Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4741-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4741-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China
Hailong Wang
CORRESPONDING AUTHOR
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519082, China
Kai Duan
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong 519082, China
Bingjun Liu
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Xiaohong Chen
School of Civil Engineering, Sun Yat-sen University, Guangzhou,
Guangdong 510275, China
Guangdong Engineering Technology Research Center of Water Security
Regulation and Control for Southern China, Sun Yat-sen University,
Guangzhou 510275, China
Related authors
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
Hydrol. Earth Syst. Sci., 28, 4085–4098, https://doi.org/10.5194/hess-28-4085-2024, https://doi.org/10.5194/hess-28-4085-2024, 2024
Short summary
Short summary
Measuring discharge at steep, rocky mountain streams is challenging due to the difficulties in identifying cross-section characteristics and establishing stable stage–discharge relationships. We present a novel method using only a low-cost commercial camera and deep learning algorithms. Our study shows that deep convolutional neural networks can automatically recognize and retrieve complex stream features embedded in RGB images to achieve continuous discharge monitoring.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-106, https://doi.org/10.5194/hess-2024-106, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess the spatiotemporal changes in blue and green water scarcity in a anthropogenic highly-impacted watershed and their association with climate change and land use change, using a multi-water-flux validated SWAT model. Observed streamflow, evapotranspiration, and soil moisture are integrated to model calibration, and validation. Results show that both climate change and land use change have decrease blue water and g green water flow, while land use change increase green water flow.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021, https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary
Short summary
This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño–Southern Oscillation (ENSO) teleconnection using the coefficient of determination. Three cases of attribution are effectively facilitated, which are significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020, https://doi.org/10.5194/hess-24-1347-2020, 2020
Tongtiegang Zhao, Wei Zhang, Yongyong Zhang, Zhiyong Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1–16, https://doi.org/10.5194/hess-24-1-2020, https://doi.org/10.5194/hess-24-1-2020, 2020
Tian Lan, Kairong Lin, Xuezhi Tan, Chong-Yu Xu, and Xiaohong Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-301, https://doi.org/10.5194/hess-2019-301, 2019
Manuscript not accepted for further review
Short summary
Short summary
A calibration scheme was developed for the dynamics of hydrological model parameters. Furthermore, a novel tool was designed to assess the reliability of the dynamized parameter set. The tool evaluates the convergence processes for global optimization algorithms using violin plots (ECP-VP). The results showed that the developed calibration scheme overcame the salient issues for poor model performance. Besides, the ECP-VP tool effectively assessed the reliability of the dynamic parameter set.
Xinjun Tu, Yiliang Du, Vijay P. Singh, Xiaohong Chen, Kairong Lin, and Haiou Wu
Hydrol. Earth Syst. Sci., 22, 5175–5189, https://doi.org/10.5194/hess-22-5175-2018, https://doi.org/10.5194/hess-22-5175-2018, 2018
Short summary
Short summary
For given frequencies of precipitation of a large region, design water demands of irrigation of the entire region among three methods, i.e., equalized frequency, typical year and most-likely weight function, slightly differed, but their alterations in sub-regions were complicated. A design procedure using the most-likely weight function in association with a high-dimensional copula, which built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended.
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Remote Sensing and GIS
Revealing joint evolutions and causal interactions in complex eco-hydrological systems by a network-based framework
Circumarctic land cover diversity considering wetness gradients
Multi-decadal floodplain classification and trend analysis in the Upper Columbia River valley, British Columbia
Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth
Simulating carbon and water fluxes using a coupled process-based terrestrial biosphere model and joint assimilation of leaf area index and surface soil moisture
Untangling irrigation effects on maize water and heat stress alleviation using satellite data
Information-based uncertainty decomposition in dual-channel microwave remote sensing of soil moisture
Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes
Long-term water stress and drought assessment of Mediterranean oak savanna vegetation using thermal remote sensing
Temporal interpolation of land surface fluxes derived from remote sensing – results with an unmanned aerial system
Pattern and structure of microtopography implies autogenic origins in forested wetlands
The influence of water table depth on evapotranspiration in the Amazon arc of deforestation
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
Laser vision: lidar as a transformative tool to advance critical zone science
Attribution of satellite-observed vegetation trends in a hyper-arid region of the Heihe River basin, Western China
Evapotranspiration and water yield over China's landmass from 2000 to 2010
Satellite-based analysis of recent trends in the ecohydrology of a semi-arid region
Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach
Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones
Quantifying the performance of automated GIS-based geomorphological approaches for riparian zone delineation using digital elevation models
Climate change, growing season water deficit and vegetation activity along the north–south transect of eastern China from 1982 through 2006
Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data
The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model
The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia
Lu Wang, Yue-Ping Xu, Haiting Gu, Li Liu, Xiao Liang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-226, https://doi.org/10.5194/hess-2024-226, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To understand how eco-hydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of eco-hydrological processes.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Italo Sampaio Rodrigues, Christopher Hopkinson, Laura Chasmer, Ryan J. MacDonald, Suzanne E. Bayley, and Brian Brisco
Hydrol. Earth Syst. Sci., 28, 2203–2221, https://doi.org/10.5194/hess-28-2203-2024, https://doi.org/10.5194/hess-28-2203-2024, 2024
Short summary
Short summary
The research evaluated the trends and changes in land cover and river discharge in the Upper Columbia River Wetlands using remote sensing and hydroclimatic data. The river discharge increased during the peak flow season, resulting in a positive trend in the open-water extent in the same period, whereas open-water area declined on an annual basis. Furthermore, since 2003 the peak flow has occurred 11 d earlier than during 1903–1928, which has led to larger discharges in a shorter time.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022, https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary
Short summary
Accurate estimation for global GPP and ET is important in climate change studies. In this study, the GLASS LAI, SMOS, and SMAP datasets were assimilated jointly and separately in a coupled model. The results show that the performance of joint assimilation for GPP and ET is better than that of separate assimilation. The joint assimilation in water-limited regions performed better than in humid regions, and the global assimilation results had higher accuracy than other products.
