghi, S. H. R., He, H., and Lu, G.: Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China, J. Hydrol., 549, 512–524, https://doi.org/10.1016/j.jhydrol.2017.04.020, 2017.
Liu, B., Peng, S., Liao, Y., and Wang, H.: The characteristics and causes of
increasingly severe saltwater intrusion in Pearl River Estuary, Estuar. Coast. Shelf Sci., 220, 54–63, https://doi.org/10.1016/j.ecss.2019.02.041, 2019.
Liu, Y., Zhou, Y., Ju, W., Wang, S., Wu, X., He, M., and Zhu, G.: Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011, Biogeosciences, 11, 2583–2599, https://doi.org/10.5194/bg-11-2583-2014, 2014.
Liu, Z., Wang, L., and Wang, S.: Comparison of different GPP models in China
using MODIS image and ChinaFLUX data, Remote Sens., 6, 10215–10231,
https://doi.org/10.3390/rs61010215, 2014.
Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R., and
Longuevergne, L.: Global analysis of spatiotemporal variability in merged
total water storage changes using multiple GRACE products and global hydrological models, Remote Sens. Environ., 192, 198–216,
https://doi.org/10.1016/j.rse.2017.02.011, 2017.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth Oblateness
Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise, Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019GL082929, 2019.
Ma, X., Huete, A., Moran, S., Ponce-Campos, G., and Eamus, D.: Abrupt shifts
in phenology and vegetation productivity under climate extremes, J. Geophys.
Res.-Biogeo., 120, 2036–2052, https://doi.org/10.1002/2015JG003144, 2015.
Martin-StPaul, N., Delzon, S., and Cochard, H. H.: Plant resistance to drought depends on timely stomatal closure, edited by: Maherali, H., Ecol.
Lett., 20, 1437–1447, https://doi.org/10.1111/ele.12851, 2017.
Marvel, K., Cook, B. I., Bonfils, C. J. W., Durack, P. J., Smerdon, J. E., and Williams, A. P.: Twentieth-century hydroclimate changes consistent with
human influence, Nature, 569, 59–65, https://doi.org/10.1038/s41586-019-1149-8, 2019.
Massmann, A., Gentine, P., and Lin, C.: When does vapor pressure deficit drive or reduce evapotranspiration?, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2018-553, 2018.
Mo, X., Wu, J. J., Wang, Q., and Zhou, H.: Variations in water storage in China over recent decades from GRACE observations and GLDAS, Nat. Hazards Earth Syst. Sci., 16, 469–482, https://doi.org/10.5194/nhess-16-469-2016, 2016.
Niu, J., Chen, J., Sun, L., and Sivakumar, B.: Time-lag effects of vegetation
responses to soil moisture evolution: a case study in the Xijiang basin in
South China, Stoch. Environ. Res. Risk A., 32, 2423–2432, https://doi.org/10.1007/s00477-017-1492-y, 2018.
Notaro, M., Vavrus, S., and Liu, Z.: Global vegetation and climate change due
to future increases in CO2 as projected by a fully coupled model with dynamic vegetation, J. Climate, 20, 70–90, https://doi.org/10.1175/JCLI3989.1, 2007.
Novák, V., Hurtalová, T., and Matejka, F.: Predicting the effects of
soil water content and soil water potential on transpiration of maize, Agr. Water Manage., 76, 211–223, https://doi.org/10.1016/j.agwat.2005.01.009, 2005.
Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L.,
Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., and Bullock, J. M.: Biodiversity and Resilience of Ecosystem Functions, Trends Ecol. Evol., 30, 673–684,
https://doi.org/10.1016/j.tree.2015.08.009, 2015.
Pal, I. and Al-Tabbaa, A.: Trends in seasonal precipitation extremes – An
indicator of “climate change” in Kerala, India, J. Hydrol., 367, 62–69, https://doi.org/10.1016/j.jhydrol.2008.12.025, 2009.
Pei, Y., Dong, J., Zhang, Y. Y., Yang, J., Zhang, Y. Y., Jiang, C., and Xiao,
X.: Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and
PML) for grasslands in drought years, Ecol. Inform., 56, 101052, https://doi.org/10.1016/j.ecoinf.2020.101052, 2020.
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An Assessment of
the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al., J. Geophys. Res.-Solid, 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Petr, M., Boerboom, L. G. J., Ray, D., and Van Der Veen, A.: Adapting Scotland's forests to climate change using an action expiration chart, Environ. Res. Lett., 10, 105005, https://doi.org/10.1088/1748-9326/10/10/105005, 2015.
Pham-Duc, B., Papa, F., Prigent, C., Aires, F., Biancamaria, S., and Frappart, F.: Variations of surface and subsurface water storage in the Lower Mekong Basin (Vietnam and Cambodia) from multisatellite observations, Water, 11, 75, https://doi.org/10.3390/w11010075, 2019.
Piao, S., Fang, J., Zhou, L., Ciais, P., and Zhu, B.: Variations in satellite-derived phenology in China's temperate vegetation, Global Change
Biol., 12, 672–685, https://doi.org/10.1111/j.1365-2486.2006.01123.x, 2006.
