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Abstract. The main objective of this study is to investigate
how brightness temperature observations from satellite mi-
crowave sensors may help to reduce errors and uncertainties
in soil moisture and evapotranspiration simulations with a
large-scale conceptual hydro-meteorological model. In ad-
dition, this study aims to investigate whether such a con-
ceptual modelling framework, relying on parameter calibra-
tion, can reach the performance level of more complex phys-
ically based models for soil moisture simulations at a large
scale. We use the ERA-Interim publicly available forcing
data set and couple the Community Microwave Emission
Modelling (CMEM) platform radiative transfer model with a
hydro-meteorological model to enable, therefore, soil mois-
ture, evapotranspiration and brightness temperature simula-
tions over the Murray—Darling basin in Australia. The hydro-
meteorological model is configured using recent develop-
ments in the SUPERFLEX framework, which enables tailor-
ing the model structure to the specific needs of the applica-
tion and to data availability and computational requirements.
The hydrological model is first calibrated using only a sam-
ple of the Soil Moisture and Ocean Salinity (SMOS) bright-
ness temperature observations (2010-2011). Next, SMOS
brightness temperature observations are sequentially assimi-

lated into the coupled SUPERFLEX-CMEM model (2010-
2015). For this experiment, a local ensemble transform
Kalman filter is used. Our empirical results show that the
SUPERFLEX-CMEM modelling chain is capable of pre-
dicting soil moisture at a performance level similar to that ob-
tained for the same study area and with a quasi-identical ex-
perimental set-up using the Community Land Model (CLM)
. This shows that a simple model, when calibrated using
globally and freely available Earth observation data, can
yield performance levels similar to those of a physically
based (uncalibrated) model. The correlation between simu-
lated and in situ observed soil moisture ranges from 0.62 to
0.72 for the surface and root zone soil moisture. The assimi-
lation of SMOS brightness temperature observations into the
SUPERFLEX-CMEM modelling chain improves the corre-
lation between predicted and in situ observed surface and
root zone soil moisture by 0.03 on average, showing im-
provements similar to those obtained using the CLM land
surface model. Moreover, at the same time the assimilation
improves the correlation between predicted and in situ ob-
served monthly evapotranspiration by 0.02 on average.
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1 Introduction

Motivated by the impact of climate change on the scarcity or
excess of water in many areas around the world, and follow-
ing the recommendations of the Sendai framework for dis-
aster risk reduction (UNISDR, 2015), several agencies and
research institutions have put substantial efforts into better
monitoring of and prediction of the hydrologic cycle at a
global scale. Such monitoring and prediction efforts are in-
deed necessary for assessing the risk of extreme hydrological
events and for enabling early warning (Revilla-Romero et al.,
2016), especially considering that impacts related to such hy-
drological extremes are expected to increase in the future due
to the combined effect of socioeconomic development and
climate change (Lehner et al., 2016).

Numerical models, such as hydrological and land sur-
face models, are central in the predicting and forecasting of
droughts (Rains et al., 2017) and in helping to better an-
ticipate disasters and the associated emergency responses
(Revilla-Romero et al., 2016). However, model simulations
suffer from inherent uncertainties (Liu and Gupta, 2007) due
to the simplified representation of physical processes and un-
certain forcing (Garcia-Pintado et al., 2015; Hostache et al.,
2011) and the lack of data for setting them up and controlling
them (Pappenberger et al., 2007; Hostache et al., 2015; Wood
et al., 2016). To reduce uncertainty in model simulations, an
advanced solution that has gained increased interest over the
last few decades is the integration of remote sensing data into
models (Andreadis and Schumann, 2014; Hostache et al.,
2018; De Lannoy and Reichle, 2016b). This approach pur-
sues an optimal combination of hydro-meteorological mod-
elling and remote sensing, for example by using satellite
measurements as forcing or calibration data and/or for reg-
ular updates of the model states or parameters (Moradkhani,
2007). This allows the periodic controlling and correcting of
the models via external observations. In forecasting mode,
such data assimilation approaches allow one to keep the pre-
dictions on track, while in hind-casting mode they enable im-
proved simulations of measured fluxes and states of the past.

