Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1643-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Song Shu
CORRESPONDING AUTHOR
Department of Geography and Planning, Appalachian State University,
Boone, NC 28608, USA
Hongxing Liu
CORRESPONDING AUTHOR
Department of Geography, the University of Alabama, Tuscaloosa, AL 35487, USA
Richard A. Beck
Department of Geography and Geographic Information Science, University of Cincinnati, Cincinnati, OH 45221, USA
Frédéric Frappart
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), UMR 5566, CNRS/IRD/UPS, Observatoire Midi-Pyrénées (OMP), 14 Avenue Édouard Belin, 31400 Toulouse, France
Johanna Korhonen
Finnish Environment Institute, SYKE, Freshwater Center,
Latokartanonkaari 11, 00790 Helsinki, Finland
Minxuan Lan
Department of Geography and Geographic Information Science, University of Cincinnati, Cincinnati, OH 45221, USA
Min Xu
College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
Bo Yang
Department of Sociology, University of Central Florida, Orlando, FL 32816, USA
Yan Huang
Key Laboratory of Geographical Information Science, Ministry of Education, School of Geographical Science, East China Normal University, Shanghai 200241, China
Related authors
No articles found.
Jingwen Ni, Jin Chen, Yao Tang, Jingyi Xu, Jiahui Xu, Linxin Dong, Qingyu Gu, Bailang Yu, Jianping Wu, and Yan Huang
Biogeosciences, 22, 2637–2651, https://doi.org/10.5194/bg-22-2637-2025, https://doi.org/10.5194/bg-22-2637-2025, 2025
Short summary
Short summary
The effect of snowmelt on vegetation is not immediate but has a mean response lag of 38.5 d. As precipitation and snowmelt increase, the response time shortens. More complex than these factors, temperature shortens the response time in colder regions while lengthening it in warmer areas. Furthermore, vegetation in arid regions is more dependent on water than heat, and low-vegetation areas rely more on sub-snow habitats than external climatic factors.
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024, https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Short summary
Landlocked lakes are crucial to the Antarctic ecosystem and sensitive to climate change. Limited research on their distribution prompted us to develop an automated detection process using deep learning and multi-source satellite imagery. This allowed us to accurately determine the landlocked lake open water (LLOW) area in Antarctica, generating high-resolution time series data. We find that the changes in positive and negative degree days predominantly drive variations in the LLOW area.
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024, https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Short summary
Understanding snow phenology (SP) and its possible feedback are important. We reveal spatiotemporal heterogeneous SP on the Tibetan Plateau (TP) and the mediating effects from meteorological, topographic, and environmental factors on it. The direct effects of meteorology on SP are much greater than the indirect effects. Topography indirectly effects SP, while vegetation directly effects SP. This study contributes to understanding past global warming and predicting future trends on the TP.
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024, https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Short summary
The age of the surface blue ice in the Grove Mountains area is dated to be about 140 000 years, and one meteorite found here is 260 000 years old. It is inferred that the Grove Mountains blue-ice area holds considerable potential for paleoclimate studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Yan Huang, Jiahui Xu, Jingyi Xu, Yelei Zhao, Bailang Yu, Hongxing Liu, Shujie Wang, Wanjia Xu, Jianping Wu, and Zhaojun Zheng
Earth Syst. Sci. Data, 14, 4445–4462, https://doi.org/10.5194/essd-14-4445-2022, https://doi.org/10.5194/essd-14-4445-2022, 2022
Short summary
Short summary
Reliable snow cover information is important for understating climate change and hydrological cycling. We generate long-term daily gap-free snow products over the Tibetan Plateau (TP) at 500 m resolution from 2002 to 2021 based on the hidden Markov random field model. The accuracy is 91.36 %, and is especially improved during snow transitional period and over complex terrains. This dataset has great potential to study climate change and to facilitate water resource management in the TP.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Sakaros Bogning, Frédéric Frappart, Gil Mahé, Adrien Paris, Raphael Onguene, Fabien Blarel, Fernando Niño, Jacques Etame, and Jean-Jacques Braun
Proc. IAHS, 384, 181–186, https://doi.org/10.5194/piahs-384-181-2021, https://doi.org/10.5194/piahs-384-181-2021, 2021
Short summary
Short summary
This paper investigates links between rainfall variability in the Ogooué River Basin (ORB) and El Niño Southern Oscillation (ENSO) in the Pacific Ocean. Recent hydroclimatology studies of the ORB and surrounding areas resulting in contrasting conclusions about links between rainfall variability and ENSO. Then, this work uses cross-wavelet and wavelet coherence analysis to highlight significant links between ENSO and rainfall in the ORB.
