Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite rainfall products outperform ground observations for landslide prediction in India
Maria Teresa Brunetti
CORRESPONDING AUTHOR
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Massimo Melillo
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Stefano Luigi Gariano
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Luca Ciabatta
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Luca Brocca
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Giriraj Amarnath
International Water Management Institute, Colombo, Sri Lanka
Silvia Peruccacci
CNR IRPI, Via Madonna Alta 126, 06128, Perugia, Italy
Related authors
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Massimo Melillo, Stefano Luigi Gariano, Silvia Peruccacci, Roberto Sarro, Rosa Marìa Mateos, and Maria Teresa Brunetti
Nat. Hazards Earth Syst. Sci., 20, 2307–2317, https://doi.org/10.5194/nhess-20-2307-2020, https://doi.org/10.5194/nhess-20-2307-2020, 2020
Short summary
Short summary
In the Canary Islands, a link between rainfall and rockfall occurrence is found for most of the year, except for the warm season. Empirical rainfall thresholds for rockfalls are first proposed for Gran Canaria and Tenerife, and the dependence of the thresholds on the mean annual rainfall is discussed. The use of thresholds in early-warning systems might contribute to the mitigation of the rockfall hazard in the archipelago and reduce the associated risk.
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary
Short summary
We studied a period of torrential rain between 1 and 6 September 2014 in the Gargano Promontory, Puglia, southern Italy, which caused a variety of geohydrological hazards, including landslides, flash floods, inundations and sinkholes. We used the rainfall and the landslide information available to us to design and test the new ensemble – non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the probability of the occurrence of rainfall-induced landslides.
V. Yordanov, M. Scaioni, M. T. Brunetti, M. T. Melis, A. Zinzi, and P. Giommi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 17–24, https://doi.org/10.5194/isprs-archives-XLI-B6-17-2016, https://doi.org/10.5194/isprs-archives-XLI-B6-17-2016, 2016
M. Scaioni, P. Giommi, M. T. Brunetti, C. Carli, P. Cerroni, G. Cremonese, G. Forlani, P. Gamba, M. Lavagna, M. T. Melis, M. Massironi, G. Ori, F. Salese, A. Zinzi, G. Xie, Z. Kang, R. Shi, Y. Sun, and Y. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 71–78, https://doi.org/10.5194/isprs-archives-XLI-B6-71-2016, https://doi.org/10.5194/isprs-archives-XLI-B6-71-2016, 2016
G. Vessia, M. Parise, M. T. Brunetti, S. Peruccacci, M. Rossi, C. Vennari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, https://doi.org/10.5194/nhess-14-2399-2014, 2014
C. Vennari, S. L. Gariano, L. Antronico, M. T. Brunetti, G. Iovine, S. Peruccacci, O. Terranova, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 317–330, https://doi.org/10.5194/nhess-14-317-2014, https://doi.org/10.5194/nhess-14-317-2014, 2014
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Jaime Gaona, Davide Bavera, Guido Fioravanti, Sebastian Hahn, Pietro Stradiotti, Paolo Filippucci, Stefania Camici, Luca Ciabatta, Hamidreza Mossaffa, Silvia Puca, Nicoletta Roberto, and Luca Brocca
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-182, https://doi.org/10.5194/hess-2024-182, 2024
Preprint under review for HESS
Short summary
Short summary
Soil moisture is crucial for the water cycle since it is the frontline of drought. Satellite, model, and in-situ data help identify soil moisture stress but challenged by data uncertainties. This study evaluates trends and data coherence of common active/passive microwave sensors and model-based soil moisture data against in-situ stations across Europe from 2007 to 2022. Data reliability is increasing but combining data types improves soil moisture monitoring capabilities.
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024, https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
Short summary
We have developed the first operational system (10 d latency) for estimating irrigation water use from accessible satellite and reanalysis data. As a proof of concept, the method has been implemented over an irrigated area fed by the Kakhovka Reservoir, in Ukraine, which collapsed on June 6, 2023. Estimates for the period 2015–2023 reveal that, as expected, the irrigation season of 2023 was characterized by the lowest amounts of irrigation.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
Stefania Camici, Christian Massari, Luca Ciabatta, Ivan Marchesini, and Luca Brocca
Hydrol. Earth Syst. Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, https://doi.org/10.5194/hess-24-4869-2020, 2020
Short summary
Short summary
The paper performs the most comprehensive European-scale evaluation to date of satellite rainfall products for river flow prediction. In doing so, how errors transfer from satellite-based rainfall products into flood simulation is investigated in depth and, for the first time, quantitative guidelines on the use of these products for hydrological applications are provided. This result can represent a keystone in the use of satellite rainfall products, especially in data-scarce regions.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Massimo Melillo, Stefano Luigi Gariano, Silvia Peruccacci, Roberto Sarro, Rosa Marìa Mateos, and Maria Teresa Brunetti
Nat. Hazards Earth Syst. Sci., 20, 2307–2317, https://doi.org/10.5194/nhess-20-2307-2020, https://doi.org/10.5194/nhess-20-2307-2020, 2020
Short summary
Short summary
In the Canary Islands, a link between rainfall and rockfall occurrence is found for most of the year, except for the warm season. Empirical rainfall thresholds for rockfalls are first proposed for Gran Canaria and Tenerife, and the dependence of the thresholds on the mean annual rainfall is discussed. The use of thresholds in early-warning systems might contribute to the mitigation of the rockfall hazard in the archipelago and reduce the associated risk.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Luca Brocca, Paolo Filippucci, Sebastian Hahn, Luca Ciabatta, Christian Massari, Stefania Camici, Lothar Schüller, Bojan Bojkov, and Wolfgang Wagner
Earth Syst. Sci. Data, 11, 1583–1601, https://doi.org/10.5194/essd-11-1583-2019, https://doi.org/10.5194/essd-11-1583-2019, 2019
Short summary
Short summary
SM2RAIN–ASCAT is a new 12-year (2007–2018) global-scale rainfall dataset obtained by applying the SM2RAIN algorithm to ASCAT soil moisture data. The dataset has a spatiotemporal sampling resolution of 12.5 km and 1 d. Results show that the new dataset performs particularly well in Africa and South America, i.e. in the continents in which ground observations are scarce and the need for satellite rainfall data is high. SM2RAIN–ASCAT is available at http://doi.org/10.5281/zenodo.340556.
