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Abstract. Landslides are among the most dangerous natural
hazards, particularly in developing countries, where ground
observations for operative early warning systems are lack-
ing. In these areas, remote sensing can represent an important
detection and monitoring process to predict landslide occur-
rence in space and time, particularly satellite rainfall prod-
ucts that have improved in terms of accuracy and resolution
in recent times. Surprisingly, only a few studies have inves-
tigated the capability and effectiveness of these products in
landslide prediction in reducing the impact of this hazard on
the population.

We have performed a comparative study of ground-
and satellite-based rainfall products for landslide predic-
tion in India by using empirical rainfall thresholds derived
from the analysis of historical landslide events. Specifically,
we have tested Global Precipitation Measurement (GPM)
and SM2RAIN-ASCAT satellite rainfall products, and their
merging, at daily and hourly temporal resolution, and Indian
Meteorological Department (IMD) daily rain gauge obser-
vations. A catalogue of 197 rainfall-induced landslides that
occurred throughout India in the 13-year period between
April 2007 and October 2019 has been used.

Results indicate that satellite rainfall products outper-
form ground observations thanks to their better spatial (0.1◦

vs. 0.25◦) and temporal (hourly vs. daily) resolutions. The
better performance is obtained through the merged GPM and
SM2RAIN-ASCAT products, even though improvements in
reproducing the daily rainfall (e.g. overestimation of the
number of rainy days) are likely needed. These findings open
a new avenue for using such satellite products in landslide
early warning systems, particularly in poorly gauged areas.

1 Introduction

In India, the annual toll in terms of human lives and loss
of property, due to landslides and floods, urgently demands
the implementation of long-term strategies to prevent hy-
drogeological instability. India is the country with the high-
est number of non-seismically triggered disastrous landslides
as per the global dataset published by Froude and Pet-
ley (2018), with more than 600 records and 16 % of cat-
alogued rainfall-induced landslides. According to the EM-
DAT disaster database (Guha-Sapir et al., 2021), a total of
51 fatal landslide events have been recorded since 1950, with
4671 deaths and more than 400 000 people affected. In recent
years, regional and local early warning systems were adopted
in various countries to forecast rainfall-induced landslides
and to mitigate the associated risk (Guzzetti et al., 2020).
When heavy and/or abundant rainfall combines with a high
landslide susceptibility, an operational warning system is the
best solution to mitigate the impact of the event. The use
of rainfall thresholds, combined with susceptibility maps,
makes it possible to estimate the probability of landslide trig-
gering (Rossi et al., 2018). Rainfall thresholds all over the
world are derived from the statistical analysis of rainfall con-
ditions that have resulted in past landslides (e.g. Guzzetti et
al., 2007, 2008; Cepeda et al., 2010; Sengupta et al., 2010;
Berti et al., 2012; Staley et al., 2013; Zêzere et al., 2015;
Segoni et al., 2018; Gariano et al., 2019; Valenzuela et al.,
2019; Jordanova et al., 2020; Leonarduzzi and Molnar, 2020;
Salinas-Jasso et al., 2020; Uwihirwe et al., 2020). Defining
rainfall thresholds over large and diverse areas needs sta-
tistically significant information on the occurrence of past
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landslides and a large amount of rainfall data. On the other
hand, India with diverse geographical regions, varied cli-
mate, and complex topography and geomorphology does not
allow such a density of rainfall stations as to accurately re-
construct the rainfall that caused the landslides. To make a
comparison, in Italy the average density of rain gauges is
about 1/130 km2 (Peruccacci et al., 2017), while in India it
is about 1/470 km2 (6995 stations over 3 287 000 km2) (Pai
et al., 2014). In addition, in remote areas (e.g. mountain-
ous terrain) of India the low density of rain gauges penal-
izes the representativeness of the measurements. Hence, the
use of satellite rainfall products is a valid option for measur-
ing precipitation over such large areas, provided that perfor-
mance analysis and assessment in capturing reliable rainfall
measurements are carried out, even in areas characterized by
complex orography and severe weather systems (e.g. Gupta
et al., 2020; Thakur et al., 2019; Tang et al., 2020).

So far, only a few works have studied the relationship be-
tween rainfall and landslides in India, and mainly for lim-
ited areas or individual states. The analysis of the rain-
fall conditions responsible for slope failures was conducted
using both data from rain gauges and satellite data. Au-
thors using ground-based measurements include Jaiswal and
van Westen (2009), who calculated rainfall thresholds based
on the daily rainfall vs. the 5 d antecedent rainfall along
two sections of a historic railway and of a national high-
way in the state of Tamil Nadu, southern India. Kanungo
and Sharma (2014) derived intensity–duration (ID) thresh-
olds based on daily rainfall measured by rain gauges along
a stretch of a national highway of the Garhwal Himalayas
in the state of Uttarakhand, northern India. More recently,
Naidu et al. (2018) identified a rainfall threshold based on
the daily rainfall vs. the 2, 3, and 5 d antecedent rainfall
and in a small hamlet in Kerala, south-western India. One-
dimensional probabilistic thresholds were defined by Dikshit
and Satym (2019) for a small (∼ 5 km2) area in the Darjeel-
ing Himalayas, north-eastern India. In the same area, Dikshit
et al. (2020a) identified their best threshold based on the daily
rainfall vs. the 20 d antecedent rainfall. ID regional and local
rainfall was derived by Geethu et al. (2019) in north-eastern
India for the Sikkim region and the Gangtok area, respec-
tively. Mandal and Sarkar (2021) estimated rainfall thresh-
olds along a vulnerable section of the NH10 road in the Dar-
jeeling Himalayas.

