Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5745-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5745-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last-decade progress in understanding and modeling the land surface processes on the Tibetan Plateau
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084,
China
Ministry of Education Ecological Field Station for East Asian
Migratory Birds, Beijing 100084, China
Donghai Zheng
National Tibetan Plateau Data Center, Key Laboratory of Tibetan
Environmental Changes and Land Surface Processes, Institute of Tibetan
Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084,
China
Center for Excellence in Tibetan Plateau Earth Sciences, Chinese
Academy of Sciences, Beijing 100101, China
Fan Yang
Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing 100084,
China
Related authors
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024, https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
Short summary
An increase of 28 % in cropland expansion since 10 000 BCE has led to a 1.2 % enhancement in the global cropping potential, with varying efficiencies across regions. The continuous expansion has altered the support for population growth and has had impacts on climate and biodiversity, highlighting the effects of climate change. It also points out the limitations of previous studies.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Jiamin Wang, Kun Yang, Jiarui Liu, Xu Zhou, Xiaogang Ma, Wenjun Tang, Ling Yuan, and Zuhuan Ren
EGUsphere, https://doi.org/10.5194/egusphere-2025-1513, https://doi.org/10.5194/egusphere-2025-1513, 2025
Short summary
Short summary
Aerodynamic roughness length (z0) is a key parameter determining wind profiles in models, but most models neglect the urban effects. We proposed a low-cost method to estimate z0 at weather stations in built-up areas across China, and then developed a z0 dataset. Tests in the Weather Research and Forecasting model show that it significantly improves the simulation accuracy of wind speed at both 10-m and 100-m heights, supporting urban planning, air quality management, and wind energy projects.
Xu Zhou, Binbin Wang, Xiaogang Ma, Zhu La, and Kun Yang
The Cryosphere, 18, 4589–4605, https://doi.org/10.5194/tc-18-4589-2024, https://doi.org/10.5194/tc-18-4589-2024, 2024
Short summary
Short summary
The simulation of the ice phenology of Nam Co by WRF is investigated. Compared with the default model, improving the key lake schemes, such as water surface roughness length for heat fluxes and the shortwave radiation transfer for lake ice, can better simulate the lake ice phenology. The still existing errors in the spatial patterns of lake ice phenology imply that challenges still exist in modelling key lake and non-lake physics such as grid-scale water circulation and snow-related processes.
Xiaoxuan Liu, Peng Zhu, Shu Liu, Le Yu, Yong Wang, Zhenrong Du, Dailiang Peng, Ece Aksoy, Hui Lu, and Peng Gong
Earth Syst. Dynam., 15, 817–828, https://doi.org/10.5194/esd-15-817-2024, https://doi.org/10.5194/esd-15-817-2024, 2024
Short summary
Short summary
An increase of 28 % in cropland expansion since 10 000 BCE has led to a 1.2 % enhancement in the global cropping potential, with varying efficiencies across regions. The continuous expansion has altered the support for population growth and has had impacts on climate and biodiversity, highlighting the effects of climate change. It also points out the limitations of previous studies.
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024, https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Short summary
This study investigates the influence of lower-tropospheric humidity on land–atmosphere coupling (LAC) during warm seasons in the US Southern Great Plains. Using radiosonde data and a buoyancy model, we find that elevated LT humidity is crucial for generating afternoon precipitation events under dry soil conditions not accounted for by conventional LAC indices. This underscores the importance of considering LT humidity in understanding LAC over dry soil during droughts in the SGP.
Wenjun Tang, Junmei He, Jingwen Qi, and Kun Yang
Earth Syst. Sci. Data, 15, 4537–4551, https://doi.org/10.5194/essd-15-4537-2023, https://doi.org/10.5194/essd-15-4537-2023, 2023
Short summary
Short summary
In this study, we have developed a dense station-based, long-term dataset of daily surface solar radiation in China with high accuracy. The dataset consists of estimates of global, direct and diffuse radiation at 2473 meteorological stations from the 1950s to 2021. Validation indicates that our station-based radiation dataset clearly outperforms the satellite-based radiation products. Our dataset will contribute to climate change research and solar energy applications in the future.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Cited articles
Bai, P., Liu, X. M., Yang, T. T., Liang, K., and Liu, C. M.: Evaluation of
streamflow simulation results of land surface models in GLDAS on the Tibetan
plateau, J. Geophys. Res.-Atmos., 121, 12180–12197,
2016.
Bao, H., Koike, T., Yang, K., Wang, L., Shrestha, M., and Lawford, P.:
Development of an enthalpy-based frozen soil model and its validation in a
cold region in China, J. Geophys. Res.-Atmos., 121,
5259–5280, https://doi.org/10.1002/2015jd024451, 2016.
Beljaars, A. C. M., Brown, A. R., and Wood, N.: A new parametrization of
turbulent orographic form drag, Q. J. Roy. Meteor. Soc., 130, 1327–1347,
https://doi.org/10.1256/qj.03.73, 2004.