Peng Zhu and Jennifer Burney
Hydrol. Earth Syst. Sci., 26, 827–840, https://doi.org/10.5194/hess-26-827-2022, https://doi.org/10.5194/hess-26-827-2022, 2022
Short summary
Short summary
Satellite data were used to disentangle water and heat stress alleviation due to irrigation. Our findings are as follows. (1) Irrigation-induced cooling was captured by satellite LST but air temperature failed. (2) Irrigation extended maize growing season duration, especially during grain filling. (3) Water and heat stress alleviation constitutes 65 % and 35 % of the irrigation benefit. (4) The crop model simulating canopy temperature better captures the irrigation benefit.
Bonan Li and Stephen P. Good
Hydrol. Earth Syst. Sci., 25, 5029–5045, https://doi.org/10.5194/hess-25-5029-2021, https://doi.org/10.5194/hess-25-5029-2021, 2021
Short summary
Short summary
We found that satellite retrieved soil moisture has large uncertainty, with uncertainty caused by the algorithm being closely related to the satellite soil moisture quality. The information provided by the two main inputs is mainly redundant. Such redundant components and synergy components provided by two main inputs to the satellite soil moisture are related to how the satellite algorithm performs. The satellite remote sensing algorithms may be improved by performing such analysis.
David N. Dralle, W. Jesse Hahm, K. Dana Chadwick, Erica McCormick, and Daniella M. Rempe
Hydrol. Earth Syst. Sci., 25, 2861–2867, https://doi.org/10.5194/hess-25-2861-2021, https://doi.org/10.5194/hess-25-2861-2021, 2021
Short summary
Short summary
Root zone water storage capacity determines how much water can be stored belowground to support plants during periods without precipitation. Here, we develop a satellite remote sensing method to estimate this key variable at large scales that matter for management. Importantly, our method builds on previous approaches by accounting for snowpack, which may bias estimates from existing approaches. Ultimately, our method will improve large-scale understanding of plant access to subsurface water.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Sheng Wang, Monica Garcia, Andreas Ibrom, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 24, 3643–3661, https://doi.org/10.5194/hess-24-3643-2020, https://doi.org/10.5194/hess-24-3643-2020, 2020
Short summary
Short summary
Remote sensing only provides snapshots of rapidly changing land surface variables; this limits its application for water resources and ecosystem management. To obtain continuous estimates of surface temperature, soil moisture, evapotranspiration, and ecosystem productivity, a simple and operational modelling scheme is presented. We demonstrate it with temporally sparse optical and thermal remote sensing data from an unmanned aerial system at a Danish bioenergy plantation eddy covariance site.
Jacob S. Diamond, Daniel L. McLaughlin, Robert A. Slesak, and Atticus Stovall
Hydrol. Earth Syst. Sci., 23, 5069–5088, https://doi.org/10.5194/hess-23-5069-2019, https://doi.org/10.5194/hess-23-5069-2019, 2019
Short summary
Short summary
We found evidence for spatial patterning of soil elevation in forested wetlands that was well explained by hydrology. The patterns that we found were strongest at wetter sites, and were weakest at drier sites. When a site was wet, soil elevations typically only belonged to two groups: tall "hummocks" and low "hollows. The tall, hummock groups were spaced equally apart from each other and were a similar size. We believe this is evidence for a biota–hydrology feedback that creates hummocks.