Felix Zaussinger, Wouter Dorigo, Alexander Gruber, Angelica Tarpanelli, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 897–923, https://doi.org/10.5194/hess-23-897-2019, https://doi.org/10.5194/hess-23-897-2019, 2019
Short summary
Short summary
About 70 % of global freshwater is consumed by irrigation. Yet, policy-relevant estimates of irrigation water use (IWU) are virtually lacking at regional to global scales. To bridge this gap, we develop a method for quantifying IWU from a combination of state-of-the-art remotely sensed and modeled soil moisture products and apply it over the United States for the period 2013–2016. Overall, our estimates agree well with reference data on irrigated area and irrigation water withdrawals.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Samuele Segoni, Luca Piciullo, and Stefano Luigi Gariano
Nat. Hazards Earth Syst. Sci., 18, 3179–3186, https://doi.org/10.5194/nhess-18-3179-2018, https://doi.org/10.5194/nhess-18-3179-2018, 2018
Luca Ciabatta, Christian Massari, Luca Brocca, Alexander Gruber, Christoph Reimer, Sebastian Hahn, Christoph Paulik, Wouter Dorigo, Richard Kidd, and Wolfgang Wagner
Earth Syst. Sci. Data, 10, 267–280, https://doi.org/10.5194/essd-10-267-2018, https://doi.org/10.5194/essd-10-267-2018, 2018
Short summary
Short summary
In this study, rainfall is estimated starting from satellite soil moisture observation on a global scale, using the ESA CCI soil moisture datasets. The new obtained rainfall product has proven to correctly identify rainfall events, showing performance sometimes higher than those obtained by using classical rainfall estimation approaches.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Xiaodong Gao, Xining Zhao, Luca Brocca, Gaopeng Huo, Ting Lv, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-292, https://doi.org/10.5194/hess-2017-292, 2017
Preprint retracted
Short summary
Short summary
Profile soil moisture is key state variable in the Critical Zone ecology and hydrology. This paper sucessfully used a simple statistical method, the cumulative distribution frequency (CDF) matching method for the first time, to predict profile soil moisture (0–100 cm) from surface measurement (5 cm). The findings here can provide insights into profile soil moisture estimation from remote sensing moisture products.
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017, https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary
Short summary
This study documents a state-of-the-art estimation of the water budget (rainfall, evapotranspiration, discharge, and soil and groundwater storage) components for the Upper Blue Nile river. The budget uses various JGrass-NewAGE components, satellite data and all ground measurements available. The analysis shows that precipitation of the basin is 1360 ± 230 mm per year. Evapotranspiration accounts for 56 %, runoff is 33 %, and storage varies from minus 10 % to plus 17 % of the annual water budget.
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary
Short summary
We studied a period of torrential rain between 1 and 6 September 2014 in the Gargano Promontory, Puglia, southern Italy, which caused a variety of geohydrological hazards, including landslides, flash floods, inundations and sinkholes. We used the rainfall and the landslide information available to us to design and test the new ensemble – non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the probability of the occurrence of rainfall-induced landslides.
Xiaodong Gao, Xining Zhao, Luca Brocca, Ting Lv, Gaopeng Huo, and Pute Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-617, https://doi.org/10.5194/hess-2016-617, 2016
Preprint retracted
Short summary
Short summary
We built observation operators by the CDF matching method. Two-year duration was identified as the optimal data length in prediction accuracy. Application in different climates in USA showed these operators are a robust statistical tool for upscaling soil moisture from surface to profile by using exponential filter as a reference method. The findings here may be applied in the prediction of profile soil moisture from surface measurements via remote sensing techniques.
V. Yordanov, M. Scaioni, M. T. Brunetti, M. T. Melis, A. Zinzi, and P. Giommi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 17–24, https://doi.org/10.5194/isprs-archives-XLI-B6-17-2016, https://doi.org/10.5194/isprs-archives-XLI-B6-17-2016, 2016
M. Scaioni, P. Giommi, M. T. Brunetti, C. Carli, P. Cerroni, G. Cremonese, G. Forlani, P. Gamba, M. Lavagna, M. T. Melis, M. Massironi, G. Ori, F. Salese, A. Zinzi, G. Xie, Z. Kang, R. Shi, Y. Sun, and Y. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B6, 71–78, https://doi.org/10.5194/isprs-archives-XLI-B6-71-2016, https://doi.org/10.5194/isprs-archives-XLI-B6-71-2016, 2016
S. L. Gariano, O. Petrucci, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 15, 2313–2330, https://doi.org/10.5194/nhess-15-2313-2015, https://doi.org/10.5194/nhess-15-2313-2015, 2015
Short summary
Short summary
We study temporal and geographical variations in the occurrence of 1466 rainfall-induced landslides in Calabria, southern Italy, in the period 1921–2010. To evaluate the impact on the population, we compare the number of rainfall-induced landslides with the size of population in the 409 municipalities in Calabria. We find variations in yearly and geographical distribution of rainfall-induced landslides, variations in rainfall triggering conditions, and changes in the impact on the population.