Boone, A., de Rosnay, P., Balsamo, G., Beljaars, A., Chopin, F., Decharme,
B., Delire, C., Ducharne, A., Gascoin, S., Grippa, M., Guichard, F., Gusev,
Y., Harris, P., Jarlan, L., Kergoat, L., Mougin, E., Nasonova, O., Norgaard,
A., Orgeval, T., Ottle, C., Poccard-Leclercq, I., Polcher, J., Sandholt, I.,
Saux-Picart, S., Taylor, C., and Xue, Y. K.: The Amma Land Surface Model
Intercomparison Project (Almip), B. Am. Meteorol. Soc., 90, 1865–1880, 2009.
Chen, Y. Y., Yang, K., He, J., Qin, J., Shi, J. C., Du, J. Y., and He, Q.:
Improving land surface temperature modeling for dry land of China, J. Geophys. Res.-Atmos., 116, D20104, https://doi.org/10.1029/2011JD015921, 2011.
Chen, Y. Y., Yang, K., Tang, W. J., Qin, J., and Zhao, L.: Parameterizing
soil organic carbon's impacts on soil porosity and thermal parameters for
Eastern Tibet grasslands, Sci. China Earth Sci., 55, 1001–1011, 2012.
Chen, Y. Y., Yang, K., Qin, J., Zhao, L., Tang, W. J., and Han, M. L.:
Evaluation of AMSR-E retrievals and GLDAS simulations against observations
of a soil moisture network on the central Tibetan Plateau, J.
Geophys. Res.-Atmos., 118, 4466–4475, 2013.
Corbari, C., Mancini, M., Li, J., and Su, Z.: Can satellite land surface
temperature data be used similarly to river discharge measurements for
distributed hydrological model calibration?, Hydrolog. Sci.
J., 60, 202–217, https://doi.org/10.1080/02626667.2013.866709, 2015.
Dai, Y., Wei, N., Huang, A., Zhu, S., Shangguan, W., Yuan, H., Zhang, S.,
and Liu, S.: The lake scheme of the Common Land Model and its performance
evaluation, Chinese Sci. Bull., 63, 3002–3021, 2018.
Dai, Y., Xin, Q., Wei, N., Zhang, Y., Wei, S., Yuan, H., Zhang, S., Liu, S.,
and Lu, X.: A Global High-Resolution Data Set of Soil Hydraulic and Thermal
Properties for Land Surface Modeling, J. Adv. Model. Earth Sy., 11, 2996–3023,
https://doi.org/10.1029/2019ms001784, 2019.
Dai, Y. J., Zeng, X. B., Dickinson, R. E., Baker, I., Bonan, G. B.,
Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G.
Y., Oleson, K. W., Schlosser, C. A., and Yang, Z. L.: The Common Land Model,
B. Am. Meteorol. Soc., 84, 1013–1023, 2003.
Dai, Y. J., Shangguan, W., Duan, Q. Y., Liu, B. Y., Fu, S. H., and Niu, G.:
Development of a China Dataset of Soil Hydraulic Parameters Using
Pedotransfer Functions for Land Surface Modeling, J. Hydrometeorol., 14,
869–887, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P.,
Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011 (data available at: http://apps.ecmwf.int/datasets/, last access: 01 November 2020).
Dickinson, R. E., Kennedy, P. J., and Henderson-Sellers, A.:
Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the
NCAR community climate model, National Center for Atmospheric Research,
Climate and Global Dynamics Division, 1993.
Dickinson, R. E., Oleson, K. W., Bonan, G., Hoffman, F., Thornton, P.,
Vertenstein, M., Yang, Z. L., and Zeng, X. B.: The Community Land Model and
its climate statistics as a component of the Community Climate System Model,
J. Climate, 19, 2302–2324, 2006.
Ding, B. H., Yang, K., Qin, J., Wang, L., Chen, Y. Y., and He, X. B.: The
dependence of precipitation types on surface elevation and meteorological
conditions and its parameterization, J. Hydrol., 513, 154–163, https://doi.org/10.1016/j.jhydrol.2014.03.038, 2014.
Ding, B. H., Yang, K., Yang, W., He, X. B., Chen, Y. Y., Lazhu, Guo, X. F.,
Wang, L., Wu, H., and Yao, T. D.: Development of a Water and Enthalpy
Budget-based Glacier mass balance Model (WEB-GM) and its preliminary
validation, Water Resour. Res., 53, 3146–3178, 2017.
Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project
(GSWP), J. Hydrometeorol., 12, 729–749, 2011.
Dirmeyer, P. A., Dolman, A. J., and Sato, N.: The pilot phase of the Global
Soil Wetness Project, B. Am. Meteorol. Soc., 80, 851–878, 1999.