In a recent work, Dikshit et al. (2020b) argued the ne-
cessity of using satellite-based products in the Indian Hi-
malayan region. A few authors used satellite-based data
to explore the correlation between rain and the occurrence
of landslides. Mathew et al. (2014) obtained and validated
ID thresholds using the Tropical Rainfall Measurement Mis-
sion (TRMM) precipitation estimates in a small area of the
Garhwal Himalayas in the state of Uttarakhand, northern In-
dia. They also applied a logistic regression model to assess
the effect of the antecedent rainfall using rain gauge data.
Thakur et al. (2020) analysed the rainfall triggering three

large landslides over the Western Ghats, south-western In-
dia. They used TMPA (a product of TRMM) and IMERG
(Integrated Multi-satellitE Retrievals for GPM, Global Pre-
cipitation Measurement)-derived rainfall data. In particular,
the performance of IMERG V5 was assessed during the aw-
ful Malin landslide, which occurred in 2014, at the initial
stage of the GPM product.

The above review shows that the prediction of rainfall-
induced landslides in India relies mostly upon custom ap-
proaches applied to local areas, a comprehensive method still
being missing at a larger regional scale. Conversely, at the
global scale, Hong et al. (2006) evaluated the potential of the
real-time TMPA product to assess its predictive ability for
rainfall-triggered landslides. Kirschbaum and Stanley (2018)
proposed a model to provide the potential landslide activity
combining satellite-based precipitation estimates (IMERG
from GPM) with a landslide susceptibility map. Moreover,
examples of application of various satellite-based rainfall es-
timations for the definition of rainfall thresholds for land-
slide prediction at a national scale were proposed by Rob-
bins (2016) in Papua New Guinea, Brunetti et al. (2018a) in
Italy, He et al. (2020) in China, and Monsieurs et al. (2019)
over the East African Rift.

However, a more in-depth and dedicated focus on the use
of the available rainfall products at the regional scale is re-
quired to best predict the spatial and temporal occurrence
of landslides in India. For this purpose, we collected infor-
mation on rainfall-induced landslides in a new catalogue.
We investigated the role of the rainfall in the occurrence of
landslides using empirical rainfall thresholds (Peruccacci et
al., 2017, and references therein), and we compared the per-
formance of satellite-based and ground-based rainfall prod-
ucts. Comparing the thresholds with rainfall measures, esti-
mates, and forecasts is the basis of most current operational
landslide early warning systems (Guzzetti et al., 2020).

2 Study area

India is the seventh largest country in the world and forms a
well-defined peninsula of Asia, bounded to the north by the
imposing mountain chain of the Himalayas and surrounded
by the Arabian Sea to the west and the Bay of Bengal to the
east, respectively (Fig. 1).

Three basic structural units are usually recognized in the
land: the Himalayas in the north, the peninsular Deccan
plateau in the south, and the Indo-Gangetic Plain between the
two. The country also includes two groups of islands, Lak-
shadweep, in the Arabian Sea, and the Andaman and Nicobar
Islands, between the Bay of Bengal and the Andaman Sea.
Apart from the highest mountains in the Himalayas, the main
reliefs of the Deccan plateau region are the Western Ghats, a
north–south chain of mountains or hills on the western edge,
and the Eastern Ghats, running mostly in a north-east–south-
west direction. The steep topography of the diverse regions
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Figure 1. Map of India with the location of landslides triggered by
rainfall. Red and white dots highlight the slope failures with and
without associated fatalities, respectively. Background image from
Bing © Microsoft.

and their geological complexity produce an intense landslide
activity, especially during the monsoon season.

The climate of Southeast Asia is dominated by the mon-
soon for over one-third of the year (Annamalai et al.,
1999). Neal et al. (2019) identified seven broad-scale weather
regimes in India. Among them, the main monsoon season oc-
curs from June to September, being mostly active during July
and August. The monsoon is associated with heavy and per-
sistent rain starting generally on 1 or 2 June from the south-
western coast of India (Mooley and Shukla, 1987; Rao et
al., 2005) and extending across the central and northern ar-
eas, reaching Mumbai around 10 June (Adamson and Nash,
2013) and north-western India by 15 July on average (Tyagi
et al., 2011). The large amount of rain in this period makes
this the part of the year when the most landslides occur in In-
dia. Additionally, non-monsoonal precipitation patterns, the
western disturbances, may occur even in January and Febru-
ary, bringing rain or snow to the north-western parts of India
later, moving to the north-eastern parts in early spring.