John O'Connor, Maria J. Santos, Karin T. Rebel, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 23, 3917–3931, https://doi.org/10.5194/hess-23-3917-2019, https://doi.org/10.5194/hess-23-3917-2019, 2019
Short summary
Short summary
The Amazon rainforest has undergone extensive land use change, which greatly reduces the rate of evapotranspiration. Forest with deep roots is replaced by agriculture with shallow roots. The difference in rooting depth can greatly reduce access to water, especially during the dry season. However, large areas of the Amazon have a sufficiently shallow water table that may provide access for agriculture. We used remote sensing observations to compare the impact of deep and shallow water tables.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Olanrewaju O. Abiodun, Huade Guan, Vincent E. A. Post, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 2775–2794, https://doi.org/10.5194/hess-22-2775-2018, https://doi.org/10.5194/hess-22-2775-2018, 2018
Short summary
Short summary
In recent decades, evapotranspiration estimation has been improved by remote sensing methods as well as by hydrological models. However, comparing these methods shows differences of up to 31 % at a spatial resolution of 1 km2. Land cover differences and catchment averaged climate data in the hydrological model were identified as the principal causes of the differences in results. The implication is that water management will have to deal with large uncertainty in estimated water balances.
Shoubo Li, Yan Zhao, Yongping Wei, and Hang Zheng
Hydrol. Earth Syst. Sci., 21, 4233–4244, https://doi.org/10.5194/hess-21-4233-2017, https://doi.org/10.5194/hess-21-4233-2017, 2017
Short summary
Short summary
This study aims to investigate the evolution of natural and crop vegetation systems over the past 2000 years accommodated with the changes in water regimes at the basin scale. It is based on remote-sensing data and previous historical research. The methods developed and the findings obtained from this study could assist in understanding how current ecosystem problems were created in the past and what their implications for future river basin management are.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
M. Gokmen, Z. Vekerdy, W. Verhoef, and O. Batelaan
Hydrol. Earth Syst. Sci., 17, 3779–3794, https://doi.org/10.5194/hess-17-3779-2013, https://doi.org/10.5194/hess-17-3779-2013, 2013
H. Liu, F. Tian, H. C. Hu, H. P. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 17, 805–815, https://doi.org/10.5194/hess-17-805-2013, https://doi.org/10.5194/hess-17-805-2013, 2013
T. S. Ahring and D. R. Steward
Hydrol. Earth Syst. Sci., 16, 4133–4142, https://doi.org/10.5194/hess-16-4133-2012, https://doi.org/10.5194/hess-16-4133-2012, 2012
D. Fernández, J. Barquín, M. Álvarez-Cabria, and F. J. Peñas
Hydrol. Earth Syst. Sci., 16, 3851–3862, https://doi.org/10.5194/hess-16-3851-2012, https://doi.org/10.5194/hess-16-3851-2012, 2012
P. Sun, Z. Yu, S. Liu, X. Wei, J. Wang, N. Zegre, and N. Liu
Hydrol. Earth Syst. Sci., 16, 3835–3850, https://doi.org/10.5194/hess-16-3835-2012, https://doi.org/10.5194/hess-16-3835-2012, 2012
M. Otto, D. Scherer, and J. Richters
Hydrol. Earth Syst. Sci., 15, 1713–1727, https://doi.org/10.5194/hess-15-1713-2011, https://doi.org/10.5194/hess-15-1713-2011, 2011
C. Cammalleri, M. C. Anderson, G. Ciraolo, G. D'Urso, W. P. Kustas, G. La Loggia, and M. Minacapilli
Hydrol. Earth Syst. Sci., 14, 2643–2659, https://doi.org/10.5194/hess-14-2643-2010, https://doi.org/10.5194/hess-14-2643-2010, 2010
E. Teferi, S. Uhlenbrook, W. Bewket, J. Wenninger, and B. Simane
Hydrol. Earth Syst. Sci., 14, 2415–2428, https://doi.org/10.5194/hess-14-2415-2010, https://doi.org/10.5194/hess-14-2415-2010, 2010
Cited articles
A, G., Velicogna, I., Kimball, J. S., Du, J., Kim, Y., Colliander, A., and
Njoku, E.: Satellite-observed changes in vegetation sensitivities to surface
soil moisture and total water storage variations since the 2011 Texas
drought, Environ. Res. Lett., 12, 054006, https://doi.org/10.1088/1748-9326/aa6965, 2017.
Adhami, M., Sadeghi, S. H., Duttmann, R., and Sheikhmohammady, M.: Changes in
watershed hydrological behavior due to land use comanagement scenarios, J.
Hydrol., 577, 124001, https://doi.org/10.1016/j.jhydrol.2019.124001, 2019.
Anderson, M. C., Kustas, W. P., and Norman, J. M.: Upscaling and Downscaling
– A Regional View of the Soil-Plant-Atmosphere Continuum, Agron. J., 95,
1408–1423, https://doi.org/10.2134/agronj2003.1408, 2003.
Aranda, I., Forner, A., Cuesta, B., and Valladares, F.: Species-specific water use by forest tree species: From the tree to the stand, Agr. Water Managr., 114, 67–77, https://doi.org/10.1016/j.agwat.2012.06.024, 2012.
Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., Chen, J., Gotsch, S., Tobón, C., Geissert, D. R., Gómez-Tagle, A., Vache, K., and Dawson, T. E.: Ecohydrological
advances and applications in plant-water relations research: A review, J. Plant Ecol., 4, 3–22, https://doi.org/10.1016/j.soildyn.2016.02.004, 2011.