Many advances have been made in these areas of research,
and spaceborne sensors are already providing a wealth of
Earth observation data with many applications in hydrology
(Brocca et al., 2012; De Lannoy and Reichle, 2016b). In
particular, satellite surface soil moisture (SM) estimates are
available at temporal and spatial resolutions compatible with
operational hydrology requirements, especially at the large
scale (De Lannoy and Reichle, 2016b). Although the assimi-
lation of in situ data is widely established in operational hy-
drology (Ercolani and Castelli, 2017), the assimilation of re-
motely sensed data sets, such as SM, is a more recent devel-
opment as this source of data has only become available over
the last few decades (e.g. Parada and Liang, 2004; De Lan-
noy et al., 2007; Jia et al., 2009; Matgen et al., 2012; Su et al.,
2013b; Chen et al., 2014; Mohanty et al., 2017).
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SM is a key variable in hydrological models. In many of
them, including Variable Infiltration Capacity (VIC; Liang
et al., 1994), Hydrologiska Byrans Vattenbalansavdelning
(HBV; Bergstrom, S., 1976), modele du Génie Rural & 4
parametres Journalier (GR4J, Perrin et al., 2003), etc., SM
controls the partitioning of water and energy fluxes. Hence,
improving its representation within a numerical model has
the potential to improve predictions of the key hydrological
variables. In this context, SM data derived from various satel-
lite missions, such as ASCAT (e.g. Brocca et al., 2010, 2012;
Dharssi et al., 2011; Draper et al., 2011) and AMSR-E (e.g.
Reichle et al., 2007; Yang et al., 2007; Draper et al., 2009),
have been assimilated into land surface or hydrological mod-
els (e.g. Draper et al., 2012; Renzullo et al., 2014).

Since November 2009, the passive Microwave Imaging
Radiometer with Aperture Synthesis (MIRAS) onboard the
Soil Moisture and Ocean Salinity (SMOS) satellite has been
observing the top-of-the-atmosphere brightness temperature
(Tb). The MIRAS sensor is sensitive to 1.4 GHz (L-band)
emissions and takes multi-angular measurements at vertical
and horizontal polarisations (Kerr et al., 2001). The algo-
rithm used for the retrieval of SM values from SMOS Tb
is based on numerical modelling (Kerr et al., 2012). In past
studies, SM estimates retrieved from SMOS Tb were mostly
assimilated into land surface models and sometimes into con-
ceptual hydrological models (Wanders et al., 2014; Lii et al.,
2016). However, the land surface model used for the SM re-
trieval and the model used for the background simulation
are often different, for example, in terms of process repre-
sentation, model structure and model forcing data sets (e.g.
air and soil temperature; De Lannoy and Reichle, 2016a). In
the event that the background simulation is carried out us-
ing a conceptual hydrological model, these differences may
be even more important, especially in terms of process rep-
resentation. This potentially results in inconsistencies in the
way SM is simulated by the model and retrieved from the ob-
servation. Moreover, De Lannoy and Reichle (2016b) argued
that this issue can lead to correlations between retrieved and
simulated SM errors that cannot be easily handled by data
assimilation filters. As a consequence, recent studies (e.g.
De Lannoy and Reichle, 2016a; Lievens et al., 2016; Rains
et al., 2017, 2018; Muiioz-Sabater et al., 2019) have aimed
to directly assimilate SMOS Tb into such land surface mod-
els. To do so, these studies used a radiative transfer model
(e.g. the Community Microwave Emission Modelling plat-
form —-CMEM; de Rosnay et al., 2009) as the observation
operator of the assimilation filter, allowing one to derive Tb
from SM simulations. In this context, De Lannoy and Reichle
(2016a) showed that assimilating either SM retrievals or ob-
served Tb yields almost the same correlation level between in
situ observed and simulated SM (average correlation equals
0.6 based on the records obtained from many measurement
sites distributed across the United States of America), and
Lievens et al. (2016) showed that the assimilation of SM re-
trievals slightly outperforms the assimilation of observed Tb.
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Currently, for applications at a large scale, there is a ten-
dency to rely on more complex physically based hydrological
models in order to better capture the hydrological processes
at hand (Devia et al., 2015). However, this may sometimes
be detrimental to large-scale operational hydrology, due to
the increased computational demand and the potential un-
availability of the required data sets for parameter estimation.
Faster models are key tools for carrying out simulations at a
large scale without requiring a high computational demand.
Faster models are therefore powerful for near-real-time fore-
casting applications and when large ensemble of model runs
are required. In this context, conceptual models that allow
for more efficient and rapid simulations offer an alternative
to more physically based land surface models (Devia et al.,
2015; El Hassan et al., 2013). The main argument against the
use of a conceptual model is often the need for site-specific
parameter calibration that is often infeasible in data-scarce
areas. However, with the recent increase in satellite missions
providing global observations of key hydrological variables
at high temporal and spatial resolutions, it becomes possible
to envisage the calibration of conceptual models — even at
a large scale. Hence, a science question that is worth inves-
tigating is whether a flexible conceptual model, relying on
parameter calibration, can reach the performance level of a
more complex physically based model for soil moisture sim-
ulations at large scales.