Fang, N., Yang, K., Lazhu, Chen, Y., Wang, J., and Zhu, L.: Research on the
Application of WRF-Lake Modeling at Nam Co Lake on the Qinghai-Tibetan
Plateau, Plateau Meteorology, 36, 610–618, 2017.
FAO: The Digitized Soil Map of the World Including Derived Soil Properties
(version 3.6), available at: http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116&currTab=distribution, last access: 01 November 2020), FAO, Rome, Italy, 2003.
FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.2), available at: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (last access: 1 November 2020), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012.
Farouki, O. T.: The Thermal-Properties of Soils in Cold Regions, Cold Reg.
Sci. Technol., 5, 67–75, 1981.
Gao, Y. H., Li, K., Chen, F., Jiang, Y. S., and Lu, C. G.: Assessing and
improving Noah-MP land model simulations for the central Tibetan Plateau,
J. Geophys. Rese.-Atmos., 120, 9258–9278, 2015.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017 (data available at: https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2&page=1, last access: 1 November 2020).
Gu, C., Huang, A., Wu, Y., Yang, B., Mu, X., Zhang, X., and Cai, S.: Effects
of Subgrid Terrain Radiative Forcing on the Ability of RegCM4.1 in the
Simulation of Summer Precipitation Over China, J. Geophys.
Res.-Atmos., 125, e2019JD032215, https://doi.org/10.1029/2019jd032215, 2020.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and
validation of lake surface temperature simulations with the coupled WRF-lake
model, Climatic Change, 129, 471–483, https://doi.org/10.1007/s10584-013-0978-y, 2015.
Guo, D. L. and Wang, H. J.: Simulation of permafrost and seasonally frozen
ground conditions on the Tibetan Plateau, 1981–2010, J. Geophys.
Res.-Atmos., 118, 5216–5230, https://doi.org/10.1002/jgrd.50457, 2013.
Guo, H.: Big Earth data: A new frontier in Earth and information sciences,
Big Earth Data, 1, 4–20, https://doi.org/10.1080/20964471.2017.1403062, 2017.
Han, C. B., Ma, Y. M., Su, Z. B., Chen, X. L., Zhang, L., Li, M. S., and
Sun, F. L.: Estimates of effective aerodynamic roughness length over
mountainous areas of the Tibetan Plateau, Q. J. Roy. Meteor. Soc., 141,
1457–1465, https://doi.org/10.1002/qj.2462, 2015.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Scientific Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
He, S. W., Nan, Z. T., and Hou, Y. T.: Accuracy evaluation of two
precipitation datasets over upper reach of Heihe River Basin, northwestern
China, available at: http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2015.00157 (last access: 1 November 2020), Sci. Cold Arid. Reg., 7, 157–169, 2015.
Henderson-Sellers, A., Yang, Z. L., and Dickinson, R. E.: The Project for
Intercomparison of Land-Surface Parameterization Schemes, B. Am. Meteorol. Soc.,
74, 1335–1349, 1993.
Henderson-Sellers, A., Pitman, A. J., Love, P. K., Irannejad, P., and Chen,
T. H.: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phase 2 and Phase 3, B. Am. Meteorol. Soc., 76, 489–503, 1995.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on
Automated Mapping, PLOS One, 9, e114788, https://doi.org/10.1371/journal.pone.0105992, 2014.
Huang, A., Lazhu, Wang, J., Dai, Y., Yang, K., Wei, N., Wen, L., Wu, Y.,
Zhu, X., Zhang, X., and Cai, S.: Evaluating and Improving the Performance of
Three 1-D Lake Models in a Large Deep Lake of the Central Tibetan Plateau,
J. Geophys. Res.-Atmos., 124, 3143–3167,
https://doi.org/10.1029/2018jd029610, 2019.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.
Jimenez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F.,
Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A.,
Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M.,
Rodell, M., Sheffield, J., Tu, K., and Wang, K.: Global intercomparison of
12 land surface heat flux estimates, J. Geophys.
Res.-Atmos., 116, D02102, https://doi.org/10.1029/2010jd014545, 2011.
Jing, W. L., Di, L. P., Zhao, X. D., Yao, L., Xia, X. L., Liu, Y. X., Yang,
J., Li, Y., and Zhou, C. H.: A data-driven approach to generate past
GRACE-like terrestrial water storage solution by calibrating the land
surface model simulations, Adv. Water Resour., 143, 103683,
https://doi.org/10.1016/j.advwatres.2020.103683, 2020.
Johansen, O.: Thermal conductivity of soils, PhD dissertation,
University of Trondheim, Trondheim, Norway, 236 pp., 1975.
Lazhu, Yang, K., Wang, J. B., Lei, Y. B., Chen, Y. Y., Zhu, L. P., Ding, B.
H., and Qin, J.: Quantifying evaporation and its decadal change for Lake Nam
Co, central Tibetan Plateau, J. Geophys. Res.-Atmos.,
121, 7578–7591, 2016.