3 Data and methods

In order to study the relationship between landslides and
rainfall, it is necessary to find information on a statistically
significant number of slope failures (Peruccacci et al., 2012).
It is necessary, as well, to have sufficiently long and con-
tinuous series of rainfall data from ground- and/or satellite-
based observations. Landslides have to be geo-localized with
adequate accuracy, and at least the occurrence day must be

known (Brunetti et al., 2018b). Similarly, the rainfall series
should have sufficient temporal resolution and range for the
measurements to be representative of the rainfall conditions
that have presumably triggered the slope failures. Generally,
the availability of data for such events depends on the avail-
ability and accessibility of local information sources. In In-
dia, given the vastness and ecological diversity of the terri-
tory, the collection of accurate landslide information is often
a challenge. The lack of detailed information associated with
the rapid evolution of the landscape due to the high intensity
and extreme rainfall often makes it difficult if not impossible
to locate the slope failures. In case of incomplete or missing
data, a landslide event cannot be included in the analysis, and
it is therefore not included in the catalogue. Following these
criteria, we discarded nearly 50 % of the collected rainfall-
induced landslide events.

3.1 Landslide data

We compiled a new catalogue of 197 rainfall-induced land-
slides that occurred in India in the 13-year period between
April 2007 and October 2019. The geographical distribu-
tion of the slope failures is shown in Fig. 1, which reveals
how landslides are basically clustered in four main areas
corresponding to the main mountain reliefs. One area is
in the north-eastern part of India and includes West Ben-
gal (30 landslides), Sikkim (12), Assam (21), Manipur (10),
Arunachal Pradesh (5), Meghalaya (3), Nagaland (2), and
Mizoram (2); another area in the north-western part encom-
passes Uttarakhand (9), Himachal Pradesh (8), Jammu and
Kashmir (7), and Rajasthan (1); the third area on the western
coast encompasses Kerala (50), Karnataka (18), Maharash-
tra (6), Tamil Nadu (6), and Goa (1); finally, two landslides
are located near the eastern coast in Andhra Pradesh.

Landslides collected in the catalogue are mainly located
in inhabited areas and along transportation routes. Likely for
this reason, about 25 % of them caused one or more fatali-
ties (see pie chart in Fig. 1), confirming how the population
impact of this type of hazard is significant in India. A more
in-depth analysis shows that the monthly distribution of the
slope failures (Fig. 2a) peaks in June, whilst the highest num-
ber of fatalities are in August (Fig. 2b). The 2010 Ladakh
(Jammu and Kashmir) debris flows and mudflows and the
2014 Malin (Maharashtra) landslides substantially contribute
to the two peaks in Fig. 2b.

We gathered information from multiple sources (Fig. 3a),
such as online newspapers and magazines (ON), blogs (BG),
technical reports (TR) made available by the Geological
Survey of India, scientific journals (SJ), and social me-
dia (SM), e.g. Twitter, Facebook. Most of the data (53.4 %)
in the catalogue are found in TR. When the information is
proven accurate in terms of spatial and temporal location,
the landslide is included in the catalogue and is represented
as a point on the map (white and red dots in Fig. 1).
Each landslide in the catalogue is assigned a position
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Figure 2. Monthly distribution of (a) landslides and (b) landslide
fatalities in the catalogue for the period 2007–2019.

accuracy level in four classes (Fig. 3b): P1< 1 km2 (high),
1 km2

≤P2< 10 km2 (medium), 10 km2
≤P3< 100 km2

(low), and 100 km2
≤P4< 300 km2 (very low). Similarly, a

decreasing temporal accuracy in three classes is associated
with each landslide (Fig. 3c). The first class (T1) collects
the events for which the time of occurrence is known with
an accuracy of 1 h, while for the second (T2) and third (T3)
classes the part of the day is inferred or the day of occurrence
is known (Peruccacci et al., 2012).

In about half of the cases the lack of data on the landslide
type or the non-technical language used by the source of in-
formation make it difficult to determine the type of move-
ment and the involved material, and the landslide is gener-
ically classified as “not specified” (NS). In other cases, the
identification of the landslide type is allowed by photographs
or by the assessments of technical personnel (as for surveys
carried out by the GSI). As a result, the collected informa-
tion on the landslide type has been grouped into five classes:
complex landslide (CL), debris flow (DF), earth or mud-
flow/mudslide (EF), rockfall/rockslide (RF), and deep-seated
landslide (DL). Here it is stated that this classification fol-
lows a criterion that gives greater priority to the type of ma-
terial (earth/mud or rock) rather than the type of movement
(flow, slide, or fall). Figure 4 shows the spatial distribution
of landslides classified by type and reveals that about half
of the landslides are not specified (NS, 49.7 %), whereas the
rest are mostly EF (24.4 %), RF (17.1 %), and DF (5.7 %).
CL and DL account each for a smaller percentage (≤ 2.1 %).
In particular, most of the RFs are located in the Himalayas,
and the rest are scattered throughout the rest of the territory.