Adama Telly Diepkilé, Flavien Egon, Fabien Blarel, Eric Mougin, and Frédéric Frappart
Proc. IAHS, 384, 31–35, https://doi.org/10.5194/piahs-384-31-2021, https://doi.org/10.5194/piahs-384-31-2021, 2021
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., and Van Donk,
E.: Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297, 2009.
Assel, R. and Wang, J.: Great Lakes Ice Cover Data – Ice Year 2017, Produced by NOAA Great Lakes Environmental Research Laboratory, available at: https://www.glerl.noaa.gov/data/ice/ (last access: 15 February 2021), 2017.
Barry, R., Finkelstein, J., Kilgus, C., Mooers, C. N. K., Needham, B., and
Crawford, M.: GeoSat follow-on satellite to supply ocean sciences data, Eos
Trans. Am. Geophys. Union, 76, 33–36, 1995.
Berry, P. A. M., Garlick, J. D., Freeman, J. A., and Mathers, E. L.: Global
inland water monitoring from multi-mission altimetry, Geophys. Res. Lett., 32, L16401, https://doi.org/10.1029/2005GL022814, 2005.
Biancamaria, S., Frappart, F., Leleu, A. S., Marieu, V., Blumstein, D.,
Desjonquères, J.-D., Boy, F., Sottolichio, A., and Valle-Levinson, A.:
Satellite radar altimetry water elevations performance over a 200 m wide
river: Evaluation over the Garonne River, Adv. Space Res., 59, 128–146, https://doi.org/10.1016/j.asr.2016.10.008, 2017.
Biancamaria, S., Schaedele, T., Blumstein, D., Frappart, F., Boy, F.,
Desjonqueres, J. D., Pottier, C., Blarel, F., and Nino, F.: Validation of
Jason-3 tracking modes over French rivers, Remote Sens. Environ., 209, 77–89, https://doi.org/10.1016/j.rse.2018.02.037, 2018.
Birkett, C., Reynolds, C., Beckley, B., and Doorn, B.: From Research to
Operations: The USDA Global Reservoir and Lake Monitor, in: Coastal Altimetry, edited by: Vignudelli, S., Kostianoy, A. G., Cipollini, P., and
Benveniste, J., Springer, Berlin, Heidelberg, 19–50, 2011.
Birkett, C. M.: The contribution of TOPEX/POSEIDON to the global monitoring
of climatically sensitive lakes, J. Geophys. Res., 100, 25179–25204, 1995.
Birkett, C. M. and Beckley, B.: Investigating the Performance of the Jason-2/OSTM Radar Altimeter over Lakes and Reservoirs, Mar. Geod., 33, 204–238, https://doi.org/10.1080/01490419.2010.488983, 2010.
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet,
J.-P., Seyler, F., Onguéné, R., Etamé, J., and Paiz, M.-C.:
Monitoring water levels and discharges using radar altimetry in an ungauged
river basin: The case of the Ogooué, Remote Sens., 10, 350, https://doi.org/10.3390/rs10020350, 2018.
Bonnefond, P., Verron, J., Aublanc, J., Babu, K. N., Bergé-Nguyen, M.,
Cancet, M., Chaudhary, A., Crétaux, J.-F., Frappart, F., Haines, B. J.,
Laurain, O., Ollivier, A., Poisson, J.-C., Prandi, P., Sharma, R., Thibaut,
P., and Watson, C.: The Benefits of the Ka-Band as Evidenced from the
SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data, Remote Sens., 10, 83, https://doi.org/10.3390/rs10010083, 2018.