The SUPERFLEX modelling framework (Fenicia et al.,
2016) enables the tailoring of the model structure (i.e. adapt-
ing the model architecture via reorganising the constituting
reservoirs) for the specific needs of the application. In par-
ticular, here we seek a simplified representation of the main
controlling processes and computational efficiency in order
to perform rapid simulations over large areas and for long pe-
riods. Compared to more physically based land surface mod-
els, the model built with SUPERFLEX offers fast running
simulations without the need for high-performance comput-
ing facilities, and it allows one to adapt the model’s spatial
resolution and soil stratification to the characteristics of the
satellite data sets that are to be assimilated.

Following the study by Rains et al. (2017), we evaluate
here the potential of SMOS Tb assimilation for improving
SM simulations of this distributed conceptual hydrological
model. The general objective of this study is to assess the
performance of a soil moisture prediction chain based on
the assimilation of SMOS Tb into a coupled SUPERFLEX—
CMEM model. Moreover, we propose comparing it to the
one developed in Rains et al. (2017), based on the Com-
munity Land Model (CLM; Oleson et al., 2013). To enable
a fair and meaningful evaluation and comparison, we use a
quasi-identical experimental set-up to the one of Rains et al.
(2017), except that we use the SUPERFLEX instead of the
CLM model here to simulate soil moisture. As a test case, we
use the Murray—Darling basin in Australia, and we simulate
the distributed time series of soil moisture over the period
2010-2015.

https://doi.org/10.5194/hess-24-4793-2020

The specific objectives of this study are as follows: (i) to
compare the SUPERFLEX and CLM models in their ability
to simulate Tb and soil moisture, and (ii) to evaluate the im-
provement in model predictions when assimilating SMOS Tb
observations. It is worth mentioning that, here and in the re-
mainder of the paper, the term simulated Tb is used to name
Tb that is derived from the simulated soil moisture using the
radiative transfer model parameterised to emulate SMOS ob-
servations. The simulated Tb is therefore meant to emulate
SMOS observation based on simulated soil moisture. As an
additional objective, we also propose evaluating how the as-
similation of SMOS Tb can help to improve evapotranspira-
tion predictions.

In the next sections, we first present the database used for
the experiment, the coupling between the hydrological (SU-
PERFLEX) and the radiative transfer (CMEM) models and
the data assimilation experiment. Next, we calibrate the hy-
drological model using SMOS Tb observations, we evalu-
ate the forward run of the SUPERFLEX—-CMEM prediction
chain and we compare the performances with the ones ob-
tained in Rains et al. (2017). Then, we assess and discuss
the results of the assimilation experiment, using the study by
Rains et al. (2017) as a benchmark. As a further discussion
element, we finally evaluate the impact of the assimilation of
SMOS Tb on evapotranspiration simulations.

2 Material and method
2.1 Study area and available data
2.1.1 Study area

The study area is the Murray—Darling basin (MDB) in south-
eastern Australia. The three main rivers of the MDB, namely
the rivers Darling, Murray and Murrumbidgee are among
the longest rivers in Australia. The MDB covers an area
of 1.06 x 10° km?, representing approximately 14 % of the
land surface of Australia. Due to its large dimensions, the
basin exhibits various climate regimes, from subtropical in
the north and semi-arid in the west to mostly temperate in
the south. The average interannual rainfall ranges from up
to 1500 mm in the eastern side to less than 300 mm in the
western side of the MDB (MDBA, 2018). The average inter-
annual temperature ranges between ca. 10°C in southeast-
ern side and ca. 20 °C in western side of the MDB (MDBA,
2018).

2.1.2 Meteorological forcings

Time series of rainfall and 2 m air and soil temperature pre-
dictions are globally available at a 3h time step and 0.25°
spatial resolution (downscaling from the original 0.75° spa-
tial resolution) from the ERA-Interim reanalysis data set
(Dee et al., 2011). It would have been possible to use the
more recent and accurate ERAS data set as well, but we de-
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Figure 1. Study area: the Murray—Darling, Murray, Darling and Murrumbidgee basins, river stream courses and in situ soil moisture mea-

surement locations.