Figure 3. Donut charts with statistics of the landslide cat-
alogue. (a) Number and percentage of landslide information
source; key: ON, online newspapers and magazines; BG, blogs;
TR, technical reports; SJ, scientific journals; SM, social me-
dia; (b) number and percentage of landslides with decreasing
mapping accuracy; key: P1< 1 km2 (high), 1 km2

≤P2< 10 km2

(medium), 10 km2
≤P3< 100 km2 (low), 100 km2

≤P4< 300 km2

(very low); (c) number and percentage of landslides with decreasing
temporal accuracy; key: T1, hour of occurrence known; T2, part of
the day known; T3, only day of occurrence known.

3.2 Rainfall data

The rainfall measurements are obtained through three
datasets available over the study area. In order to provide a
robust and thorough analysis, we used observations obtained
from ground stations as well as satellite sensors. The follow-
ing assumptions apply to each of the considered datasets:

Hydrol. Earth Syst. Sci., 25, 3267–3279, 2021 https://doi.org/10.5194/hess-25-3267-2021



M. T. Brunetti et al.: Satellite rainfall products outperform ground observations for landslide prediction 3271

Figure 4. Map of the location of the six types of landslide and the
relative percentages. Key: CL, complex landslides; DF, debris flow;
EF, earth or mudflow/mudslide; RF, rockfall/rockslide; DL, un-
specified deep-seated landslide; NS, non-specified landslide. Back-
ground image from Bing © Microsoft.

1. the rainfall estimate is used at its own native spatial res-
olution;

2. the analysis has been carried out at hourly and daily
temporal scales; if the resolution was higher, the data
have been summed up in order to obtain hourly rainfall.

The Indian Meteorological Department (IMD) dataset is
based on ground observations coming from more than
6900 rain gauges (Pai et al., 2014). The rainfall recorded
at each station is interpolated in space by using an in-
verse distance-weighted algorithm, providing a daily gridded
dataset with a spatial resolution of 0.25◦ over the territory of
India. Hereinafter this dataset is referred to as IMD.

SM2RAIN-derived rainfall is obtained by applying the
SM2RAIN algorithm (Brocca et al., 2014) to satellite-based
soil moisture data. By inverting the soil water balance equa-
tion, the algorithm allows us to estimate rainfall directly from
soil moisture observations. The algorithm has been proven
to provide accurate and reliable rainfall estimates that have
already been used for natural hazard evaluation studies (Cia-
batta et al., 2017; Brunetti et al., 2018a; Camici et al., 2020),
ensuring satisfactory results in Europe. In this study, rain-
fall data obtained through the application of SM2RAIN to
the ASCAT satellite soil moisture product (Wagner et al.,
2013) provided by H SAF (the EUMETSAT Satellite Ap-
plication Facility on Support to Operational Hydrology and
Water Management) as product H117 are used. The product,

hereinafter referred to as SM2R, has a spatial resolution of
0.1◦ and a daily temporal resolution.

The Integrated Multi-satellitE Retrievals for GPM
(IMERG, Huffman et al., 2018) Early Run is used in this
study as a state-of-the-art satellite rainfall product. The
dataset is obtained by running the algorithm at 0.1◦ spatial
and half-hourly temporal resolution from a constellation of
microwave and infrared satellites. The Early Run version is
characterized by a latency of 4–6 h after sensing. In order to
achieve the hourly temporal resolution used for the analysis,
two subsequent rainfall data are summed up. Hereinafter this
dataset is referred to as IMERG-ER.

The satellite rainfall products here considered allow us to
test the capabilities of two different retrieval algorithms, i.e. a
state-of-the-art classical satellite rainfall product and a novel
technique that estimates rainfall through soil moisture ob-
servations. Other reanalysis data were not considered as we
wanted to investigate the use of near-real-time satellite prod-
ucts for a possible future operational application.