F. Todisco, L. Brocca, L. F. Termite, and W. Wagner
Hydrol. Earth Syst. Sci., 19, 3845–3856, https://doi.org/10.5194/hess-19-3845-2015, https://doi.org/10.5194/hess-19-3845-2015, 2015
Short summary
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.
O. G. Terranova, S. L. Gariano, P. Iaquinta, and G. G. R. Iovine
Geosci. Model Dev., 8, 1955–1978, https://doi.org/10.5194/gmd-8-1955-2015, https://doi.org/10.5194/gmd-8-1955-2015, 2015
Short summary
Short summary
A model for predicting the timing of activation of rainfall-induced landslides is presented. Calibration against real events is based on genetic algorithms, and provides a family of optimal solutions (kernels) that maximize a fitness function. Accordingly, a set of mobility functions is obtained through convolution with rainfall. Once properly validated, the model allows one to estimate future landslide activations in the same study area, by employing either recorded or forecasted rainfall.
G. Amarnath, Y. M. Umer, N. Alahacoon, and Y. Inada
Proc. IAHS, 370, 131–138, https://doi.org/10.5194/piahs-370-131-2015, https://doi.org/10.5194/piahs-370-131-2015, 2015
Short summary
Short summary
Flood management is adopting a more risk-based approach, whereby flood risk is the product of the probability and consequences of flooding. The study developed flood inundation model (LISFLOOD-FP) that uses historical flow data to produce flood-risk maps, which will help to identify flood protection measures in the rural areas of Sri Lanka.
R. Pandey and G. Amarnath
Proc. IAHS, 370, 223–227, https://doi.org/10.5194/piahs-370-223-2015, https://doi.org/10.5194/piahs-370-223-2015, 2015
Short summary
Short summary
Flood forecasting in the downstream part of any hydrological basin is extremely difficult due to the lack of basin-wide hydrological information in near real-time and the absence of a data-sharing treaty among the transboundary nations. The satellite altimeter monitoring allows estimation of water level in the upstream and provide forecasting in the downstream in support of flood early warning and disaster risks reduction measures.
O. G. Terranova and S. L. Gariano
Nat. Hazards Earth Syst. Sci., 14, 2423–2434, https://doi.org/10.5194/nhess-14-2423-2014, https://doi.org/10.5194/nhess-14-2423-2014, 2014
G. Vessia, M. Parise, M. T. Brunetti, S. Peruccacci, M. Rossi, C. Vennari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-14-2399-2014, https://doi.org/10.5194/nhess-14-2399-2014, 2014
S. Manfreda, L. Brocca, T. Moramarco, F. Melone, and J. Sheffield
Hydrol. Earth Syst. Sci., 18, 1199–1212, https://doi.org/10.5194/hess-18-1199-2014, https://doi.org/10.5194/hess-18-1199-2014, 2014
C. Massari, L. Brocca, S. Barbetta, C. Papathanasiou, M. Mimikou, and T. Moramarco
Hydrol. Earth Syst. Sci., 18, 839–853, https://doi.org/10.5194/hess-18-839-2014, https://doi.org/10.5194/hess-18-839-2014, 2014
C. Vennari, S. L. Gariano, L. Antronico, M. T. Brunetti, G. Iovine, S. Peruccacci, O. Terranova, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 317–330, https://doi.org/10.5194/nhess-14-317-2014, https://doi.org/10.5194/nhess-14-317-2014, 2014
L. Brocca, S. Liersch, F. Melone, T. Moramarco, and M. Volk
Hydrol. Earth Syst. Sci., 17, 3159–3169, https://doi.org/10.5194/hess-17-3159-2013, https://doi.org/10.5194/hess-17-3159-2013, 2013
Related subject area
Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Characterising hillslope–stream connectivity with a joint event analysis of stream and groundwater levels
Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems
Distinct stores and the routing of water in the deep critical zone of a snow-dominated volcanic catchment
Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado
A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale
Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements
Form and function in hillslope hydrology: characterization of subsurface flow based on response observations
Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
Multiple runoff processes and multiple thresholds control agricultural runoff generation
Factors influencing stream baseflow transit times in tropical montane watersheds
Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed
The water balance components of undisturbed tropical woodlands in the Brazilian cerrado
Erosion processes in black marl soils at the millimetre scale: preliminary insights from an analogous model
Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation
True colors – experimental identification of hydrological processes at a hillslope prone to slide
Assessment of shallow subsurface characterisation with non-invasive geophysical methods at the intermediate hill-slope scale
Macropore flow of old water revisited: experimental insights from a tile-drained hillslope
Hillslope characteristics as controls of subsurface flow variability
Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope
Soil-water dynamics and unsaturated storage during snowmelt following wildfire
Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania)
A porewater-based stable isotope approach for the investigation of subsurface hydrological processes
Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events
The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia
Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia
The benefits of gravimeter observations for modelling water storage changes at the field scale
Shallow soil moisture – ground thaw interactions and controls – Part 1: Spatiotemporal patterns and correlations over a subarctic landscape
Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes
Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024, https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Short summary
Runoff and sediment reduction benefits of hillside mixed grasslands were examined. Cultivated grasslands effectively increased runoff and decreased sediment along ages. Runoff was the dominant factor affecting the soil erosion modulus on alpine hillsides. This implies that protective measures should be prioritized during the initial planting stage of cultivated grasslands on degraded alpine hillsides.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023, https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Short summary
We used a fluorescent sand tracer with afterglow in combination with sprinkling experiments to visualize and determine the movement of sediments on natural hillslopes. We compared the observed transport patterns with the characteristics of the hillslopes. Results show that the fluorescent sand can be used to monitor sediment redistribution on the soil surface and that infiltration on older hillslopes decreased sediment transport due to more developed vegetation cover and root systems.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022, https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Short summary
In arid areas, the processes of water storage have not been fully understood in different vegetation zones in mountainous areas. This study monitored the stable isotopes in the precipitation and soil water of the Xiying River Basin. In the four vegetation zones, soil water evaporation intensities were mountain grassland > deciduous forest > coniferous forest > alpine meadow, and soil water storage capacity was alpine meadow > deciduous forest > coniferous forest > mountain grassland.