Brockley, D. J.: REAPER – Product handbook for ERS Altimetry reprocessed
products, available at: https://earth.esa.int/web/guest/document-library/browse-document-library/-/article/reaper-product-handbook-for-ers-altimetry-reprocessed-products (last access: 15 February 2021), 2014.
Brockley, D. J., Baker, S., Féménias, P., Martínez, B., Massmann, F., Otten, M., Paul, F., Picard, B., Prandi, P., Roca, M., Rudenko, S., Scharroo, R., and Visser, P.: REAPER: Reprocessing 12 Years of ERS-1 and ERS-2 Altimeters and Microwave Radiometer Data, IEEE T. Geosci. Remote, 55, 5506–5514, https://doi.org/10.1109/TGRS.2017.2709343, 2017.
Brown, G. S.: Average Impulse Responce Of A Rough Surface And Its Applications, IEEE T. Anten. Propag., AP-25, 67–74, 1977.
Caplan, P., Derber, J., Gemmill, W., Hong, S.-Y., Pan, H.-L., and Parrish,
D.: Changes to the 1995 NCEP Operational Medium-Range Forecast Model
Analysis–Forecast System, Weather Forecast., 12, 581–594,
https://doi.org/10.1175/1520-0434(1997)012<0581:CTTNOM>2.0.CO;2, 1997.
Chelton, D. B., Walsh, E. J., and MacArthur, J. L.: Pulse Compression and
Sea Level Tracking in Satellite Altimetry, J. Atmos. Ocean. Tech., 6, 407–438, https://doi.org/10.1175/1520-0426(1989)006<0407:PCASLT>2.0.CO;2, 1989.
Cheney, R.: The Geosat Altimeter JGM-3 GDRs on CD-ROM, Natl. Oceanic and
Atmos. Admin., Silver Spring, 1997.
Cheney, R., Lillibridge, J., and McAdoo, D.: Preliminary analysis of ERS-1 fast delivery altimeter data, Office of ocean and earth sciences, NOAA
National Ocean Service, Rockville, MD, 1991.
Crétaux, J. F., Calmant, S., Romanovski, V., Shabunin, A., Lyard, F.,
Bergé-Nguyen, M., Cazenave, A., Hernandez, F., and Perosanz, F.: An
absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia, J. Geod., 83, 723–735, https://doi.org/10.1007/s00190-008-0289-7, 2009.
Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero, M. C., Nino, F., Abarca Del Rio, R., Cazenave, A., and Maisongrande, P.: SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data, Adv. Space Res., 47, 1497–1507, 2011.
Crétaux, J.-F., Nielsen, K., Frappart, F., Papa, F., Calmant, S., and Benveniste, J.: Hydrological Applications of Satellite AltimetryRivers, Lakes, Man-Made Reservoirs, Inundated Areas, in: Satellite Altimetry Over Oceans and Land Surfaces, CRC Press, Boca Raton, 459–504, 2017.
Crétaux, J.-F., Bergé-Nguyen, M., Calmant, S., Jamangulova, N.,
Satylkanov, R., Lyard, F., Perosanz, F., Verron, J., Samine Montazem, A., Le
Guilcher, G., Leroux, D., Barrie, J., Maisongrande, P., and Bonnefond, P.:
Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and
the Jason-3 over Lake Issykkul (Kyrgyzstan), Remote Sens., 10, 1679, https://doi.org/10.3390/rs10111679, 2018.
Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., and d. Bauer, P.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
Dibarboure, G., Lamy, A., Pujol, M.-I., and Jettou, G.: The Drifting Phase
of SARAL: Securing Stable Ocean Mesoscale Sampling with an Unmaintained
Decaying Altitude, Remote Sens., 10, 1051, https://doi.org/10.3390/rs10071051, 2018.
Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M. H., Féménias,
P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke,
J., Rebhan, H., Seitz, B., Stroede, J., and Sciarra, R.: The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission, Remote
Sens. Environ., 120, 37–57, https://doi.org/10.1016/j.rse.2011.07.024, 2012.