In order to test and highlight the added value of integrat-
ing rainfall estimates obtained through different approaches
for landslide prediction, two additional merged products ob-
tained through the merging of SM2R and IMERG-ER are
created and used as input for determining the rainfall thresh-
olds. The integration between these two different products
has already been tested satisfactorily (Ciabatta et al., 2017;
Massari et al., 2020). The integration allows us to take ad-
vantage of the capabilities of each approach and to limit
the drawbacks, i.e. underestimation of rainfall by SM2RAIN
when the soil is close to saturation or the overestimation by
IMERG-ER for low-intensity rainfall events. The integration
has been performed by following the approach proposed in
Ciabatta et al. (2017). For the first merged product, IMERG-
ER is summed up in order to obtain a daily temporal resolu-
tion. The merging between the two products is obtained by
using Eq. (1):

Smerged = SSM2R+wi (SIMERG-ER− SSM2R) , (1)

where wi is the integration weight, ranging from 0 to 1, and
it is estimated for each pixel using Eq. (2) (Kim et al., 2015):

wi =

ρSM2R-R −
(
ρIMERG-ER,SM2R · ρIMERG-ER,R

)
ρIMERG-ER,R −

(
ρIMERG-ER,SM2R · ρSM2R,R

)
+ ρSM2R,R −

(
ρIMERG-ER,SM2R · ρIMERG-ER,R

) , (2)

where ρS1,S2 is the correlation between two generic
datasets S1 and S2 and R is a reference rainfall product.
In this analysis, ERA5 (Hersbach et al., 2020) is chosen
as a reference rainfall product for estimating the integration
weights. The integration between IMERG-ER and SM2R is
the PMERG-D (daily) dataset.

The second merged product is obtained taking the total
amount of rainfall estimated by PMERG-D and distributing
it within each day by considering the hourly temporal dis-
tribution of IMERG-ER. In this way, the SM2R rainfall at
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the hourly temporal resolution is obtained. Hereinafter this
dataset is referred to as PMERG-H.

Both PMERG-D and PMERG-H have the native spatial
resolution of SM2R, i.e. 0.1◦.

3.3 Reconstruction of the triggering rainfall

The quantitative reconstruction of the rainfall conditions that
likely caused the observed landslides is the first step in the
identification of effective rainfall thresholds. We used CTRL-
T software tool proposed by Melillo et al. (2018a) to sin-
gle out rainfall events starting from continuous rainfall se-
ries. For each landslide, the tool (1) selects automatically the
representative pixel, (2) identifies the most probable dura-
tion and cumulated rainfall (D, E) conditions assumed to
have caused the landslides collected in the catalogue, and
(3) calculates empirical cumulated event rainfall–rainfall du-
ration (ED) thresholds at various non-exceedance probabil-
ity (NEP) adopting the frequentist approach and a bootstrap
technique (Brunetti et al., 2010; Peruccacci et al., 2012).

CTRL-T works on a continuous series of hourly or daily
rainfall measurements or estimates for each pixel. We found
that rainfall records for both the ground-based and satellite-
based products contain some spurious values that prevent the
reconstruction of the individual rainfall events by the CTRL-
T tool (Melillo et al., 2015). To recognize and remove spu-
rious events, we calibrated the cumulated rainfall in each
pixel at the proper temporal resolution (hourly or daily) us-
ing the rainfall series of the Darjeeling district in the driest
January and February months as a reference. The compar-
ison between hyetographs from ground-based and satellite-
based products highlighted that the remote-sensing signal
was found even though it was not actually raining, and it was
independent of the satellite product and of its temporal res-
olution. Therefore, we set heuristically a filter that removes
2 mm h−1 for IMERG-ER and PMERG-H and 2 mm d−1 for
IMD, SM2R, and PMERG-D. We verified that the filter re-
moves a small percentage (5 mm as a median) of the daily
cumulated rainfall; nonetheless, this amount is nearly irrele-
vant for the landslide triggering.

Each landslide is associated with a single pixel of each
product. Figure 5a shows a nested view of the cell grids for
the ground-based (IMD) and two satellite-based (IMERG-
ER and SM2R) products. To increase the reliability of the
rainfall estimates, all the pixels whose centre falls into a cir-
cular buffer of 20 km radius from the landslide are enclosed
in the analysis (Fig. 5b).

The reason for this choice is that often the pixel where the
landslide falls may not faithfully measure the triggering rain-
fall. Possible causes of this are (i) malfunctioning of the sen-
sor, (ii) the spatial averaging in the grid cell (e.g. an intense
precipitation limited to a small area around the landslide),
(iii) the case of landslides with medium (P2) to low (P4) posi-
tion accuracy, and/or (iv) low temporal accuracy (T2 and T3).
For one or more of the above reasons, CTRL-T is generally

Figure 5. (a) Comparison of the pixel resolution for the satellite-
based IMERG, SM2RAIN and the ground-based IMD rainfall prod-
ucts. (b) Example of the pixel selection for three landslides using a
20 km buffer (yellow circle) for the state of Assam. Background im-
age from Bing © Microsoft.

not able to reconstruct the triggering rainfall for all the land-
slides in the catalogue.

To identify the representative pixel to be analysed, we used
a weight,w = E2

·D−1 (modified after Melillo et al., 2018a).
For the pool of pixels enclosed in the 20 km buffer centred
on the landslide, the representative pixel is the one for which
the (D,E) pair provides the highest weight. For a given land-
slide in the catalogue, Fig. 6 portrays the colour associated
with the pixels selected for the reconstruction of the trig-
gering rainfall for each product. The darker the colour, the
higher the weight and hence the expected representativeness
of the pixel. It can be observed that in many cases, the rep-
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Figure 6. Pixels enclosed in the buffer of a landslide (yellow dot) for each rainfall product coloured based on the weight. The representative
pixel is the darkest one. The colour scale is qualitative, since it is different for each product.

resentative pixel (the darkest one) is not necessarily the one
containing the landslide (yellow dot).