Lee, W.-L., Liou, K. N., and Wang, C.-c.: Impact of 3-D topography on
surface radiation budget over the Tibetan Plateau, Theor. Appl.
Climatol., 113, 95–103, https://doi.org/10.1007/s00704-012-0767-y, 2013.
Lee, W.-L., Liou, K.-N., Wang, C.-c., Gu, Y., Hsu, H.-H., and Li, J.-L. F.:
Impact of 3-D Radiation-Topography Interactions on Surface Temperature and
Energy Budget Over the Tibetan Plateau in Winter, J. Geophys.
Res.-Atmos., 124, 1537–1549, https://doi.org/10.1029/2018jd029592, 2019.
Li, C., Lu, H., Leung, L. R., Yang, K., Li, H., Wang, W., Han, M., and Chen,
Y.: Improving Land Surface Temperature Simulation in CoLM Over the Tibetan
Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed
Clumping Index and Model-Simulated Leaf Area Index, J. Geophys.
Res.-Atmos., 124, 2620–2642, https://doi.org/10.1029/2018jd028640, 2019.
Li, C. W., Lu, H., Yang, K., Wright, J. S., Yu, L., Chen, Y. Y., Huang, X.
M., and Xu, S. M.: Evaluation of the Common Land Model (CoLM) from the
Perspective of Water and Energy Budget Simulation: Towards Inclusion in
CMIP6, Atmosphere-Basel, 8, 141, https://doi.org/10.3390/atmos8080141, 2017.
Li, C. W., Lu, H., Yang, K., Han, M. L., Wright, J. S., Chen, Y. Y., Yu, L.,
Xu, S. M., Huang, X. M., and Gong, W.: The Evaluation of SMAP Enhanced Soil
Moisture Products Using High-Resolution Model Simulations and In-Situ
Observations on the Tibetan Plateau, Remote Sens.-Basel, 10, 535, https://doi.org/10.3390/rs10040535, 2018.
Li, D., Yang, K., Tang, W. J., Li, X., Zhou, X., and Guo, D. L.:
Characterizing precipitation in high altitudes of the western Tibetan
plateau with a focus on major glacier areas, Int. J.
Climatol., 40, 5114–5127, https://doi.org/10.1002/joc.6509, 2020.
Li, J. D., Chen, F., Zhang, G., Barlage, M., Gan, Y. J., Xin, Y. F., and
Wang, C.: Impacts of Land Cover and Soil Texture Uncertainty on Land Model
Simulations Over the Central Tibetan Plateau, J. Adv. Model. Earth Sy., 10, 2121–2146, https://doi.org/10.1029/2018MS001377,
2018.
Li, Q. and Sun, S.: Development of the universal and simplified soil model
coupling heat and water transport, Sci. China Ser. D,
51, 88–102, https://doi.org/10.1007/s11430-007-0153-2, 2008.
Lin, C. G., Chen, D. L., Yang, K., and Ou, T. H.: Impact of model resolution
on simulating the water vapor transport through the central Himalayas:
implication for models' wet bias over the Tibetan Plateau, Clim. Dynam.,
51, 3195–3207, https://doi.org/10.1007/s00382-018-4074-x, 2018.
Liou, K. N., Lee, W.-L., and Hall, A.: Radiative transfer in mountains:
Application to the Tibetan Plateau, Geophys. Res. Lett., 34,
L23809, https://doi.org/10.1029/2007GL031762, 2007.
Liu, W., Sun, F., Li, Y., Zhang, G., Sang, Y.-F., Lim, W. H., Liu, J., Wang, H., and Bai, P.: Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets, Hydrol. Earth Syst. Sci., 22, 351–371, https://doi.org/10.5194/hess-22-351-2018, 2018.
Lu, H., Koike, T., Yang, K., Hu, Z. Y., Xu, X. D., Rasmy, M., Kuria, D., and
Tamagawa, K.: Improving land surface soil moisture and energy flux
simulations over the Tibetan plateau by the assimilation of the microwave
remote sensing data and the GCM output into a land surface model,
Int. J. Appl. Earth Obs., 17,
43–54, https://doi.org/10.1016/j.jag.2011.09.006, 2012.
Luo, Q., Yang, K., Chen, Y., and Zhou, X.: Method development for estimating
soil organic carbon content in an alpine region using soil moisture data,
Sci. China Earth Sci., 63, 591–601, https://doi.org/10.1007/s11430-019-9554-8, 2020.
Luo, S. Q., Fang, X. W., Lyu, S. H., Zhang, Y., and Chen, B. L.: Improving
CLM4.5 Simulations of Land-Atmosphere Exchange during Freeze-Thaw Processes
on the Tibetan Plateau, J. Meteorol. Res.-Prc., 31, 916–930, 2017.
Luo, S. Q., Chen, B. L., Lyu, S. H., Fang, X. W., Wang, J. Y., Meng, X. H.,
Shang, L. Y., Wang, S. Y., and Ma, D.: An improvement of soil temperature
simulations on the Tibetan Plateau, available at: http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2018.00080 (last access: 1 November 2020), Sci. Cold Arid. Reg., 10, 80–94, 2018.