Bai, J., Shi, H., Yu, Q., Xie, Z., Li, L., Luo, G., Jin, N., and Li, J.:
Satellite-observed vegetation stability in response to changes in climate
and total water storage in Central Asia, Sci. Total Environ., 659, 862–871,
https://doi.org/10.1016/j.scitotenv.2018.12.418, 2019.
Blaschke, P., Hicks, D., and Meister, A.: Quantification of the Flood and Erosion Reduction Benefits, and Costs, of Climate Change Mitigation Measures
in New Zealand, Wellington, available at: https://environment.govt.nz/
(last access: 27 April 2020), 2008.
Brookshire, E. N. J. and Weaver, T.: Long-term decline in grassland productivity driven by increasing dryness, Nat. Commun., 6, 1–7,
https://doi.org/10.1038/ncomms8148, 2015.
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.:
A review of paired catchment studies for determining changes in water yield
resulting from alterations in vegetation, J. Hydrol., 310, 28–61,
https://doi.org/10.1016/j.jhydrol.2004.12.010, 2005.
Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., and Siddique,
K. H. M.: Regulated deficit irrigation for crop production under drought stress. A review, Agron. Sustain. Dev., 36, 1–21, https://doi.org/10.1007/s13593-015-0338-6, 2016.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use management, Nat. Sustain., 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Chen, X., Liu, X., Zhou, G., Han, L., Liu, W., and Liao, J.: 50-year
evapotranspiration declining and potential causations in subtropical Guangdong province, southern China, Catena, 128, 185–194,
https://doi.org/10.1016/j.catena.2015.02.001, 2015.
Chen, Y. D., Zhang, Q., Xu, C. Y., Lu, X., and Zhang, S.: Multiscale streamflow variations of the Pearl River basin and possible implications for
the water resource management within the Pearl River Delta, China, Quatern.
Int., 226, 44–53, https://doi.org/10.1016/j.quaint.2009.08.014, 2010.
Chen, Z., Jiang, W., Wu, J., Chen, K., Deng, Y., Jia, K., and Mo, X.: Detection of the spatial patterns of water storage variation over China in
recent 70 years, Sci. Rep., 7, 1–9, https://doi.org/10.1038/s41598-017-06558-5, 2017.
Deng, S., Chen, T., Yang, N., Qu, L., Li, M., and Chen, D.: Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin, Sci. Total Environ., 619–620, 28–41,
https://doi.org/10.1016/j.scitotenv.2017.10.339, 2018.
Déry, S. J. and Wood, E. F.: Decreasing river discharge in northern Canada, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022845, 2005.
DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M.
R., Aakala, T., Amoroso, M. M., Bigler, C., Camarero, J. J., Čufar, K.,
Gea-Izquierdo, G., Gillner, S., Haavik, L. J., Hereş, A. M., Kane, J.
M., Kharuk, V. I., Kitzberger, T., Klein, T., Levanič, T., Linares, J.
C., Mäkinen, H., Oberhuber, W., Papadopoulos, A., Rohner, B., Sangüesa-Barreda, G., Stojanovic, D. B., Suárez, M. L., Villalba, R.,
and Martínez-Vilalta, J.: Low growth resilience to drought is related to future mortality risk in trees, Nat. Commun., 11, 1–9, https://doi.org/10.1038/s41467-020-14300-5, 2020.
Deutscher, J., Kupec, P., Dundek, P., Holík, L., Machala, M., and Urban,
J.: Diurnal dynamics of streamflow in an upland forested micro-watershed
during short precipitation-free periods is altered by tree sap flow, Hydrol.
Process., 30, 2042–2049, https://doi.org/10.1002/hyp.10771, 2016.
Eamus, D. and Froend, R.: Groundwater-dependent ecosystems: The where, what and why of GDEs, Aust. J. Bot., 54, 91–96, https://doi.org/10.1071/BT06029, 2006.
Eamus, D., Boulain, N., Cleverly, J., and Breshears, D. D.: Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health, Ecol.
Evol., 3, 2711–2729, https://doi.org/10.1002/ece3.664, 2013.
Fang, O. and Zhang, Q. Bin: Tree resilience to drought increases in the Tibetan Plateau, Global Change Biol., 25, 245–253, https://doi.org/10.1111/gcb.14470,
2019.
Feng, Z., Yang, Y., Zhang, Y., Zhang, P., and Li, Y.: Grain-for-green policy
and its impacts on grain supply in West China, Land Use Policy, 22, 301–312, https://doi.org/10.1016/j.landusepol.2004.05.004, 2005.
Fowler, M. D., Kooperman, G. J., Randerson, J. T., and Pritchard, M. S.: The
effect of plant physiological responses to rising CO2 on global streamflow, Nat. Clim. Change, 9, 873–879, https://doi.org/10.1038/s41558-019-0602-x, 2019.