Once rainfall conditions have been reconstructed, CTRL-
T calculates the rainfall thresholds. Empirical ED thresholds
are power-law curves with the form

E = (α±1α) ·D(γ±1γ ), (3)

where E is in millimetres, D is in hours (or in days), α and
γ are the scale and the slope parameters of the curve, respec-
tively, and 1α and 1γ are the associated uncertainties (Pe-
ruccacci et al., 2012). It is worth noticing that the two tempo-
ral scales for daily and hourly datasets have to be expressed
in days and hours, respectively (Gariano et al., 2020).

In order to assess the performance of the ground- and
satellite-based rainfall products in predicting landslides in
India, a validation of the thresholds has been carried out,
following Brunetti et al. (2018a). For each product, we
sampled randomly without repetition 70 % of the recon-
structed (D, E) pairs to obtain 100 new datasets. Then, for
each dataset we calculated rainfall thresholds at varying NEP.
The remaining 30 % of (D, E) pairs were used to evaluate
the threshold performance by means of a contingency table
(reporting binary classifiers of rainfall conditions that trig-
gered or did not trigger landslides), skill scores, and ROC (re-
ceiver operating characteristic) analysis, following Gariano
et al. (2015) and Brunetti et al. (2018a). In particular, POD
(probability of detection) and POFD (probability of false de-
tection) are calculated as follows: POD=TP/(TP+FN) and
POFD=FP/(FP+TN), where TP is a true positive and FN is
a false negative, i.e. a landslide-triggering rainfall condition
located above and below the threshold, respectively, while
FP is a false positive and TN is a true negative, i.e. a rain-
fall condition without landslides located above and below the
threshold, respectively. POD and POFD are used as y and x
values of the ROC space, respectively (Fawcett, 2006). Each
(POFD, POD) pair represents the prediction performance of
a threshold, and the Euclidean distance of the pair from the
upper left corner in the ROC plane (POD= 1, POFD= 0) is
used as a measure of the goodness of the threshold. The ROC
curve for each rainfall product is drawn by varying the NEP
of the threshold, and the area under curve (AUC) is used as a
measure of the goodness of each product.

Figure 7. Box-and-whisker plots showing the distribution of (a) the
monthly amount of rainfall as estimated by the satellite-based and
measured ground-based products in the selected pixels and (b) the
monthly number of rainy days.

4 Results

In the following, we report the analyses of the rainfall mea-
surements and rainfall estimates of the five products to com-
pare their capability to capture the rainfall over India.

Figure 7a shows the box-and-whisker plots of the monthly
rainfall for each product in the analysed time period (2007–
2019) for the selected pixels with landslides. With regard to
the daily temporal resolution, Fig. 7a reveals that the rain-
fall estimated by PMERG-D is comparable to that of SM2R,
as expected for a derived product. The two exhibit median
values similar to or higher than the ground-based IMD prod-
uct, especially during the rainy season. At the hourly tem-
poral resolution, the two IMERG-ER and PMERG-H prod-
ucts look noticeably different, the rainfall from IMERG-ER
being steadily higher over time. As an example, in the two
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peak monsoon months of July and August the median value
is nearly constant and amounts to about 480 mm for IMERG-
ER, while it decreases from 340 to 280 mm for PMERG-H.
Overall for the 2 months, the median of IMERG-ER is 1.4 to
1.6 times higher than that of PMERG-H, while in the dry pe-
riod this proportion is even more than 6 (e.g. November and
December). The PMERG-H merged product is comparable
to IMD, whereas on average the median value of IMERG-
ER is about 1.5 and 2.5 times higher than IMD in the rainy
and dry seasons, respectively. In order to investigate how the
rainfall is distributed over a daily scale, we calculated the
number of rainy days per month for each product (Fig. 7b).

A variable number of rainy days is observed among the
various datasets, except for SM2R and PMERG-D, which are
very similar. These two products exhibit the highest num-
ber of rainy days along the whole year, and they show a
kind of saturation in July and August when the rainfall turns
out to be uninterrupted for the whole month (30 d). Among
the satellite-based datasets, IMERG-ER is the one with the
lowest number of rainy days, nearly comparable to that of
IMD, even though IMERG-ER has the most abundant rain-
fall (Fig. 7a). Overall, Fig. 7b highlights that SM2R and
PMERG-D likely overestimate the number of rainy days, es-
pecially from May to October. In particular, in October we
obtain median values of 7 rainy days for IMD, 9 for IMERG-
ER, 12 for PMERG-H, and 23 for SM2R and PMERG-D.