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021, https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary
Short summary
Pore pressure is important for the trigger of debris slides and flows. But how, exactly, does the pore pressure vary just before a slide happens? We drilled and installed a piezometer 1.6 m below the ground in a hillslope susceptible to debris flows in western Norway and measured pore pressure and water temperature through the years 2010–2013. We found the largest anomaly in our groundwater data during the storm named Hilde in November in 2013, when a debris flow happened in this slope.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Mariano Moreno-de-las-Heras, Luis Merino-Martín, Patricia M. Saco, Tíscar Espigares, Francesc Gallart, and José M. Nicolau
Hydrol. Earth Syst. Sci., 24, 2855–2872, https://doi.org/10.5194/hess-24-2855-2020, https://doi.org/10.5194/hess-24-2855-2020, 2020
Short summary
Short summary
This study shifts from present discussions of the connectivity theory to the practical application of the connectivity concept for the analysis of runoff and sediment dynamics in Mediterranean dry slope systems. Overall, our results provide evidence for the feasibility of using the connectivity concept to understand how the spatial distribution of vegetation and micro-topography (including rills) interact with rainfall dynamics to generate spatially continuous runoff and sediment fluxes.
Alissa White, Bryan Moravec, Jennifer McIntosh, Yaniv Olshansky, Ben Paras, R. Andres Sanchez, Ty P. A. Ferré, Thomas Meixner, and Jon Chorover
Hydrol. Earth Syst. Sci., 23, 4661–4683, https://doi.org/10.5194/hess-23-4661-2019, https://doi.org/10.5194/hess-23-4661-2019, 2019
Short summary
Short summary
This paper examines the influence of the subsurface structure on water routing, water residence times, and the hydrologic response of distinct groundwater stores and further investigates their contribution to streamflow. We conclude that deep groundwater from the fractured aquifer system, rather than shallow groundwater, is the dominant source of streamflow, which highlights the need to better characterize the deep subsurface of mountain systems using interdisciplinary studies such as this one.
Jamil A. A. Anache, Edson Wendland, Lívia M. P. Rosalem, Cristian Youlton, and Paulo T. S. Oliveira
Hydrol. Earth Syst. Sci., 23, 1263–1279, https://doi.org/10.5194/hess-23-1263-2019, https://doi.org/10.5194/hess-23-1263-2019, 2019
Short summary
Short summary
We assessed the water balance over 5 years in different land uses typical of the Brazilian Cerrado: tropical woodland, bare land, pasture and sugarcane. Land uses may affect hillslope hydrology and cause trade-offs; the woodland consumes the soil water storage along the dry season, while the agricultural LCLU (pasture and sugarcane) reduces the water consumption in either season, and the aquifer recharge rates may be reduced in forested areas due to increased water demand by the vegetation.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Rico Hübner, Thomas Günther, Katja Heller, Ursula Noell, and Arno Kleber
Hydrol. Earth Syst. Sci., 21, 5181–5199, https://doi.org/10.5194/hess-21-5181-2017, https://doi.org/10.5194/hess-21-5181-2017, 2017
Short summary
Short summary
In our study, we used a spatially and temporally high resolved 3-D ERT in addition to matric potential measurements to monitor the infiltration and subsurface water flow on a hillslope with layered slope deposits. We derived some interesting findings about the capillary barrier effect as a main driving factor for the activation of different flow pathways. Thus, the maintenance or breakdown of a capillary barrier has a decisive influence on the precipitation runoff response of of the catchment.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Lukáš Vlček, Kristýna Falátková, and Philipp Schneider
Hydrol. Earth Syst. Sci., 21, 3025–3040, https://doi.org/10.5194/hess-21-3025-2017, https://doi.org/10.5194/hess-21-3025-2017, 2017
Short summary
Short summary
The role of mountain headwater area in hydrological cycle was investigated at two opposite hillslopes covered by mineral and organic soils. Similarities and differences in percolation and preferential flow paths between the hillslopes were identified by sprinkling experiments with Brilliant Blue and Fluorescein. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow (organic soil), or percolated vertically towards the bedrock (mineral soil).
Shabnam Saffarpour, Andrew W. Western, Russell Adams, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, https://doi.org/10.5194/hess-20-4525-2016, 2016
Short summary
Short summary
A variety of threshold mechanisms influence the transfer of rainfall to runoff from catchments. Some of these mechanisms depend on the occurrence of intense rainfall and others depend on the catchment being wet. This article first provides a framework for considering which mechanisms are important in different situations and then uses that framework to examine the behaviour of a catchment in Australia that exhibits a mix of both rainfall intensity and catchment wetness dependent thresholds.