Fernandes, M. and Lázaro, C.: GPD+ Wet Tropospheric Corrections for
CryoSat-2 and GFO Altimetry Missions, Remote Sens., 8, 851, https://doi.org/10.3390/rs8100851, 2016.
Fernandes, M., Lázaro, C., Nunes, A., and Scharroo, R.: Atmospheric
Corrections for Altimetry Studies over Inland Water, Remote Sens., 6, 4952, https://doi.org/10.3390/rs6064952, 2014.
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A.:
Preliminary results of ENVISAT RA-2-derived water levels validation over the
Amazon basin, Remote Sens. Environ., 100, 252–264, 2006.
Frappart, F., Roussel, N., Biancale, R., Martinez Benjamin, J. J., Mercier,
F., Perosanz, F., Garate Pasquin, J., Martin Davila, J., Perez Gomez, B.,
Gracia Gomez, C., Lopez Bravo, R., Tapia Gomez, A., Gili Ripoll, J., Hernandez Pajares, M., Salazar Lino, M., Bonnefond, P., and Valles Casanova,
I.: The 2013 Ibiza Calibration Campaign of Jason-2 and SARAL Altimeters,
Mar. Geod., 38, 219–232, https://doi.org/10.1080/01490419.2015.1008711, 2015.
Frappart, F., Legrésy, B., Niño, F., Blarel, F., Fuller, N., Fleury,
S., Birol, F., and Calmant, S.: An ERS-2 altimetry reprocessing compatible
with ENVISAT for long-term land and ice sheets studies, Remote Sens. Environ., 184, 558–581, https://doi.org/10.1016/j.rse.2016.07.037, 2016.
Fu, L. L., Christensen, E. J., Yamarone, C. A., Lefebvre, M., Menard, Y.,
Dorrer, M., and Escudier, P.: TOPEX/POSEIDON mission overview, J. Geophys. Res.-Oceans, 99, 24369–24381, 1994.
Hannah, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C.,
Rees, G., Stahl, K., and Tallaksen, L. M.: Large-scale river flow archives:
Importance, current status and future needs, Hydrol. Process., 25, 1191–1200, https://doi.org/10.1002/hyp.7794, 2011.
Howell, S. E. L., Brown, L. C., Kang, K.-K., and Duguay, C. R.: Variability
in ice phenology on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000–2006, Remote Sens. Environ., 113, 816–834, https://doi.org/10.1016/j.rse.2008.12.007, 2009.
Iijima, B. A., Harris, I. L., Ho, C. M., Lindqwister, U. J., Mannucci, A.
J., Pi, X., Reyes, M. J., Sparks, L. C., and Wilson, B. D.: Automated daily
process for global ionospheric total electron content maps and satellite
ocean altimeter ionospheric calibration based on Global Positioning System
data, J. Atmos. Sol.-Terr. Phy., 61, 1205–1218, https://doi.org/10.1016/S1364-6826(99)00067-X, 1999.
Jarihani, A., Callow, J. N., Johansen, K., and Gouweleeuw, B.: Evaluation of
multiple satellite altimetry data for studying inland water bodies and river
floods, J. Hydrol., 505, 78–90, https://doi.org/10.1016/j.jhydrol.2013.09.010, 2013.
Jiang, L., Nielsen, K., Dinardo, S., Andersen, O. B., and Bauer-Gottwein, P.: Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers, Remote Sens. Environ., 237, 111546, https://doi.org/10.1016/j.rse.2019.111546, 2020.
Jones, B. M. and Arp, C. D.: Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska, Permafrost Periglac. Process., 26, 119–128, https://doi.org/10.1002/ppp.1842, 2015.
Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne,
M. J., Peterson, T. C., Vose, R. S., and Zhang, H.-M.: Possible artifacts of
data biases in the recent global surface warming hiatus, Science, 348, 1469–1472, https://doi.org/10.1126/science.aaa5632, 2015.