Once we have reconstructed for each product the rain-
fall (D, E) conditions that have triggered the landslides in
the catalogue, we calculated ED rainfall thresholds at vary-
ing NEP for the daily and hourly datasets. As an example,
Fig. 8a shows the comparison between rainfall (D, E) pairs
and relative thresholds at 5 % NEP for SM2R and PMERGE-
D. From the figure it is evident that SM2R and PMERGE-
D (D, E) pairs are shifted towards longer durations than
those associated with IMD. The T5,SM2R threshold is the low-
est one and is parallel to T5,IMD. For rainfall durations shorter
than 12 d, T5,PMERGE-D is the highest one. Figure 8b com-
pares the thresholds of the 2-hourly datasets and shows that
rainfall (D, E) conditions from IMERG-ER are on average
more severe than those reconstructed using PMERG-H data.
As a consequence, T5,IMERG-ER turns out to be higher than
T5,PMERG-H.

Table 1 lists for each product the number of landslides
and the descriptive statistics of the rainfall (D, E) condi-
tions used to define the thresholds and the equations of the
curves, with their uncertainties. For the daily-based satellite
data, the median duration (D) of the triggering rainfall is
more than 7 times longer than that of IMD, and the maxi-
mum duration is about 3 times, confirming what is observed
in Fig. 8a. Consequently, the median value of the cumulated
rainfall for SM2R and PMERG-D is 4.5 to 5.2 times higher
than that of IMD. For the hourly-based data, the duration me-
dian value for IMERG-ER is higher than that of PMERG-H,
whereas the maximum value is about one-half. According to
Fig. 7a, the median and the maximum cumulated rainfall (E)

Figure 8. Rainfall (D, E) conditions and rainfall thresholds at 5 %
NEP level for (a) the daily resolution products IMD, SM2RASC
and PMERGE-D and (b) the hourly resolution products IMERG
and PMERGE-D.

for IMERG-ER are largely higher than those of PMERG-H.
For an easier comparison between the thresholds, the uncer-
tainties have not been drawn in Fig. 8a and b but are shown
in Table 1.

The performance of the ground- and satellite-based rain-
fall products in predicting landslides in India is evaluated
through the ROC analysis. Figure 9 portrays the compari-
son between the rainfall products varying the NEP of the
threshold, where error bars represent their uncertainties. For
a quantitative analysis, the inset graph in the figure shows
the AUC for each product. Based on this outcome, the 2-
hourly PMERGE-H and IMERG-ER perform best in predict-
ing landslides in India, whereas the ground-based IMD is the
less-performing product. We acknowledge that the compari-
son may be biased by the different temporal and spatial res-
olution of the data.

5 Discussion and conclusions

The comparative study among different rainfall products in
predicting rainfall-induced landslides has shown the outper-
formance of satellite products over ground-based observa-
tions in India (Fig. 9). Nevertheless, a detailed analysis of
the procedure used and the results obtained is mandatory to
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Table 1. ED thresholds for possible landslide occurrence in India. Label identifies the thresholds established in this work for the listed
product. NL, number of landslides with reconstructed rainfall conditions. D and E, the rainfall duration (in days or hours) and cumulated
event rainfall (in millimetres). The threshold column lists the equations for the 5 % ED thresholds.

Label Product NL D (d) E (mm) Threshold

no. Min Median Max Min Median Max

T5,IMD IMD 130 1 7.0 67 5.0 181.8 2912.0 E = (7.4± 1.2) ·D(1.10±0.06)

T5,SM2R SM2R 135 1 52.0 179 2.4 823.5 3813.8 E = (5.7± 1.6) ·D(1.10±0.06)

T5,PMERGE-D PMERGE-D 138 1 52.5 182 6.1 938.6 3609.3 E = (9.5± 2.0) ·D(1.00±0.04)

Label Product NL D (h) E (mm) Threshold

no. Min Median Max Min Median Max

T5,IMERG-ER IMERG-ER 126 1 17.0 269 2.9 143.1 1413.4 E = (5.3± 0.8) ·D(0.74±0.04)

T5,PMERGE-H PMERGE-H 132 1 11.5 533 4.7 66.8 874.7 E = (5.7± 0.5) ·D(0.61±0.02)

Figure 9. ROC analysis derived by varying the NEP for the IMD
(orange), SM2R (red), PMERGE-D (purple), IMERG (magenta),
and PMERGE-H (blue) datasets. Error bars depict the interval of
variation of POFD and POD. Inset graph shows the AUC for each
product.

infer the actual potential of the satellite rainfall estimations
to predict the rainfall conditions that may initiate future land-
slides. First, we acknowledge that the landslides gathered in
the catalogue are a limited sample of the analysed time period
for which we found detailed spatial and temporal information
(Fig. 3b and c). Nevertheless, we maintain that the dataset is
a good sample, most of the information being found in tech-
nical reports (Fig. 3a) that usually meet reliability require-
ments.