Lyssette E. Muñoz-Villers, Daniel R. Geissert, Friso Holwerda, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016, https://doi.org/10.5194/hess-20-1621-2016, 2016
Short summary
Short summary
This study provides an important first step towards a better understanding of the hydrology of tropical montane regions and the factors influencing baseflow mean transit times (MTT). Our MTT estimates ranged between 1.2 and 2.7 years, suggesting deep and long subsurface pathways contributing to sustain dry season flows. Our findings showed that topography and subsurface permeability are the key factors controlling baseflow MTTs. Longest MTTs were found in the cloud forest headwater catchments.
Haimanote K. Bayabil, Tigist Y. Tebebu, Cathelijne R. Stoof, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 20, 875–885, https://doi.org/10.5194/hess-20-875-2016, https://doi.org/10.5194/hess-20-875-2016, 2016
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
J. Bechet, J. Duc, M. Jaboyedoff, A. Loye, and N. Mathys
Hydrol. Earth Syst. Sci., 19, 1849–1855, https://doi.org/10.5194/hess-19-1849-2015, https://doi.org/10.5194/hess-19-1849-2015, 2015
Short summary
Short summary
High-resolution three-dimensional point clouds are used to analyse erosion processes at the millimetre scale. The processes analysed here play a role in the closure of cracks. We demonstrated how micro-scale infiltration can influence the degradation of soil surface by inducing downward mass movements that are not reversible. This development will aid in designing future experiments to analyse processes such as swelling, crack closure, micro-landslides, etc.
R. Hübner, K. Heller, T. Günther, and A. Kleber
Hydrol. Earth Syst. Sci., 19, 225–240, https://doi.org/10.5194/hess-19-225-2015, https://doi.org/10.5194/hess-19-225-2015, 2015
T. G. Wilson, C. Cortis, N. Montaldo, and J. D. Albertson
Hydrol. Earth Syst. Sci., 18, 4169–4183, https://doi.org/10.5194/hess-18-4169-2014, https://doi.org/10.5194/hess-18-4169-2014, 2014
P. Schneider, S. Pool, L. Strouhal, and J. Seibert
Hydrol. Earth Syst. Sci., 18, 875–892, https://doi.org/10.5194/hess-18-875-2014, https://doi.org/10.5194/hess-18-875-2014, 2014
S. Popp, D. Altdorff, and P. Dietrich
Hydrol. Earth Syst. Sci., 17, 1297–1307, https://doi.org/10.5194/hess-17-1297-2013, https://doi.org/10.5194/hess-17-1297-2013, 2013
J. Klaus, E. Zehe, M. Elsner, C. Külls, and J. J. McDonnell
Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, https://doi.org/10.5194/hess-17-103-2013, 2013
S. Bachmair and M. Weiler
Hydrol. Earth Syst. Sci., 16, 3699–3715, https://doi.org/10.5194/hess-16-3699-2012, https://doi.org/10.5194/hess-16-3699-2012, 2012
F. Tauro, S. Grimaldi, A. Petroselli, M. C. Rulli, and M. Porfiri
Hydrol. Earth Syst. Sci., 16, 2973–2983, https://doi.org/10.5194/hess-16-2973-2012, https://doi.org/10.5194/hess-16-2973-2012, 2012
B. A. Ebel, E. S. Hinckley, and D. A. Martin
Hydrol. Earth Syst. Sci., 16, 1401–1417, https://doi.org/10.5194/hess-16-1401-2012, https://doi.org/10.5194/hess-16-1401-2012, 2012
G. Romanescu, V. Cotiuga, A. Asandulesei, and C. Stoleriu
Hydrol. Earth Syst. Sci., 16, 953–966, https://doi.org/10.5194/hess-16-953-2012, https://doi.org/10.5194/hess-16-953-2012, 2012
J. Garvelmann, C. Külls, and M. Weiler
Hydrol. Earth Syst. Sci., 16, 631–640, https://doi.org/10.5194/hess-16-631-2012, https://doi.org/10.5194/hess-16-631-2012, 2012
B. Zhang, J. L. Tang, Ch. Gao, and H. Zepp
Hydrol. Earth Syst. Sci., 15, 3153–3170, https://doi.org/10.5194/hess-15-3153-2011, https://doi.org/10.5194/hess-15-3153-2011, 2011
M. B. Defersha, S. Quraishi, and A. Melesse
Hydrol. Earth Syst. Sci., 15, 2367–2375, https://doi.org/10.5194/hess-15-2367-2011, https://doi.org/10.5194/hess-15-2367-2011, 2011
T. Y. Tebebu, A. Z. Abiy, A. D. Zegeye, H. E. Dahlke, Z. M. Easton, S. A. Tilahun, A. S. Collick, S. Kidnau, S. Moges, F. Dadgari, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 14, 2207–2217, https://doi.org/10.5194/hess-14-2207-2010, https://doi.org/10.5194/hess-14-2207-2010, 2010
B. Creutzfeldt, A. Güntner, S. Vorogushyn, and B. Merz
Hydrol. Earth Syst. Sci., 14, 1715–1730, https://doi.org/10.5194/hess-14-1715-2010, https://doi.org/10.5194/hess-14-1715-2010, 2010
X. J. Guan, C. J. Westbrook, and C. Spence
Hydrol. Earth Syst. Sci., 14, 1375–1386, https://doi.org/10.5194/hess-14-1375-2010, https://doi.org/10.5194/hess-14-1375-2010, 2010
X. J. Guan, C. Spence, and C. J. Westbrook
Hydrol. Earth Syst. Sci., 14, 1387–1400, https://doi.org/10.5194/hess-14-1387-2010, https://doi.org/10.5194/hess-14-1387-2010, 2010
E. Zehe, T. Graeff, M. Morgner, A. Bauer, and A. Bronstert
Hydrol. Earth Syst. Sci., 14, 873–889, https://doi.org/10.5194/hess-14-873-2010, https://doi.org/10.5194/hess-14-873-2010, 2010
Cited articles
Adamson, G. C. D. and Nash, D. J.: Long-term variability in the date of monsoon onset over western India, Clim. Dynam., 40, 2589–2603, https://doi.org/10.1007/s00382-012-1494-x, 2013.