Manabe, S.: Climate and Ocean Circulation: I. The Atmospheric Circulation and
Hydrology of the Earth's Surface, Mon. Weather Rev., 97, 739–774, https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2, 1969.
Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E.,
Peter, J., Levis, S., Swenson, S. C., Thornton, E., and Feddema, J.:
Technical description of version 4.0 of the Community Land model (CLM), The
National Center for Atmospheric Research (NCAR), 2010.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and
Wood, E. F.: Multisource Estimation of Long-Term Terrestrial Water Budget
for Major Global River Basins, J. Climate, 25, 3191–3206, 2012.
Pan, Y. J., Lyu, S. H., Li, S. S., Gao, Y. H., Meng, X. H., Ao, Y. H., and
Wang, S. J.: Simulating the role of gravel in freeze-thaw process on the
Qinghai-Tibet Plateau, Theor. Appl. Climatol., 127, 1011–1022, 2017.
Pinnington, E., Quaife, T., and Black, E.: Impact of remotely sensed soil moisture and precipitation on soil moisture prediction in a data assimilation system with the JULES land surface model, Hydrol. Earth Syst. Sci., 22, 2575–2588, https://doi.org/10.5194/hess-22-2575-2018, 2018.
Qi, W., Liu, J. G., and Chen, D. L.: Evaluations and Improvements of
GLDAS2.0 and GLDAS2.1 Forcing Data's Applicability for Basin Scale
Hydrological Simulations in the Tibetan Plateau, J. Geophys.
Res.-Atmos., 123, 13128–13148, https://doi.org/10.1029/2018jd029116, 2018.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom,
S., Chen, J. Y., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648, 2011.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004 (data available at: https://disc.gsfc.nasa.gov/datasets?page=1&keywords=GLDAS, last access: 1 November 2020).
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A Simple Biosphere
Model (Sib) for Use within General-Circulation Models, J. Atmos. Sci., 43,
505–531, 1986.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B.,
Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation,
J. Climate, 9, 676–705, 1996.
Shangguan, W., Dai, Y. J., Liu, B. Y., Ye, A. Z., and Yuan, H.: A soil
particle-size distribution dataset for regional land and climate modelling
in China, Geoderma, 171, 85–91, 2012.
Shangguan, W., Dai, Y. J., Liu, B. Y., Zhu, A. X., Duan, Q. Y., Wu, L. Z.,
Ji, D. Y., Ye, A. Z., Yuan, H., Zhang, Q., Chen, D. D., Chen, M., Chu, J.
T., Dou, Y. J., Guo, J. X., Li, H. Q., Li, J. J., Liang, L., Liang, X., Liu,
H. P., Liu, S. Y., Miao, C. Y., and Zhang, Y. Z.: A China data set of soil
properties for land surface modeling, J. Adv. Model. Earth Sy., 5, 212–224,
2013.
Shangguan, W., Dai, Y. J., Duan, Q. Y., Liu, B. Y., and Yuan, H.: A global
soil data set for earth system modeling, J. Adv. Model. Earth Sy., 6, 249–263,
2014.
Shangguan, W., Hengl, T., de Jesus, J. M., Yuan, H., and Dai, Y. J.: Mapping
the global depth to bedrock for land surface modeling, J. Adv. Model. Earth Sy.,
9, 65–88, https://doi.org/10.1002/2016MS000686, 2017 (data available at: http://globalchange.bnu.edu.cn/research/data, last access: 1 November 2020).
Su, D., Hu, X., Wen, L., Lyu, S., Gao, X., Zhao, L., Li, Z., Du, J., and Kirillin, G.: Numerical study on the response of the largest lake in China to climate change, Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, 2019.
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011.
Su, Z., de Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of
ECMWF's soil moisture analyses using observations on the Tibetan Plateau,
J. Geophys. Res.-Atmos., 118, 5304–5318,
https://doi.org/10.1002/jgrd.50468, 2013.
Sun, S., Yan, J., Xia, N., and Sun, C.: Development of a model for water and
heat exchange between the atmosphere and a water body, Adv.
Atmos. Sci., 24, 927–938, https://doi.org/10.1007/s00376-007-0927-7, 2007.
Sun, S. F., Jin, J. M., and Xue, Y. K.: A simple snow-atmosphere-soil
transfer model, J. Geophys. Res.-Atmos., 104,
19587–19597, https://doi.org/10.1029/1999jd900305, 1999.
Tong, K., Su, F. G., Yang, D. Q., and Hao, Z. C.: Evaluation of satellite
precipitation retrievals and their potential utilities in hydrologic
modeling over the Tibetan Plateau, J. Hydrol., 519, 423–437,
https://doi.org/10.1016/j.jhydrol.2014.07.044, 2014.