Gao, X.: Actual Evapotranspiration in the Pearl River Basin: Estimation,
Spatio-Temporal Variations and Climatic Sensitivities, The Chinese University of Hong Kong, Hong Kong, 2010.
Ghestem, M., Sidle, R. C., and Stokes, A.: The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability, Bioscience, 61, 869–879, https://doi.org/10.1525/bio.2011.61.11.6, 2011.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska,
S. R., Berry, J., Joiner, J., and Lyapustin, A. I.: Photosynthetic seasonality of global tropical forests constrained by hydroclimate, Nat.
Geosci., 8, 284–289, https://doi.org/10.1038/ngeo2382, 2015.
Güsewell, S., Furrer, R., Gehrig, R., and Pietragalla, B.: Changes in
temperature sensitivity of spring phenology with recent climate warming in
Switzerland are related to shifts of the preseason, Global Change Biol., 23, 5189–5202, https://doi.org/10.1111/gcb.13781, 2017.
Huang, L. and Zhang, Z.: Effect of rainfall pulses on plant growth and
transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China, Catena, 137, 269–276, https://doi.org/10.1016/j.catena.2015.09.020, 2015.
Hwang, T., Martin, K. L., Vose, J. M., Wear, D., Miles, B., Kim, Y., and Band, L. E.: Nonstationary Hydrologic Behavior in Forested Watersheds Is
Mediated by Climate-Induced Changes in Growing Season Length and Subsequent
Vegetation Growth, Water Resour. Res., 54, 5359–5375, https://doi.org/10.1029/2017WR022279, 2018.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein,
C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A., Griffin, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J.,
Lanta, V., Manning, P., Meyer, S. T., Mori, A. S., Naeem, S., Niklaus, P. A., Polley, H. W., Reich, P. B., Roscher, C., Seabloom, E. W., Smith, M. D., Thakur, M. P., Tilman, D., Tracy, B. F., Van Der Putten, W. H., Van Ruijven,
J., Weigelt, A., Weisser, W. W., Wilsey, B., and Eisenhauer, N.: Biodiversity
increases the resistance of ecosystem productivity to climate extremes,
Nature, 526, 574–577, https://doi.org/10.1038/nature15374, 2015.
Jarvis, P. G. and Mcnaughton, K. G.: Stomatal Control of Transpiration:
Scaling Up from Leaf to Region, Adv. Ecol. Res., 15, 1–49, https://doi.org/10.1016/S0065-2504(08)60119-1, 1986.
Kirchner, J. W., Godsey, S. E., Solomon, M., Osterhuber, R., McConnell, J. R., and Penna, D.: The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA, Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, 2020.
Kong, D., Zhang, Y., Wang, D., Chen, J., and Gu, X.: Photoperiod Explains the
Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology, J. Geophys. Res.-Biogeo., 125, e2020JG005636, https://doi.org/10.1029/2020JG005636, 2020.
Kuang, W., Hu, Y., Dai, X., and Song, X.: Investigation of changes in water
resources and grain production in China: changing patterns and uncertainties, Theor. Appl. Climatol., 122, 557–565, https://doi.org/10.1007/s00704-014-1315-8, 2015.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H. Y., Wiese, D. N., and Yuan, D. N.: Extending the Global Mass Change Data Record: GRACE
Follow – On Instrument and Science Data Performance, Geophys. Res. Lett., 47, 1–10, https://doi.org/10.1029/2020GL088306, 2020.
Li, J., Wang, Z., Wu, X., Guo, S., and Chen, X.: Flash droughts in the Pearl
River Basin, China: Observed characteristics and future changes, Sci. Total
Environ., 707, 136074, https://doi.org/10.1016/j.scitotenv.2019.136074, 2020.
Li, X. and Xiao, J.: A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data,
Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D.,
and Feng, M.: Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in
China's Loess Plateau, Water Resour. Res., 51, 6500–6519, https://doi.org/10.1002/2014WR016589, 2015.
Lin, Q., Wu, Z., Singh, V. P., Sadeghi, S. H. R., He, H., and Lu, G.: Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China, J. Hydrol., 549, 512–524, https://doi.org/10.1016/j.jhydrol.2017.04.020, 2017.
Liu, B., Peng, S., Liao, Y., and Wang, H.: The characteristics and causes of
increasingly severe saltwater intrusion in Pearl River Estuary, Estuar. Coast. Shelf Sci., 220, 54–63, https://doi.org/10.1016/j.ecss.2019.02.041, 2019.
Liu, Y., Zhou, Y., Ju, W., Wang, S., Wu, X., He, M., and Zhu, G.: Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011, Biogeosciences, 11, 2583–2599, https://doi.org/10.5194/bg-11-2583-2014, 2014.
Liu, Z., Wang, L., and Wang, S.: Comparison of different GPP models in China
using MODIS image and ChinaFLUX data, Remote Sens., 6, 10215–10231,
https://doi.org/10.3390/rs61010215, 2014.
Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R., and
Longuevergne, L.: Global analysis of spatiotemporal variability in merged
total water storage changes using multiple GRACE products and global hydrological models, Remote Sens. Environ., 192, 198–216,
https://doi.org/10.1016/j.rse.2017.02.011, 2017.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth Oblateness
Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise, Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019GL082929, 2019.
Ma, X., Huete, A., Moran, S., Ponce-Campos, G., and Eamus, D.: Abrupt shifts
in phenology and vegetation productivity under climate extremes, J. Geophys.
Res.-Biogeo., 120, 2036–2052, https://doi.org/10.1002/2015JG003144, 2015.
Martin-StPaul, N., Delzon, S., and Cochard, H. H.: Plant resistance to drought depends on timely stomatal closure, edited by: Maherali, H., Ecol.
Lett., 20, 1437–1447, https://doi.org/10.1111/ele.12851, 2017.
Marvel, K., Cook, B. I., Bonfils, C. J. W., Durack, P. J., Smerdon, J. E., and Williams, A. P.: Twentieth-century hydroclimate changes consistent with
human influence, Nature, 569, 59–65, https://doi.org/10.1038/s41586-019-1149-8, 2019.
Massmann, A., Gentine, P., and Lin, C.: When does vapor pressure deficit drive or reduce evapotranspiration?, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2018-553, 2018.
Mo, X., Wu, J. J., Wang, Q., and Zhou, H.: Variations in water storage in China over recent decades from GRACE observations and GLDAS, Nat. Hazards Earth Syst. Sci., 16, 469–482, https://doi.org/10.5194/nhess-16-469-2016, 2016.
Niu, J., Chen, J., Sun, L., and Sivakumar, B.: Time-lag effects of vegetation
responses to soil moisture evolution: a case study in the Xijiang basin in
South China, Stoch. Environ. Res. Risk A., 32, 2423–2432, https://doi.org/10.1007/s00477-017-1492-y, 2018.
Notaro, M., Vavrus, S., and Liu, Z.: Global vegetation and climate change due
to future increases in CO2 as projected by a fully coupled model with dynamic vegetation, J. Climate, 20, 70–90, https://doi.org/10.1175/JCLI3989.1, 2007.
Novák, V., Hurtalová, T., and Matejka, F.: Predicting the effects of
soil water content and soil water potential on transpiration of maize, Agr. Water Manage., 76, 211–223, https://doi.org/10.1016/j.agwat.2005.01.009, 2005.
Oliver, T. H., Heard, M. S., Isaac, N. J. B., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., Petchey, O. L.,
Proença, V., Raffaelli, D., Suttle, K. B., Mace, G. M., Martín-López, B., Woodcock, B. A., and Bullock, J. M.: Biodiversity and Resilience of Ecosystem Functions, Trends Ecol. Evol., 30, 673–684,
https://doi.org/10.1016/j.tree.2015.08.009, 2015.
Pal, I. and Al-Tabbaa, A.: Trends in seasonal precipitation extremes – An
indicator of “climate change” in Kerala, India, J. Hydrol., 367, 62–69, https://doi.org/10.1016/j.jhydrol.2008.12.025, 2009.
Pei, Y., Dong, J., Zhang, Y. Y., Yang, J., Zhang, Y. Y., Jiang, C., and Xiao,
X.: Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and
PML) for grasslands in drought years, Ecol. Inform., 56, 101052, https://doi.org/10.1016/j.ecoinf.2020.101052, 2020.
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An Assessment of
the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al., J. Geophys. Res.-Solid, 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Petr, M., Boerboom, L. G. J., Ray, D., and Van Der Veen, A.: Adapting Scotland's forests to climate change using an action expiration chart, Environ. Res. Lett., 10, 105005, https://doi.org/10.1088/1748-9326/10/10/105005, 2015.
Pham-Duc, B., Papa, F., Prigent, C., Aires, F., Biancamaria, S., and Frappart, F.: Variations of surface and subsurface water storage in the Lower Mekong Basin (Vietnam and Cambodia) from multisatellite observations, Water, 11, 75, https://doi.org/10.3390/w11010075, 2019.
Piao, S., Fang, J., Zhou, L., Ciais, P., and Zhu, B.: Variations in satellite-derived phenology in China's temperate vegetation, Global Change
Biol., 12, 672–685, https://doi.org/10.1111/j.1365-2486.2006.01123.x, 2006.
Plaut, J. A., Wadsworth, W. D., Pangle, R., Yepez, E. A., McDowell, N. G.,
and Pockman, W. T.: Reduced transpiration response to precipitation pulses
precedes mortality, New Phytol., 200, 375–387, 2013.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma,
L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F.
L., da Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., Sá, L. D. A., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi, F. B., and Saleska, S. R.: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network, Agr. Forest Meteorol., 182–183, 128–144, https://doi.org/10.1016/j.agrformet.2013.04.031, 2013.
Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P.,
Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R.,
Klein, T., Kuster, T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., Menzel, A., and Pereira, M.: A plant's perspective of extremes: Terrestrial plant responses to changing climatic variability, Global Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Running, S. W., Heinsch, F. A., Zhao, M., Reeves, M., Hashimoto, H., and Nemani, R. R.: A Continuous Satellite-Derived Measure of Global Terrestrial
Primary Production, Bioscience, 54, 547–560, 2004.
Sakumura, C., Bettadpur, S., and Bruinsma, S.: Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models, Geophys. Res. Lett., 41, 1389–1397, https://doi.org/10.1002/2013GL058632, 2014.
Sala, A., Piper, F., and Hoch, G.: Physiological mechanisms of drought-induced tree mortality are far from being resolved, New Phytol., 186, 274–281, https://doi.org/10.1111/j.1469-8137.2009.03167.x, 2010.
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Solid, 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Schwärzel, K., Zhang, L., Montanarella, L., Wang, Y., and Sun, G.: How
afforestation affects the water cycle in drylands: A process-based comparative analysis, Global Change Biol., 26, 944–959, https://doi.org/10.1111/gcb.14875, 2020.
Shen, Q., Gao, G., Fu, B., and Lü, Y.: Sap flow and water use sources of
shelter-belt trees in an arid inland river basin of Northwest China,
Ecohydrology, 8, 1446–1458, https://doi.org/10.1002/eco.1593, 2015.
Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E., and Knutti, R.:
Climate change now detectable from any single day of weather at global scale, Nat. Clim. Change, 10, 35–41, https://doi.org/10.1038/s41558-019-0666-7, 2020.
Sohoulande Djebou, D. C., Singh, V. P., and Frauenfeld, O. W.: Vegetation
response to precipitation across the aridity gradient of the southwestern United states, J. Arid Environ., 115, 35–43, https://doi.org/10.1016/j.jaridenv.2015.01.005, 2015.
Soulsby, C., Dick, J., Scheliga, B., and Tetzlaff, D.: Taming the flood – How far can we go with trees?, Hydrol. Process., 31, 3122–3126,
https://doi.org/10.1002/hyp.11226, 2017.
Stewardson, M. J., Shang, W., Kattel, G. R., and Webb, J. A.: Environmental
Water and Integrated Catchment Management, in: Water for the Environment: From Policy and Science to Implementation and Management, Elsevier Inc., London, UK, 519–536, 2017.
Sussmilch, F. C. and McAdam, S. A. M.: Surviving a dry future: Abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity,
Plants, 6, 54, https://doi.org/10.3390/plants6040054, 2017.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in
GRACE data, Geophys. Res. Lett., 33, 1–4, https://doi.org/10.1029/2005GL025285, 2006.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M.
M.: GRACE measurements of mass variability in the Earth system, Science, 305, 503–505, https://doi.org/10.1126/science.1099192, 2004.
Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., De Keersmaecker, W.,
Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z.,
Chen, H., and Fensholt, R.: Increased vegetation growth and carbon stock in
China karst via ecological engineering, Nat. Sustain., 1, 44–50,
https://doi.org/10.1038/s41893-017-0004-x, 2018.
Wang, H., Guan, H., Gutiérrez-Jurado, H. A., and Simmons, C. T.: Examination of water budget using satellite products over Australia, J. Hydrol., 511, 546–554, https://doi.org/10.1016/j.jhydrol.2014.01.076, 2014.
Wang, H., Tetzlaff, D., Dick, J. J., and Soulsby, C.: Assessing the environmental controls on Scots pine transpiration and the implications for
water partitioning in a boreal headwater catchment, Agr. Forest Meteorol.,
240–241, 58–66, https://doi.org/10.1016/j.agrformet.2017.04.002, 2017.
Wang, H., Tetzlaff, D., Buttle, J., Carey, S. K., Laudon, H., McNamara, J. P., Spence, C., and Soulsby, C.: Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies, Sci. Total Environ., 656, 19–28,
https://doi.org/10.1016/j.scitotenv.2018.11.361, 2019.
Wang, J., Jiang, D., Huang, Y., and Wang, H.: Drought analysis of the Haihe
river basin based on GRACE terrestrial water storage, Sci. World J., 2014,
578372, https://doi.org/10.1155/2014/578372, 2014.
Wang, X., Dannenberg, M. P., Yan, D., Jones, M. O., Kimball, J. S., Moore, D. J. P., van Leeuwen, W. J. D., Didan, K., and Smith, W. K.: Globally Consistent Patterns of Asynchrony in Vegetation Phenology Derived From Optical, Microwave, and Fluorescence Satellite Data, J. Geophys. Res.-Biogeo., 125, 1–15, https://doi.org/10.1029/2020JG005732, 2020.
Wang, Y., Yu, P., Xiong, W., Shen, Z., Guo, M., Shi, Z., Du, A., and Wang, L.: Water-yield reduction after afforestation and related processes in the
semiarid Liupan Mountains, northwest China, J. Am. Water Resour. Assoc., 44, 1086–1097, https://doi.org/10.1111/j.1752-1688.2008.00238.x, 2008.