Annamalai, H., Slingo, J. M., Sperber, K. R., and Hodges, K.: The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP–NCAR reanalyses, Mon. Weather Rev., 127, 1157–1186,
https://doi.org/10.1175/1520-0493(1999)127<1157:TMEAVO>2.0.CO;2, 1999.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and
Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer,
S., Kidd, R., Dorigo, W., Wagner, W., and Levizzani, V.: Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data, J.
Geophys. Res., 119, 5128–5141, https://doi.org/10.1002/2014JD021489, 2014.
Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L., Bojkov, B., and Wagner, W.: SM2RAIN-ASCAT (2007–June 2020): global daily satellite rainfall from ASCAT soil moisture (Version 1.3) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3972958, 2019.
Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and
Guzzetti, F.: Rainfall thresholds for the possible occurrence of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458, https://doi.org/10.5194/nhess-10-447-2010, 2010.
Brunetti, M. T., Melillo, M., Peruccacci, S., Ciabatta, L., and Brocca, L.: How far are we from the use of satellite rainfall products in landslide
forecasting?, Remote Sens. Environ., 210, 65–75, https://doi.org/10.1016/j.rse.2018.03.016, 2018a.
Brunetti, M. T., Peruccacci, S., Palladino, M. R., Viero, A., and Guzzetti, F.: TXT-tool 2.039-1.2: Rainfall Thresholds for the Possible Initiation of
Landslides in the Italian Alps, in: Landslide Dynamics: ISDR-ICL Landslide
Interactive Teaching Tools, Vol. 1: Fundamentals, Mapping and Monitoring,
edited by: Sassa, K., Guzzetti, F., Yamagishi, H., Arbanas, Ž., and Casagli, N., Springer, Cham, 361–369, https://doi.org/10.1007/978-3-319-57774-6_26, 2018b.
Camici, S., Massari, C., Ciabatta, L., Marchesini, I., and Brocca, L.: Which
rainfall metric is more informative about the flood simulation performance?
A comprehensive assessment on 1318 basins over Europe, Hydrol. Earth Syst.
Sci., 24, 4869–4885, https://doi.org/10.5194/hess-24-4869-2020, 2020.
Cepeda, J., Höeg, K., and Nadim, F.: Landslide-triggering rainfall
thresholds: a conceptual framework, Q. J. Eng. Geol. Hydroge., 43, 69–84,
https://doi.org/10.1144/1470-9236/08-066, 2010.
Ciabatta, L., Marra, A. C., Panegrossi, G., Casella, D., Sanò, P., Dietrich, S., Massari, C., and Brocca, L.: Daily precipitation estimation
through different microwave sensors: Verification study over Italy, J. Hydrol., 545, 436–450, https://doi.org/10.1016/j.jhydrol.2016.12.057, 2017.
Dikshit, A. and Satym, N.: Probabilistic rainfall thresholds in Chibo, India: estimation and validation using monitoring system, J. Mt. Sci., 16, 870–883, https://doi.org/10.1007/s11629-018-5189-6, 2019.
Dikshit, A., Satym, N., Pradhan, B., and Kushal, S.: Estimating rainfall
threshold and temporal probability for landslide occurrences in Darjeeling
Himalayas, Geosci. J., 24, 225–233, https://doi.org/10.1007/s12303-020-0001-3, 2020a.
Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., and Alamri, A. M.: Rainfall
induced landslide studies in Indian Himalayan region: a critical review, Appl. Sci., 10, 2466, https://doi.org/10.3390/app10072466, 2020b.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004
to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruccacci, S.,
Terranova, O., Vennari, C., and Guzzetti, F.: Calibration and validation of
rainfall thresholds for shallow landslide forecasting in Sicily, southern
Italy, Geomorphology, 228, 653–665, https://doi.org/10.1016/j.geomorph.2014.10.019,
2015.
Gariano, S. L., Sarkar, R., Dikshit, A., Dorji, K., Brunetti, M. T., Peruccacci, S., and Melillo, M.: Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan, Bull. Eng. Geol. Environ., 78, 4325–4332, https://doi.org/10.1007/s10064-018-1415-2, 2019.
Gariano, S. L., Melillo, M., Peruccacci, S., and Brunetti, M. T.: How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?, Nat. Hazards, 100, 655–670, https://doi.org/10.1007/s11069-019-03830-x, 2020.
Geethu, T. H., Madhu, D., Ramesh, M. V., and Pullarkatt, D.: Towards establishing rainfall thresholds for a real-time landslide early warning
system in Sikkim, India, Landslides, 16, 2395–2408,
https://doi.org/10.1007/s10346-019-01244-1, 2019.
Guha-Sapir, D., Below, R., and Hoyois, P. H.: EM-DAT: International Disaster
Database, Université Catholique de Louvain, Brussels, Belgium, available
at: http://www.emdat.be, last access: 19 April 2021.