Wang, A. H. and Zeng, X. B.: Evaluation of multireanalysis products with in
situ observations over the Tibetan Plateau, J. Geophys.
Res.-Atmos., 117, D05102, https://doi.org/10.1029/2011JD016553, 2012.
Wang, A. H., Zeng, X. B., and Guo, D. L.: Estimates of Global Surface
Hydrology and Heat Fluxes from the Community Land Model (CLM4.5) with Four
Atmospheric Forcing Datasets, J. Hydrometeorol., 17, 2493–2510, 2016.
Wang, B., Ma, Y., Chen, X., Ma, W., Su, Z., and Menenti, M.: Observation and
simulation of lake-air heat and water transfer processes in a high-altitude
shallow lake on the Tibetan Plateau, J. Geophys.
Res.-Atmos., 120, 12327–12344, https://doi.org/10.1002/2015jd023863, 2015.
Wang, C. H. and Yang, K.: A New Scheme for Considering Soil Water-Heat
Transport Coupling Based on Community Land Model: Model Description and
Preliminary Validation, J. Adv. Model. Earth Sy., 10, 927–950, 2018.
Wang, L., Li, X. P., Chen, Y. Y., Yang, K., Chen, D. L., Zhou, J., Liu, W.
B., Qi, J., and Huang, J. B.: Validation of the global land data
assimilation system based on measurements of soil temperature profiles, Agr.
Forest Meteorol., 218, 288–297, 2016.
Wang, L., Zhou, J., Qi, J., Sun, L. T., Yang, K., Tian, L. D., Lin, Y. L.,
Liu, W. B., Shrestha, M., Xue, Y. K., Koike, T., Ma, Y. M., Li, X. P., Chen,
Y. Y., Chen, D. L., Piao, S. L., and Lu, H.: Development of a land surface
model with coupled snow and frozen soil physics, Water Resour. Res., 53,
5085–5103, 2017.
Wang, S., Liu, S. X., Mo, X. G., Peng, B., Qiu, J. X., Li, M. X., Liu, C.
M., Wang, Z. G., and Bauer-Gottwein, P.: Evaluation of Remotely Sensed
Precipitation and Its Performance for Streamflow Simulations in Basins of
the Southeast Tibetan Plateau, J. Hydrometeorol., 16, 2577–2594,
https://doi.org/10.1175/Jhm-D-14-0166.1, 2015.
Wang, W., Cui, W., Wang, X. J., and Chen, X.: Evaluation of GLDAS-1 and
GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly
Scale, J. Hydrometeorol., 17, 2815–2833, 2016.
Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li,
X., Zhao, L., Li, H., Che, T., and Moore, J. C.: Characterizing surface
albedo of shallow fresh snow and its importance for snow ablation on the
interior of the Tibetan Plateau, J. Hydrometeorol., 21, 815–827,
https://doi.org/10.1175/JHM-D-19-0193.1, 2020.
Wang, Y., Yang, K., Pan, Z. Y., Qin, J., Chen, D. L., Lin, C. G., Chen, Y.
Y., Lazhu, Tang, W. J., Han, M. L., Lu, N., and Wu, H.: Evaluation of
Precipitable Water Vapor from Four Satellite Products and Four Reanalysis
Datasets against GPS Measurements on the Southern Tibetan Plateau, J.
Climate, 30, 5699–5713, https://doi.org/10.1175/Jcli-D-16-0630.1, 2017.
Wang, Y., Yang, K., Zhou, X., Chen, D. L., Lu, H., Ouyang, L., Chen, Y. Y.,
Lazhu, and Wang, B. B.: Synergy of orographic drag parameterization and high
resolution greatly reduces biases of WRF-simulated precipitation in central
Himalaya, Clim. Dynam., 54, 1729–1740, 2020.
Wu, G., Duan, A., Liu, Y., Mao, J., Ren, R., Bao, Q., He, B., Liu, B., and
Hu, W.: Tibetan Plateau climate dynamics: recent research progress and
outlook, Natl. Sci. Rev., 2, 100–116, https://doi.org/10.1093/nsr/nwu045, 2015.
Wu, J. and Gao, X.-J.: A gridded daily observation dataset over China
region and comparison with the other datasets, available at: http://www.geophy.cn/EN/10.6038/cjg20130406 (last access: 1 November 2020), Chinese Journal of
Geophysics-Chinese Edition, 56, 1102–1111, 2013.
Xia, Y., Sheffield, J., Ek, M. B., Dong, J., Chaney, N., Wei, H., Meng, J.,
and Wood, E. F.: Evaluation of multi-model simulated soil moisture in
NLDAS-2, J. Hydrol., 512, 107–125, https://doi.org/10.1016/j.jhydrol.2014.02.027,
2014.