Wheater, H. and Evans, E.: Land use, water management and future flood risk,
Land Use Policy, 26, S251–S264, https://doi.org/10.1016/j.landusepol.2009.08.019, 2009.
Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies, Tree Physiol., 18, 633–644, 1998.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing
leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wu, Y., Tang, G., Gu, H., Liu, Y., Yang, M., and Sun, L.: The variation of
vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data, Sci. Total Environ., 653, 536–546, https://doi.org/10.1016/j.scitotenv.2018.10.380, 2019.
Xia, Y. Q. and Shao, M. A.: Soil water carrying capacity for vegetation: A
hydrologic and biogeochemical process model solution, Ecol. Model., 214, 112–124, https://doi.org/10.1016/j.ecolmodel.2008.01.024, 2008.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xu, K., Qin, G., Niu, J., Wu, C., Hu, B. X., Huang, G., and Wang, P.:
Comparative analysis of meteorological and hydrological drought over the Pearl River basin in southern China, Hydrol. Res., 50, 301–318,
https://doi.org/10.2166/nh.2018.178, 2019.
Xu, X., Zhang, Q., Li, Y., and Li, X.: Evaluating the influence of water table depth on transpiration of two vegetation communities in a lake floodplain wetland, Hydrol. Res., 47, 293–312, https://doi.org/10.2166/nh.2016.011,
2016.
Yang, Q., Zhao, W., Liu, B., and Liu, H.: Physiological responses of Haloxylon ammodendron to rainfall pulses in temperate desert regions, Northwestern China, Trees – Struct. Funct., 28, 709–722, https://doi.org/10.1007/s00468-014-0983-4, 2014.
Yang, Y., Guan, H., Batelaan, O., McVicar, T. R., Long, D., Piao, S., Liang,
W., Liu, B., Jin, Z., and Simmons, C. T.: Contrasting responses of water use
efficiency to drought across global terrestrial ecosystems, Sci. Rep., 6, 1–8, https://doi.org/10.1038/srep23284, 2016.
Yao, J., Liu, H., Huang, J., Gao, Z., Wang, G., Li, D., Yu, H., and Chen, X.:
Accelerated dryland expansion regulates future variability in dryland gross
primary production, Nat. Commun., 11, 1–10, https://doi.org/10.1038/s41467-020-15515-2, 2020.
Yosef, G., Walko, R., Avisar, R., Tatarinov, F., Rotenberg, E., and Yakir, D.: Large-scale semi-arid afforestation can enhance precipitation and carbon
sequestration potential, Sci. Rep., 8, 1–10, https://doi.org/10.1038/s41598-018-19265-6, 2018.
Yu, J. and Wang, P.: Relationship between Water and Vegetation in the Ejina
Delta, BCAS – Bull. Chinese Acad. Sci., 26, 68–75, 2012.
Yuan, W., Cai, W., Nguy-Robertson, A. L., Fang, H., Suyker, A. E., Chen, Y.,
Dong, W., Liu, S., and Zhang, H.: Uncertainty in simulating gross primary
production of cropland ecosystem from satellite-based models, Agr. Forest
Meteorol., 207, 48–57, https://doi.org/10.1016/j.agrformet.2015.03.016, 2015.
Zhang, Q., Xu, C. Y., and Zhang, Z.: Observed changes of drought/wetness
episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index, Theor. Appl. Climatol., 98, 89–99, https://doi.org/10.1007/s00704-008-0095-4, 2009.
Zhang, Q., Kong, D., Singh, V. P., and Shi, P.: Response of vegetation to
different time-scales drought across China: Spatiotemporal patterns, causes
and implications, Global Planet. Change, 152, 1–11, https://doi.org/10.1016/j.gloplacha.2017.02.008, 2017.
Zhang, X. and Zhang, B.: The responses of natural vegetation dynamics to
drought during the growing season across China, J. Hydrol., 574, 706–714, https://doi.org/10.1016/j.jhydrol.2019.04.084, 2019.
Zhang, X., Dai, J., and Ge, Q.: Variation in vegetation greenness in spring
across eastern China during 1982–2006, J. Geogr. Sci., 23, 45–56,
https://doi.org/10.1007/s11442-013-0992-z, 2013.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhao, J., Wang, D., Yang, H., and Sivapalan, M.: Unifying catchment water
balance models for different time scales through the maximum entropy
production principle, Water Resour. Res., 52, 7503–7512,
https://doi.org/10.1002/2016WR018977, 2016.
Zhu, B., Xie, X., and Zhang, K.: Water storage and vegetation changes in
response to the 2009/10 drought over North China, Hydrol. Res., 49, 1618–1635, https://doi.org/10.2166/nh.2018.087, 2018.
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
Using remote sensing and reanalysis data, we examined the relationships between vegetation...