Plaut, J. A., Wadsworth, W. D., Pangle, R., Yepez, E. A., McDowell, N. G.,
and Pockman, W. T.: Reduced transpiration response to precipitation pulses
precedes mortality, New Phytol., 200, 375–387, 2013.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma,
L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F.
L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., Sá, L. D. A., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi, F. B., and Saleska, S. R.: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network, Agr. Forest Meteorol., 182–183, 128–144, https://doi.org/10.1016/j.agrformet.2013.04.031, 2013.
Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P.,
Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R.,
Klein, T., Kuster, T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., Menzel, A., and Pereira, M.: A plant's perspective of extremes: Terrestrial plant responses to changing climatic variability, Global Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Running, S. W., Heinsch, F. A., Zhao, M., Reeves, M., Hashimoto, H., and Nemani, R. R.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, Bioscience, 54, 547–560, 2004.
Sakumura, C., Bettadpur, S., and Bruinsma, S.: Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models, Geophys. Res. Lett., 41, 1389–1397, https://doi.org/10.1002/2013GL058632, 2014.
Sala, A., Piper, F., and Hoch, G.: Physiological mechanisms of drought-induced tree mortality are far from being resolved, New Phytol., 186, 274–281, https://doi.org/10.1111/j.1469-8137.2009.03167.x, 2010.
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Solid, 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Schwärzel, K., Zhang, L., Montanarella, L., Wang, Y., and Sun, G.: How
afforestation affects the water cycle in drylands: A process-based comparative analysis, Global Change Biol., 26, 944–959, https://doi.org/10.1111/gcb.14875, 2020.
Shen, Q., Gao, G., Fu, B., and Lü, Y.: Sap flow and water use sources of
shelter-belt trees in an arid inland river basin of Northwest China,
Ecohydrology, 8, 1446–1458, https://doi.org/10.1002/eco.1593, 2015.
Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., and Knutti, R.:
Climate change now detectable from any single day of weather at global scale, Nat. Clim. Change, 10, 35–41, https://doi.org/10.1038/s41558-019-0666-7, 2020.
Sohoulande Djebou, D. C., Singh, V. P., and Frauenfeld, O. W.: Vegetation
response to precipitation across the aridity gradient of the southwestern United states, J. Arid Environ., 115, 35–43, https://doi.org/10.1016/j.jaridenv.2015.01.005, 2015.
Soulsby, C., Dick, J., Scheliga, B., and Tetzlaff, D.: Taming the flood – How far can we go with trees?, Hydrol. Process., 31, 3122–3126,
https://doi.org/10.1002/hyp.11226, 2017.
Stewardson, M. J., Shang, W., Kattel, G. R., and Webb, J. A.: Environmental
Water and Integrated Catchment Management, in: Water for the Environment: From Policy and Science to Implementation and Management, Elsevier Inc., London, UK, 519–536, 2017.
Sussmilch, F. C. and McAdam, S. A. M.: Surviving a dry future: Abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity,
Plants, 6, 54, https://doi.org/10.3390/plants6040054, 2017.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in
GRACE data, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2005GL025285, 2006.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M.
M.: GRACE measurements of mass variability in the Earth system, Science, 305, 503–505, https://doi.org/10.1126/science.1099192, 2004.
Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., De Keersmaecker, W.,
Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z.,
Chen, H., and Fensholt, R.: Increased vegetation growth and carbon stock in
China karst via ecological engineering, Nat. Sustain., 1, 44–50,
https://doi.org/10.1038/s41893-017-0004-x, 2018.
Wang, H., Guan, H., Gutiérrez-Jurado, H. A., and Simmons, C. T.: Examination of water budget using satellite products over Australia, J. Hydrol., 511, 546–554, https://doi.org/10.1016/j.jhydrol.2014.01.076, 2014.
Wang, H., Tetzlaff, D., Dick, J. J., and Soulsby, C.: Assessing the environmental controls on Scots pine transpiration and the implications for
water partitioning in a boreal headwater catchment, Agr. Forest Meteorol.,
240–241, 58–66, https://doi.org/10.1016/j.agrformet.2017.04.002, 2017.
Wang, H., Tetzlaff, D., Buttle, J., Carey, S. K., Laudon, H., McNamara, J. P., Spence, C., and Soulsby, C.: Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies, Sci. Total Environ., 656, 19–28,
https://doi.org/10.1016/j.scitotenv.2018.11.361, 2019.
Wang, J., Jiang, D., Huang, Y., and Wang, H.: Drought analysis of the Haihe
river basin based on GRACE terrestrial water storage, Sci. World J., 2014,
578372, https://doi.org/10.1155/2014/578372, 2014.
Wang, X., Dannenberg, M. P., Yan, D., Jones, M. O., Kimball, J. S., Moore, D. J. P., van Leeuwen, W. J. D., Didan, K., and Smith, W. K.: Globally Consistent Patterns of Asynchrony in Vegetation Phenology Derived From Optical, Microwave, and Fluorescence Satellite Data, J. Geophys. Res.-Biogeo., 125, 1–15, https://doi.org/10.1029/2020JG005732, 2020.