Gupta, V., Jain, M. K., Singh, P. K., and Singh, V.: An assessment of global
satellite-based precipitation datasets in capturing precipitation extremes:
A comparison with observed precipitation dataset in India, Int. J. Climatol., 40, 3667–3688, https://doi.org/10.1002/joc.6419, 2020.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity–duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008.
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., and Melillo, M.: Geographical landslide early warning systems,
Earth-Sci. Rev., 200, 102973, https://doi.org/10.1016/j.earscirev.2019.102973, 2020.
He, S., Wang, J., and Liu, S.: Rainfall Event–Duration Thresholds for Landslide Occurrences in China, Water, 12, 494, https://doi.org/10.3390/w12020494, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global
Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hong, Y., Adler, R. F., and Huffman, G. J.: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment, Geophys. Res. Lett., 33, L22402, https://doi.org/10.1029/2006GL028010, 2006.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C.,
Nelkin, E., and Xie, P.: Algorithm Theoretical Basis Document (ATBD) Version 4.5, NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), NASA, Greenbelt, MD, USA, 2018.
Jaiswal, P. and van Westen, C. J.: Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds, Geomorphology, 112, 96–10, https://doi.org/10.1016/j.geomorph.2009.05.008, 2009.
Jordanova, G., Gariano, S. L., Melillo, M., Peruccacci, S., Brunetti, M. T.,
and Jemec Auflič, M.: Determination of empirical rainfall thresholds for
shallow landslides in Slovenia using an automatic tool, Water, 12, 1449,
https://doi.org/10.3390/w12051449, 2020.
Kanungo, D. and Sharma, S.: Rainfall thresholds for prediction of shallow
landslides around Chamoli-Joshimath region, Garhwal Himalayas, India,
Landslides, 11, 629–638, https://doi.org/10.1007/s10346-013-0438-9, 2014.
Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., and Sharma, A.: A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation, Geophys. Res. Lett., 42, 6662–6670, https://doi.org/10.1002/2015GL064981, 2015.
Kirschbaum, D. and Stanley, T.: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Leonarduzzi, E. and Molnar, P.: Deriving rainfall thresholds for landsliding
at the regional scale: daily and hourly resolutions, normalisation, and
antecedent rainfall, Nat. Hazards Earth Syst. Sci., 20, 2905–2919,
https://doi.org/10.5194/nhess-20-2905-2020, 2020.
Mandal, P. and Sarkar, S.: Estimation of rainfall threshold for the early warning of shallow landslides along National Highway-10 in Darjeeling Himalayas, Nat. Hazards, 105, 2455–2480, https://doi.org/10.1007/s11069-020-04407-9, 2021.
Marra, F.: Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data, Nat. Hazards, 95, 83–890, https://doi.org/10.1007/s11069-018-3508-4, 2019.
Massari, C., Brocca, L., Pellarin, T., Abramowitz, G., Filippucci, P., Ciabatta, L., Maggioni, V., Kerr, Y., and Fernández-Prieto, D: A daily/25 km short-latency rainfall product for data scarce regions based on the integration of the GPM IMERG Early Run with multiple satellite soil moisture products, Hydrol. Earth Syst. Sci., 24, 2687–2710,
https://doi.org/10.5194/hess-24-2687-2020, 2020.
Mathew, J., Giri Babu, D., Kundu, S., Vinod Kumar, K., and Pant, C. C.:
Integrating intensity–duration-based rainfall threshold and antecedent
rainfall-based probability estimate towards generating early warning for
rainfall-induced landslides in parts of the Garhwal Himalaya, India,
Landslides, 11, 575–588, https://doi.org/10.1007/s10346-013-0408-2, 2014.
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., and Guzzetti, F.: An algorithm for the objective reconstruction of rainfall events responsible for landslides, Landslides, 12, 311–320, https://doi.org/10.1007/s10346-014-0471-3, 2015.
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., Roccati, A.,
and Guzzetti, F.: A tool for the automatic calculation of rainfall thresholds
for landslide occurrence, Environ. Model. Softw., 105, 230–243,
https://doi.org/10.1016/j.envsoft.2018.03.024, 2018a.
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., and Guzzetti, F.: CTRL–T (Calculation of Thresholds for Rainfall-induced Landslides – Tool), Zenodo, https://doi.org/10.5281/zenodo.4533719, 2018b.
Monsieurs, E., Dewitte, O., and Demoulin, A.: A susceptibility-based rainfall
threshold approach for landslide occurrence, Nat. Hazards Earth Syst. Sci.,
19, 775–789, https://doi.org/10.5194/nhess-19-775-2019, 2019.
Mooley, D. A. and Shukla, J.: Variability and forecasting of the summer monsoon rainfall over India, in: Monsoon Meteorology, edited by: Chang, C.-P. and Krishnamurti, T. N., Clarendon Press, Oxford, UK, 26–59, 1987.
Naidu, S., Sajinkumar, K. S., Oommen, T., Anuja, V. J., Samual, R. A., and
Muraleedharan, C.: Early warning system for shallow landslides using rainfall threshold and slope stability analysis, Geosci. Front., 9, 1871–1882, https://doi.org/10.1016/j.gsf.2017.10.008, 2018.
NASA: GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06 (GPM_3IMERGHHE) at GES DISC, available at: https://search.earthdata.nasa.gov/search?q=GPM_3IMERGHHE_06, last access: 20 January 2021.
Neal, R., Robbins, J., Dankers, R., Mitra, A., Jayakumar, A., Rajagopal, E. N., and Adamson, G.: Deriving optimal weather pattern definitions for the
representation of precipitation variability over India, Int. J. Climatol., 40, 342–360, https://doi.org/10.1002/joc.6215, 2019.
Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., and
Mukhopadyay, B.: Development of a new high spatial resolution
( ) Long Period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, Q. J. Meteorol. Hydrol. Geophys., 65, 1–18, 2014.
Peruccacci, S., Brunetti, M. T., Luciani, S., Vennari, C., and Guzzetti, F.:
Lithological and seasonal control of rainfall thresholds for the possible
initiation of landslides in central Italy, Geomorphology, 139–140, 79–90,
https://doi.org/10.1016/j.geomorph.2011.10.005, 2012.
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., and
Guzzetti, F.: Rainfall thresholds for possible landslide occurrence in Italy, Geomorphology, 290, 39–57, https://doi.org/10.1016/j.geomorph.2017.03.031, 2017.
Rao, P. L. S., Mohanty, U. C., and Ramesh, K. J.: The evolution and retreat features of the summer monsoon over India, Meteorol. Appl., 12, 241–255, 2005.
Robbins, J. C.: A probabilistic approach for assessing landslide triggering
event rainfall in Papua New Guinea, using TRMM satellite precipitation estimates, J. Hydrol., 541, 296–309, https://doi.org/10.1016/j.jhydrol.2016.06.052,
2016.
Rossi, M., Marchesini, I., Tonelli, G., Peruccacci, S., Brunetti, M. T.,
Luciani, S., Ardizzone, F., Balducci, V., Bianchi, C., Cardinali, M., Fiorucci, F., Mondini, A. C., Reichenbach, P., Salvati, P., Santangelo, M.,
and Guzzetti, F.: TXT-tool 2.039-1.1 Italian National Early Warning System, in: Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools, edited by: Sassa, K., Guzzetti, F., Yamagishi, H., Arbanas, Ž., and Casagli, N.,
Springer, Cham, 341–349, https://doi.org/10.1007/978-3-319-57774-6_24, 2018.
Salinas-Jasso, J. A., Velasco-Tapia, F., Navarro De León, I., Salinas-Jasso, R. A., and Alva-Niño, E.: Estimation of rainfall thresholds for shallow landslides in the Sierra Madre Oriental, northeastern Mexico, J. Mt. Sci., 17, 1565–1580, https://doi.org/10.1007/s11629-020-6050-2, 2020.
Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent literature on rainfall thresholds for landslide occurrence, Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-018-0966-4, 2018.
Sengupta, A., Gupta, S., and Anbarasu, K.: Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India, Nat. Hazards,
52, 31–42, https://doi.org/10.1007/s11069-009-9352-9, 2010.
Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K. M., and Laber, J. L.:
Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California, Landslides, 10,
547–562, https://doi.org/10.1007/s10346-012-0341-9, 2013.
Tang, G. Q., Clark, M. P., Papalexiou, S. M., Ma, Z. Q., and Hong, Y.: Have
satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis
datasets, Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697, 2020.
Thakur, M. K., Lakshmi Kumar, T. V., Koteswara Rao, K., Barbosa, H., and Rao,
V. B.: A new perspective in understanding rainfall from satellites over a
complex topographic region of India, Sci. Rep., 9, 15610,
https://doi.org/10.1038/s41598-019-52075-y, 2019.
Thakur, M. K., Lakshmi Kumar, T. V., Narayanan, M. S., Kundeti, K. R., and
Barbosa, H.: Analytical study of the performance of the IMERG over the Indian landmass, Meteorol. Appl., 27, 1908, https://doi.org/10.1002/met.1908, 2020.
Thomas, M. A., Collins, B. D., and Mirus, B. B.: Assessing the feasibility of
satellite-based thresholds for hydrologically driven landsliding, Water Resour. Res., 55, 9006–9023, https://doi.org/10.1029/2019WR025577, 2019.
Tyagi, A., Mazumdar, A. B., Khole, M., Gaonkar, S. B., and Devi, S.:
Re-determination of normal dates of onset of southwest monsoon over India,
Mausam, 62, 321–328, 2011.
Uwihirwe, J., Hrachowitz, M., and Bogaard, T. A.: Landslide precipitation
thresholds in Rwanda, Landslides, 17, 2469–2481, https://doi.org/10.1007/s10346-020-01457-9, 2020.
Valenzuela, P., Zêzere, J. L., Domínguez-Cuesta, M. J., and Mora García, M. A.: Empirical rainfall thresholds for the triggering of
landslides in Asturias (NW Spain), Landslides, 16, 1285–1300,
https://doi.org/10.1007/s10346-019-01170-2, 2019.
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Zuger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Bloeschl, G., Eitzinger, J., Steinnocher, K., Zeil, P., and Rubel, F.: The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications, Meteorol. Z., 22, 5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.
Zêzere, J. L., Vaz, T., Pereira, S., Oliveira, S. C., Marques, R., and Garcia, R. A. C.: Rainfall thresholds for landslide activity in Portugal: a state of the art, Environ. Earth Sci., 73, 2917–2936,
https://doi.org/10.1007/s12665-014-3672-0, 2015.
Short summary
Satellite and rain gauge data are tested to predict landslides in India, where the annual toll of human lives and loss of property urgently demands the implementation of strategies to prevent geo-hydrological instability. For this purpose, we calculated empirical rainfall thresholds for landslide initiation. The validation of thresholds showed that satellite-based rainfall data perform better than ground-based data, and the best performance is obtained with an hourly temporal resolution.
Satellite and rain gauge data are tested to predict landslides in India, where the annual toll...