Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4793-2020
https://doi.org/10.5194/hess-24-4793-2020
Research article
 | 
12 Oct 2020
Research article |  | 12 Oct 2020

Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case

Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen

Related authors

Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
Concetta Di Mauro​​​​​​​, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021,https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
DERIVING EXCLUSION MAPS FROM C-BAND SAR TIME-SERIES: AN ADDITIONAL INFORMATION LAYER FOR SAR-BASED FLOOD EXTENT MAPPING
J. Zhao, M. Chini, R. Pelich, P. Matgen, R. Hostache, S. Cao, and W. Wagner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 395–400, https://doi.org/10.5194/isprs-annals-V-1-2020-395-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-395-2020, 2020
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019,https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Calibration of channel depth and friction parameters in the LISFLOOD-FP hydraulic model using medium-resolution SAR data and identifiability techniques
Melissa Wood, Renaud Hostache, Jeffrey Neal, Thorsten Wagener, Laura Giustarini, Marco Chini, Giovani Corato, Patrick Matgen, and Paul Bates
Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016,https://doi.org/10.5194/hess-20-4983-2016, 2016
Short summary
Modelling suspended-sediment propagation and related heavy metal contamination in floodplains: a parameter sensitivity analysis
R. Hostache, C. Hissler, P. Matgen, C. Guignard, and P. Bates
Hydrol. Earth Syst. Sci., 18, 3539–3551, https://doi.org/10.5194/hess-18-3539-2014,https://doi.org/10.5194/hess-18-3539-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
On the use of streamflow transformations for hydrological model calibration
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024,https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Simulation-based inference for parameter estimation of complex watershed simulators
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024,https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024,https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024,https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary

Cited articles

Al Bitar, A., Leroux, D., Kerr, Y. H., Merlin, O., Richaume, P., Sahoo, A., and Wood, E. F.: Evaluation of SMOS Soil Moisture Products Over Continental U.S. Using the SCAN/SNOTEL Network, IEEE T. Geosci. Remote, 50, 1572–1586, 2012. a
Al-Yaari, A., Wigneron, J.-P., Kerr, Y., Rodriguez-Fernandez, N., O'Neill, P., Jackson, T., Lannoy, G. D., Bitar, A. A., Mialon, A., Richaume, P., Walker, J., Mahmoodi, A., and Yueh, S.: Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets, Remote Sens. Environ., 193, 257–273, 2017. a
Andreadis, K. and Schumann, G.-P.: Estimating the impact of satellite observations on the predictability of large-scale hydraulic models, Adv. Water Resour., 73, 44–54, 2014. a
Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI Report RHO 7, Norrköping, Tech. rep., SMHI, 1976. a
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., and Hasenauer, S.: Improving runoff prediction through the assimilation of the ASCAT soil moisture product, Hydrol. Earth Syst. Sci., 14, 1881–1893, https://doi.org/10.5194/hess-14-1881-2010, 2010. a
Download
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.