Kleinherenbrink, M., Naeije, M., Slobbe, C., Egido, A., and Smith, W.: The
performance of CryoSat-2 fully-focussed SAR for inland water-level estimation, Remote Sens. Environ., 237, 111589, https://doi.org/10.1016/j.rse.2019.111589, 2020.
Korhonen, J.: Long-term changes in lake ice cover in Finland, Hydrol. Res., 37, 347–363, 2006.
Korhonen, J.: Long-term changes and variability of the winter and spring
season hydrological regime in Finland, PhD thesis, Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, 2019.
Lambin, J., Morrow, R., Fu, L. L., Willis, J. K., Bonekamp, H., Lillibridge,
J., Perbos, J., Zaouche, G., Vaze, P., Bannoura, W., Parisot, F., Thouvenot,
E., Coutin-Faye, S., Lindstrom, E., and Mignogno, M.: The OSTM/Jason-2 Mission, Mar. Geod., 33, 4–25, https://doi.org/10.1080/01490419.2010.491030, 2010.
Laxon, S.: Sea ice altimeter processing scheme at the eodc, Int. J. Remote Sens., 15, 915–924, https://doi.org/10.1080/01431169408954124, 1994.
Lee-Lueng, F.: TOPEX/POSEIDON mission overview, J. Geophys. Res., 99, 24369–24381, 1994.
Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Lillibridge, J., Smith, W. H., Sandwell, D., Scharroo, R., Lemoine, F., and
Zelensky, N.: 20 Years of Improvements to GEOSAT Altimetry, ESA Special
Publication, ESA, Venice, Italy, 2006.
Liu, H., Wang, L., Tang, S. J., and Jezek, K. C.: Robust multi-scale image
matching for deriving ice surface velocity field from sequential satellite
images, Int. J. Remote Sens., 33, 1799–1822, 2012.
Maillard, P., Bercher, N., and Calmant, S.: New processing approaches on the
retrieval of water levels in Envisat and SARAL radar altimetry over rivers: A case study of the São Francisco River, Brazil, Remote Sens. Environ., 156, 226–241, https://doi.org/10.1016/j.rse.2014.09.027, 2015.
Marsh, P., Russell, M., Pohl, S., Haywood, H., and Onclin, C.: Changes in
thaw lake drainage in the Western Canadian Arctic from 1950 to 2000, Hydrol. Process., 23, 145–158, https://doi.org/10.1002/hyp.7179, 2009.
McConathy, D. R. and Kilgus, C. C.: The Navy GEOSAT mission: an overview,
Johns Hopkins APL technical Digest, 8, 170–175, 1987.
Menard, Y., Fu, L. L., Escudier, P., Parisot, F., Perbos, J., Vincent, P.,
Desai, S., Haines, B., and Kunstmann, G.: The Jason-1 Mission, Mar. Geod., 26, 131–146, https://doi.org/10.1080/714044514, 2003.
Miller, M., Buizza, R., Haseler, J., Hortal, M., Janssen, P., and Untch, A.:
Increased resolution in the ECMWF deterministic and ensemble prediction systems, ECMWF Newsletter, 124, 10–16, 2010.
Morris, C. S. and Gill, S. K.: Variation of Great Lakes water levels derived from Geosat altimetry, Water Resour. Res., 30, 1009–1017, https://doi.org/10.1029/94WR00064, 1994.
MSSL/UCL/CLS: Sentinel-3 Level 2 SRAL MWR Algorithm Theoretical Baseline
Definition, Document Ref.: S3MPC.CLS.PBD.005, 138 pp., 2019.
Normandin, C., Frappart, F., Diepkilé, A., Marieu, V., Mougin, E., Blarel, F., Lubac, B., Braquet, N., and Ba, A.: Evolution of the performances of radar altimetry missions from ERS-2 to Sentinel-3A over the Inner Niger Delta, Remote Sens., 10, 833, https://doi.org/10.3390/rs10060833, 2018.