Wang, Y., Yu, P., Xiong, W., Shen, Z., Guo, M., Shi, Z., Du, A., and Wang, L.: Water-yield reduction after afforestation and related processes in the
semiarid Liupan Mountains, northwest China, J. Am. Water Resour. Assoc., 44, 1086–1097, https://doi.org/10.1111/j.1752-1688.2008.00238.x, 2008.
Wheater, H. and Evans, E.: Land use, water management and future flood risk,
Land Use Policy, 26, S251–S264, https://doi.org/10.1016/j.landusepol.2009.08.019, 2009.
Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies, Tree Physiol., 18, 633–644, 1998.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wu, Y., Tang, G., Gu, H., Liu, Y., Yang, M., and Sun, L.: The variation of
vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data, Sci. Total Environ., 653, 536–546, https://doi.org/10.1016/j.scitotenv.2018.10.380, 2019.
Xia, Y. Q. and Shao, M. A.: Soil water carrying capacity for vegetation: A
hydrologic and biogeochemical process model solution, Ecol. Model., 214, 112–124, https://doi.org/10.1016/j.ecolmodel.2008.01.024, 2008.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xu, K., Qin, G., Niu, J., Wu, C., Hu, B. X., Huang, G., and Wang, P.:
Comparative analysis of meteorological and hydrological drought over the Pearl River basin in southern China, Hydrol. Res., 50, 301–318,
https://doi.org/10.2166/nh.2018.178, 2019.
Xu, X., Zhang, Q., Li, Y., and Li, X.: Evaluating the influence of water table depth on transpiration of two vegetation communities in a lake floodplain wetland, Hydrol. Res., 47, 293–312, https://doi.org/10.2166/nh.2016.011,
2016.
Yang, Q., Zhao, W., Liu, B., and Liu, H.: Physiological responses of Haloxylon ammodendron to rainfall pulses in temperate desert regions, Northwestern China, Trees – Struct. Funct., 28, 709–722, https://doi.org/10.1007/s00468-014-0983-4, 2014.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang,
W., Liu, B., Jin, Z., and Simmons, C. T.: Contrasting responses of water use
efficiency to drought across global terrestrial ecosystems, Sci. Rep., 6, 1–8, https://doi.org/10.1038/srep23284, 2016.
Yao, J., Liu, H., Huang, J., Gao, Z., Wang, G., Li, D., Yu, H., and Chen, X.:
Accelerated dryland expansion regulates future variability in dryland gross
primary production, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-15515-2, 2020.
Yosef, G., Walko, R., Avisar, R., Tatarinov, F., Rotenberg, E., and Yakir, D.: Large-scale semi-arid afforestation can enhance precipitation and carbon
sequestration potential, Sci. Rep., 8, 1–10, https://doi.org/10.1038/s41598-018-19265-6, 2018.
Yu, J. and Wang, P.: Relationship between Water and Vegetation in the Ejina
Delta, BCAS – Bull. Chinese Acad. Sci., 26, 68–75, 2012.
Yuan, W., Cai, W., Nguy-Robertson, A. L., Fang, H., Suyker, A. E., Chen, Y.,
Dong, W., Liu, S., and Zhang, H.: Uncertainty in simulating gross primary
production of cropland ecosystem from satellite-based models, Agr. Forest
Meteorol., 207, 48–57, https://doi.org/10.1016/j.agrformet.2015.03.016, 2015.
Zhang, Q., Xu, C. Y., and Zhang, Z.: Observed changes of drought/wetness
episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index, Theor. Appl. Climatol., 98, 89–99, https://doi.org/10.1007/s00704-008-0095-4, 2009.
Zhang, Q., Kong, D., Singh, V. P., and Shi, P.: Response of vegetation to
different time-scales drought across China: Spatiotemporal patterns, causes
and implications, Global Planet. Change, 152, 1–11, https://doi.org/10.1016/j.gloplacha.2017.02.008, 2017.
Zhang, X. and Zhang, B.: The responses of natural vegetation dynamics to
drought during the growing season across China, J. Hydrol., 574, 706–714, https://doi.org/10.1016/j.jhydrol.2019.04.084, 2019.
Zhang, X., Dai, J., and Ge, Q.: Variation in vegetation greenness in spring
across eastern China during 1982–2006, J. Geogr. Sci., 23, 45–56,
https://doi.org/10.1007/s11442-013-0992-z, 2013.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhao, J., Wang, D., Yang, H., and Sivapalan, M.: Unifying catchment water
balance models for different time scales through the maximum entropy
production principle, Water Resour. Res., 52, 7503–7512,
https://doi.org/10.1002/2016WR018977, 2016.
Zhu, B., Xie, X., and Zhang, K.: Water storage and vegetation changes in
response to the 2009/10 drought over North China, Hydrol. Res., 49, 1618–1635, https://doi.org/10.2166/nh.2018.087, 2018.
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
Using remote sensing and reanalysis data, we examined the relationships between vegetation...