Xie, Z., Hu, Z., Gu, L., Sun, G., Du, Y., and Yan, X.: Meteorological
Forcing Datasets for Blowing Snow Modeling on the Tibetan Plateau:
Evaluation and Intercomparison, J. Hydrometeorol., 18, 2761–2780,
https://doi.org/10.1175/JHM-D-17-0075.1, 2017.
Xie, Z. H., Di, Z. H., Luo, Z. D., and Ma, Q.: A Quasi-Three-Dimensional
Variably Saturated Groundwater Flow Model for Climate Modeling, J.
Hydrometeorol., 13, 27–46, 2012.
Xie, Z. H., Liu, S., Zeng, Y. J., Gao, J. Q., Qin, P. H., Jia, B. H., Xie,
J. B., Liu, B., Li, R. C., Wang, Y., and Wang, L. H.: A High-Resolution Land
Model With Groundwater Lateral Flow, Water Use, and Soil Freeze-Thaw Front
Dynamics and its Applications in an Endorheic Basin, J. Geophys.
Res.-Atmos., 123, 7204–7222, https://doi.org/10.1029/2018JD028369, 2018.
Yang, F., Lu, H., Yang, K., He, J., Wang, W., Wright, J. S., Li, C., Han, M., and Li, Y.: Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China, Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, 2017.
Yang, K. and He J.: China meteorological forcing dataset (1979-2018), National Tibetan Plateau Data Center, https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yang, K., Koike, T., Ye, B. S., and Bastidas, L.: Inverse analysis of the
role of soil vertical heterogeneity in controlling surface soil state and
energy partition, J. Geophys. Res.-Atmos., 110, D08101, https://doi.org/10.1029/2004JD005500, 2005.
Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H. Z., Liu, S. M.,
Ma, Y. M., and Wang, J. M.: Turbulent flux transfer over bare-soil surfaces:
Characteristics and parameterization, J. Appl. Meteorol. Clim., 47, 276–290, 2008.
Yang, K., Chen, Y.-Y., and Qin, J.: Some practical notes on the land surface modeling in the Tibetan Plateau, Hydrol. Earth Syst. Sci., 13, 687–701, https://doi.org/10.5194/hess-13-687-2009, 2009.
Yang, K., Qin, J., Zhao, L., Chen, Y. Y., Tang, W. J., Han, M. L., Lazhu,
Chen, Z. Q., Lv, N., Ding, B. H., Wu, H., and Lin, C. G.: A Multiscale Soil Moisture and Freeze–Thaw Monitoring Network on the Third Pole, B. Am. Meteorol. Soc., 94, 1907–1916, https://doi.org/10.1175/bams-d-12-00203.1, 2013.
Yang, K., Zhu, L., Chen, Y. Y., Zhao, L., Qin, J., Lu, H., Tang, W. J., Han,
M. L., Ding, B. H., and Fang, N.: Land surface model calibration through
microwave data assimilation for improving soil moisture simulations, J. Hydrol., 533, 266–276, 2016.
Yang, K., Wang, C. H., and Li, S. Y.: Improved Simulation of Frozen-Thawing
Process in Land Surface Model (CLM4.5), J. Geophys.
Res.-Atmos., 123, 13238–13258, https://doi.org/10.1029/2017jd028260, 2018.
Yang, K., Chen, Y. Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng, D. H., and
Li, X.: Development of a daily soil moisture product for the period of
2002–2011 in Chinese Mainland, Sci. China Earth Sci., 63, 1113–1125,
https://doi.org/10.1007/s11430-019-9588-5, 2020.
Yao, T., Wu, F., Ding, L., Sun, J., Zhu, L., Piao, S. L., Deng, T., Ni, X.,
Zheng, H., and Ouyang, H.: Multispherical interactions and their effects on
the Tibetan Plateau's earth system: a review of the recent researches,
Natl. Sci. Rev., 2, 468–488, https://doi.org/10.1093/nsr/nwv070, 2015.
Yi, S., He, Y., Guo, X., Chen, J., Wu, Q., Qin, Y., and Ding, Y.: The physical properties of coarse-fragment soils and their effects on permafrost dynamics: a case study on the central Qinghai–Tibetan Plateau, The Cryosphere, 12, 3067–3083, https://doi.org/10.5194/tc-12-3067-2018, 2018.
Yuan, H., Dai, Y. J., Xiao, Z. Q., Ji, D. Y., and Shangguan, W.:
Reprocessing the MODIS Leaf Area Index products for land surface and climate
modelling, Remote Sens. Environ., 115, 1171–1187, 2011.
Yuan, X., Ji, P., Wang, L., Liang, X.-Z., Yang, K., Ye, A., Su, Z., and Wen,
J.: High-Resolution Land Surface Modeling of Hydrological Changes Over the
Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and
Evaluation, J. Adv. Model. Earth Sy., 10, 2806–2828, https://doi.org/10.1029/2018ms001412, 2018.