Naval Oceanographic Office and NOAA Laboratory for Satellite Altimetry: GeoSat Follow-On GDR User's Handbook, available at: https://www.star.nesdis.noaa.gov/socd/lsa/GFO/gfo_documentation.php, (last access: 15 February 2021), 2002.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Solid, 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Pohl, S., Marsh, P., Onclin, C., and Russell, M.: The summer hydrology of a
small upland tundra thaw lake: Implications to lake drainage, Hydrol. Process., 23, 2536–2546, https://doi.org/10.1002/hyp.7238, 2009.
Postel, S. L., Daily, G. C., and Ehrlich, P. R.: Human appropriation of
renewable fresh water, Science, 271, 785–788, https://doi.org/10.1126/science.271.5250.785, 1996.
Probst, W. N., Stoll, S., Peters, L., Fischer, P., and Eckmann, R.: Lake water level increase during spring affects the breeding success of bream
Abramis brama (L.), Hydrobiologia, 632, 211–224, https://doi.org/10.1007/s10750-009-9842-5, 2009.
Rahmstorf, S.: Thermohaline circulation: The current climate, Nature, 421, 699–699, https://doi.org/10.1038/421699a, 2003.
Raney, R. K. and Phalippou, L.: The future of coastal altimetry, in: Coastal Altimetry, edited by: Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J., Springer, Berlin, Heidelberg, 535–560, https://doi.org/10.1007/978-3-642-12796-0_20, 2011.
Ričko, M., Birkett, C. M., Carton, J. A., and Crétaux, J. F.:
Intercomparison and validation of continental water level products derived from satellite radar altimetry, J. Appl.Remote Sens., 6, 061710, https://doi.org/10.1117/1.JRS.6.061710, 2012.
Rodríguez, E. and Martin, J. M.: Assessment of the TOPEX altimeter performance using waveform retracking, J. Geophys. Res.-Oceans, 99, 24957–24969, https://doi.org/10.1029/94jc02030, 1994.
Rokaya, P., Budhathoki, S., and Lindenschmidt, K. E.: Trends in the Timing
and Magnitude of Ice-Jam Floods in Canada, Scient. Rep., 8, 5834, https://doi.org/10.1038/s41598-018-24057-z, 2018.
Scharroo, R. and Smith, W. H. F.: A global positioning system-based climatology for the total electron content in the ionosphere, J. Geophys. Res.-Space, 115, A10318, https://doi.org/10.1029/2009ja014719, 2010.
Scharroo, R., Leuliette, E., Lillibridge, J., Byrne, D., Naeije, M., and Mitchum, G.: RADS: Consistent Multi-Mission Products, in: 20 Years of Progress in Radar Altimatry, 2012, Venice, Italy, 2013.
Schindler, D. E. and Scheuerell, M. D.: Habitat coupling in lake ecosystems, Oikos, 98, 177–189, https://doi.org/10.1034/j.1600-0706.2002.980201.x, 2002.
Schwatke, C., Dettmering, D., Borgens, E., and Bosch, W.: Potential of
SARAL/AltiKa for Inland Water Applications, Mar. Geod., 38, 626–643,
https://doi.org/10.1080/01490419.2015.1008710, 2015a.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015b.
Shu, S., Liu, H., Frappart, F., Huang, Y., Wang, S., Hinkel, K. M., Beck, R.
A., Yu, B., Jones, B. M., Arp, C. D., Wang, L., and Ye, Z.: Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations – A case study in northern Alaska, Remote Sens. Environ., 216, 529–543, https://doi.org/10.1016/j.rse.2018.07.018, 2018.
Shu, S., Liu, H., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., Yang, B.,
Hinkel, K. M., Huang, Y., and Yu, B.: Analysis of Sentinel-3 SAR altimetry
waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes, Remote Sens. Environ., 239, 111643,
https://doi.org/10.1016/j.rse.2020.111643, 2020.
Sulistioadi, Y. B., Tseng, K. H., Shum, C. K., Hidayat, H., Sumaryono, M.,
Suhardiman, A., Setiawan, F., and Sunarso, S.: Satellite radar altimetry for
monitoring small rivers and lakes in Indonesia, Hydrol. Earth Syst. Sci.,
19, 341–359, https://doi.org/10.5194/hess-19-341-2015, 2015.