Analysing the impact of landslides on the population,
Fig. 2b shows that the highest numbers of deaths is reported

in July and August, while instead the highest number of slope
failures occurred in June (Fig. 2a). The lack of a proportion
could be ascribed to the abundant and intense rainfall of July
and August throughout the territory (Fig. 7a) that is able to
initiate extensive, fast landslides (e.g. mudflows) so severe as
to destroy homes and villages, causing human losses. We ob-
served that the landslides in the catalogue for which we know
the type and that have caused more victims (82 %) are earth
or mudflows/mudslides (EF).

In order to reconstruct the individual rainfall events with
the CTRL-T tool, we removed a sort of white noise from
data by using the rainfall series of the Darjeeling district in
January and February. We acknowledge that such calibration
could be dependent on the location where it was performed
and may also be dependent on the amount of rain (e.g. in
monsoon months).

The rainfall estimated by SM2R and PMERGE-D is al-
most continuous in the monsoon months, as shown by the
number of rainy days, considerably higher than that of IMD
and of the hourly IMERG-ER and PMERG-H products
(Fig. 7b). This is in spite of the median monthly rainfall,
which is in the same range of that measured or estimated
by the other products. Overall, the rainfall (D, E) conditions
reconstructed by SM2R and PMERGE-D are by far longer
than those obtained from IMD (Fig. 8a, Table 1).

Given the vastness and variety of the Indian territory, the
thresholds defined in this work (Fig. 8a and b) do not claim
to be used in local landslide early warning systems. To cal-
culate trigger thresholds based on local homogeneous sub-
areas would require a larger amount of data (Peruccacci et al.,
2012). Here, the use of thresholds at a wider regional scale
aims at comparing the performance of satellite- and ground-
based rainfall data in order to identify those products, which
are suited to giving a robust landslide prediction. A further
improvement would be the same analysis at local scale in
order to highlight which product works better or worse in a
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given sub-area. As stated above, this also requires enrichment
of the landslide catalogue.

The ROC analysis (Fig. 9) shows that in India the products
that work best are the hourly-based PMERG-H and IMERG-
ER. A similar performance is also achieved with PMERG-
D, while among satellite products, SM2R is the least per-
forming. Overall, the efficiency of the ground-based IMD
is the lowest in predicting the rainfall-induced slope fail-
ures. This outcome could be somewhat unexpected since
IMD is obtained by the interpolation of point rainfall mea-
surements from rain gauges and, hence, we would expect
more precise rainfall data than the spatially averaged (pixel-
scale) estimates of the satellite rainfall products. As an ex-
ample, Brunetti et al. (2018a) in Italy found a better perfor-
mance of the ground-based rainfall data compared to satel-
lite data. Thomas et al. (2019) in the San Francisco Bay
Area, using a network of 96 tipping buckets (∼ 2.5 km spac-
ing), found that the ground-based dataset was able to cap-
ture the orographic influence on rainfall intensity and cumu-
lated amounts more accurately than the IMERG dataset. In
our case, we hypothesize that the 0.25◦ grid spacing (Fig. 6)
is able to explain a possible underestimation of the rain-
fall in many areas of India where the rain gauge density is
low or even the stations are not working properly. Moreover,
the degree to which ground-based measurements outperform
or underperform relative to satellite products may depend
on where the in situ measurements are placed within the
landscape, especially in steep, landslide-prone terrain. The
above considerations would also explain the larger disper-
sion of the IMD rainfall (D, E) conditions with respect to
SM2R and PMERG-D (Fig. 8a). Conversely, the other prod-
ucts have significantly finer spatial resolutions, i.e. 0.1◦ for
IMERG-ER, SM2R, PMERG-D, and PMERG-H. In addition
to the spatial resolution issues, Marra (2019) and Gariano et
al. (2020) observed that the use of daily resolution data leads
to a general worsening of the predicting capability compared
to hourly data.

Inspection of Fig. 8b reveals that the rainfall (D, E) con-
ditions that have triggered the majority of the landslides
listed in the catalogue (58 % and 64 % for IMERG-ER and
PMERGE-H, respectively) have a rainfall duration of less
than 24 h. As a consequence, the use of daily resolution data
alters the actual triggering rainfall of those landslides. For the
SM2R and PMERG-D datasets, only 7 % of rainfall (D, E)
conditions have a duration D < 7 d (IMD median value) and
only 1 % equal 1 d. This is ascribed to the nearly continuous
rainfall detected by SM2R and PMERG-D, especially in the
monsoon months (Fig. 7b). For this reason, it would eventu-
ally be more appropriate to implement landslide early warn-
ing systems that use rainfall thresholds defined with hourly
data.

This work represents a first attempt to ascertain at the re-
gional (sub-continental) scale of India which are the best
products for the prediction of rainfall-induced landslides.
The results suggest that among the available satellite and

ground-based products, the best-performing ones are those
meeting an hourly temporal resolution with an adequate spa-
tial sampling.
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