Zeng, Y., Xie, Z., Yu, Y., Liu, S., Wang, L., Jia, B., Qin, P., and Chen, Y.: Ecohydrological effects of stream–aquifer water interaction: a case study of the Heihe River basin, northwestern China, Hydrol. Earth Syst. Sci., 20, 2333–2352, https://doi.org/10.5194/hess-20-2333-2016, 2016.
Zeng, Y. J., Xie, Z. H., Yu, Y., Liu, S., Wang, L. Y., Zou, J., Qin, P. H.,
and Jia, B. H.: Effects of anthropogenic water regulation and groundwater
lateral flow on land processes, J. Adv. Model. Earth Sy., 8, 1106–1131, 2016.
Zhang, Q., Jin, J., Wang, X., Budy, P., Barrett, N., and Null, S. E.: Improving lake mixing process simulations in the Community Land Model by using K profile parameterization, Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, 2019.
Zhao, P., Xu, X., Chen, F., Guo, X., Zheng, X., Liu, L., Hong, Y., Li, Y.,
La, Z., Peng, H., Zhong, L., Ma, Y., Tang, S., Liu, Y., Liu, H., Li, Y.,
Zhang, Q., Hu, Z., Sun, J., Zhang, S., Dong, L., Zhang, H., Zhao, Y., Yan,
X., Xiao, A., Wan, W., Liu, Y., Chen, J., Liu, G., Zhaxi, Y., and Zhou, X.:
The third atmospheric scientific experiment for understanding the
Earth-atmosphere coupled system over the Tibetan Plateau and its effects, B.
Am. Meteorol. Soc., 99, 757–776, https://doi.org/10.1175/bams-d-16-0050.1, 2018.
Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J.,
Hoekstra, A. Y., and Chen, Y.: Augmentations to the Noah Model Physics for
Application to the Yellow River Source Area. Part I: Soil Water Flow, J.
Hydrometeorol., 16, 2659–2676, https://doi.org/10.1175/jhm-d-14-0198.1, 2015a.
Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J.,
Hoekstra, A. Y., and Chen, Y.: Augmentations to the Noah Model Physics for
Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes
and Soil Heat Transport, J. Hydrometeorol., 16, 2677–2694,
https://doi.org/10.1175/jhm-d-14-0199.1, 2015b.
Zheng, D., Van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A.
Y., and Wang, X.: Under-canopy turbulence and root water uptake of a Tibetan
meadow ecosystem modeled by Noah-MP, Water Resour. Res., 51, 5735–5755,
https://doi.org/10.1002/2015wr017115, 2015c.
Zheng, D., Van der Velde, R., Su, Z., Wen, J., and Wang, X.: Assessment of
Noah land surface model with various runoff parameterizations over a Tibetan
river, J. Geophys. Res.-Atmos., 122, 1488–1504,
https://doi.org/10.1002/2016jd025572, 2017a.
Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K.:
Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan
Meadow Ecosystem, J. Hydrometeorol., 18, 1749–1763, https://doi.org/10.1175/jhm-d-16-0199.1,
2017b.
Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K.:
Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan
rivers, J. Hydrol., 563, 382–394, https://doi.org/10.1016/j.jhydrol.2018.06.024,
2018.
Zheng, D. H., Van der Velde, R., Su, Z. B., Wen, J., Wang, X., Booij, M. J.,
Hoekstra, A. Y., Lv, S. H., Zhang, Y., and Ek, M. B.: Impacts of Noah model
physics on catchment-scale runoff simulations, J. Geophys.
Res.-Atmos., 121, 807–832, 2016.
Zhou, X., Yang, K., and Wang, Y.: Implementation of a turbulent orographic
form drag scheme in WRF and its application to the Tibetan Plateau, Clim.
Dynam., 50, 2443–2455, https://doi.org/10.1007/s00382-017-3677-y, 2018.
Zhou, X., Yang, K., Beljaars, A., Li, H., Lin, C., Huang, B., and Wang, Y.:
Dynamical impact of parameterized turbulent orographic form drag on the
simulation of winter precipitation over the western Tibetan Plateau, Clim.
Dynam., 53, 707–720, https://doi.org/10.1007/s00382-019-04628-0, 2019.
Zhu, S. G., Chen, H. S., Zhang, X. X., Wei, N., Wei, S. G., Yuan, H., Zhang,
S. P., Wang, L. L., Zhou, L. H., and Dai, Y. J.: Incorporating root
hydraulic redistribution and compensatory water uptake in the Common Land
Model: Effects on site level and global land modeling, J. Geophys. Res.-Atmos., 122, 7308–7322, 2017.
Short summary
The Tibetan Plateau (TP), known as the Asian water tower, plays an important role in the regional climate system, while the land surface process is a key component through which the TP impacts the water and energy cycles. In this paper, we reviewed the progress achieved in the last decade in understanding and modeling the land surface processes on the TP. Based on this review, perspectives on the further improvement of land surface modelling on the TP are also provided.
The Tibetan Plateau (TP), known as the Asian water tower, plays an important role in the...