Surdu, C. M., Duguay, C. R., Brown, L. C., and Fernández Prieto, D.: Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis, The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, 2014.
Thibaut, P., Poisson, J. C., Bronner, E., and Picot, N.: Relative Performance of the MLE3 and MLE4 Retracking Algorithms on Jason-2 Altimeter Waveforms, Mar. Geod., 33, 317–335, https://doi.org/10.1080/01490419.2010.491033, 2010.
Turner, K. W., Wolfe, B. B., Edwards, T. W. D., Lantz, T. C., Hall, R. I.,
and Larocque, G.: Controls on water balance of shallow thermokarst lakes and
their relations with catchment characteristics: A multi-year, landscape-scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada), Global Change Biol., 20, 1585–1603, https://doi.org/10.1111/gcb.12465, 2014.
Tyszkowski, S., Kaczmarek, H., Słowiński, M., Kozyreva, E., Brykała, D., Rybchenko, A., and Babicheva, V. A.: Geology, permafrost, and lake level changes as factors initiating landslides on Olkhon Island (Lake Baikal, Siberia), Landslides, 12, 573–583, https://doi.org/10.1007/s10346-014-0488-7, 2015.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Verron, J., Sengenes, P., Lambin, J., Noubel, J., Steunou, N., Guillot, A.,
Picot, N., Coutin-Faye, S., Sharma, R., Gairola, R. M., Murthy, D. V. A. R.,
Richman, J. G., Griffin, D., Pascual, A., Rémy, F., and Gupta, P. K.: The SARAL/AltiKa Altimetry Satellite Mission, Mar. Geod., 38, 2–21,
https://doi.org/10.1080/01490419.2014.1000471, 2015.
Villadsen, H., Deng, X., Andersen, O. B., Stenseng, L., Nielsen, K., and Knudsen, P.: Improved inland water levels from SAR altimetry using novel
empirical and physical retrackers, J. Hydrol., 537, 234–247,
https://doi.org/10.1016/j.jhydrol.2016.03.051, 2016.
Vu, P. L., Frappart, F., Darrozes, J., Marieu, V., Blarel, F., Ramillien, G., Bonnefond, P., and Birol, F.: Multi-Satellite Altimeter Validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL, Remote Sens., 10, 93, https://doi.org/10.3390/rs10010093, 2018.
Weyhenmeyer, G. A., Westöö, A. K., and Willén, E.: Increasingly
ice-free winters and their effects on water quality in Sweden's largest lakes, Hydrobiologia, 599, 111–118, https://doi.org/10.1007/s10750-007-9188-9, 2008.
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change, Limnol. Oceanogr., 54, 2273–2282, 2009.
Wingham, D. J., Rapley, C. G., and Griffiths, H.: New Techniques In Satellite Altimeter Tracking Systems, in: Digest – International Geoscience and Remote Sensing Symposium (IGARSS), Zurich, Switzerland, 1339–1344, 1986.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos,
C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.
W.: CryoSat: A mission to determine the fluctuations in Earth's land and
marine ice fields, Adv. Space Res., 37, 841–871, 2006.
Zandbergen, R., Dow, J. M., Romay Merino, M., Píriz, R., and Martínez Fadrique, F.: ERS-1 and ERS-2 tandem mission: determination, prediction and maintenance, Adv. Space Res., 19, 1649–1653, https://doi.org/10.1016/S0273-1177(97)00319-0, 1997.
Zelli, C.: ENVISAT RA-2 advanced radar altimeter: instrument design and
pre-launch performance assessment review, Acta Astronaut., 44, 323–333,
https://doi.org/10.1016/S0094-5765(99)00063-6, 1999.
Ziyad, J., Goïta, K., Magagi, R., Blarel, F., and Frappart, F.: Improving the Estimation of Water Level over Freshwater Ice Cover using Altimetry Satellite Active and Passive Observations, Remote Sens., 12, 967, https://doi.org/10.3390/rs12060967, 2020.
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
This study comprehensively evaluated 11 satellite radar altimetry missions (including their...