cided here to use ERA-Interim as it was also used in Rains
et al. (2017). From this data set, for each grid cell lying
within the limits of the MDB, we extracted rainfall and soil
and 2 m air temperature for the period 2009-2016. Soil tem-
perature was extracted for the two upper soil layers, hav-
ing depths of 7 and 21 cm respectively. Next, the resulting
time series were uniformly redistributed to an hourly time
step. For the accumulated variable (i.e. rainfall), the pre-
dicted amount was redistributed uniformly from a 6 h accu-
mulation to a 1 h accumulation in order to keep water bal-
ance. For the other variables (i.e. air and soil temperature),
the value was imposed to be constant over 6 h and equal to the
ERA-Interim predicted value. The potential evapotranspira-
tion (Ep) was estimated from the air temperature data using
the Hamon formula (Hamon, 1963). Rainfall and Ep time
series are used as inputs of the SUPERFLEX hydrological
model (see Sect. 2.2.1). Soil and air temperature time series
are used as inputs of the CMEM radiative transfer models
(see Sect. 2.2.2)

2.1.3 SMOS Tb observations

The SMOS database used in this study is identical to the
one used in the study by Rains et al. (2017). It covers the
period 2010-2015 and consists of SMOS Level 3 daily Tb
at a horizontal polarisation and 42.5° incidence angle. The
data are provided by the Centre Aval de Traitement des Don-
nées SMOS (CATDS; version 310). SMOS acquisitions with
probabilities of radio frequency interference (RFI) greater
than 0.2, a data quality index higher than 0.07 or acti-
vated science flags, namely strong topography, snow, flood-
ing, urban areas, coastal zone and precipitation were filtered
out from the initial database. The filtered observation data
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were resampled from the Equal-Area Scalable Earth Grid 2
(EASE2) 25 km grid to a 0.25° model grid aligned with that
of the ERA-Interim data set by using inverse distance inter-
polation.

2.1.4 In situ soil moisture observations

As an independent data set for evaluating the model re-
sults, we make use of in situ soil moisture measurements
from the OzNet and CosmOz measurement networks (Smith
etal., 2012). These data sets provide time series of soil mois-
ture acquired using, respectively, time domain reflectometry
(TDR) probes and cosmic-ray neutron probes. Depending
on the type of probe, soil moisture observations are avail-
able for various soil depths, namely 5, 8, 30, 60 and 90 cm.
The measurement stations are mainly located within the Mur-
rumbidgee catchment as the latter was selected as one of the
sites for SMOS calibration and validation campaigns (Peis-
chl et al., 2012; Holgate et al., 2016; Su et al., 2013a). More
details on the measurement techniques and the measurement
network can be also found in other studies of Australia and
the MDB (e.g. Holgate et al., 2016; Su et al., 2013a). It is
worth mentioning that the in situ soil moisture data set is
provided with local or limited measurement footprints (a few
hundreds of square metres at maximum), whereas the hy-
drological model simulates average soil moisture over much
larger areas (a few hundreds of square kilometres). As a con-
sequence, the comparison between the model results and in
situ observations necessarily suffers from scale representa-
tiveness issues.

https://doi.org/10.5194/hess-24-4793-2020
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2.1.5 In situ flux tower measurements

As an additional independent data set for evaluating the
model results, we also make use of in situ flux tower mea-
surements from the TERN OzFlux measurement network
(http://www.ozflux.org.au/, last access: 1 August 2019). This
data set provides, among other variables, a time series of la-
tent heat fluxes that were converted into actual evapotran-
spiration rates using the latent heat of vaporisation constant.
The measurement stations are mainly located in the southern
part of the MDB. Moreover, the in situ evaporation data, just
like the previously described soil moisture data, are provided
with local or limited measurement footprints.

2.2 The soil moisture and Tb prediction chain
2.2.1 The conceptual hydrological model

The SUPERFLEX modelling framework (hereafter denoted
as SFX; Fenicia et al., 2011, 2016) is used to build the
hydrological model. This modelling framework was devel-
oped with the aim to facilitate model development and al-
low model structure comparisons. The modelling platform is
based on generic building components that can be configured
and combined in various ways to generate different model
architectures. Hydrologists can therefore hypothesise, build
and test different model structures. For example, it allows
adaptation of the model structure to the forcing and observa-
tion data sets (e.g. in terms of spatial and vertical resolutions)
and specific characteristics of the catchment. In the context
of this study, we take advantage of this flexibility and de-
fine the model architecture in such a way that it allows us to
easily ingest globally available meteorological forcing data
and, at the same time, integrate Tb as observed by the SMOS
satellite. The model is therefore distributed over grid cells of
0.25° aligned on the grid used in the ERA-Interim data set,
and simulations are carried out at an hourly time step.

The architecture of the developed model is represented in
Fig. 2 for one model grid cell. It is mainly composed of two
stratified upper root zone layers represented by two reser-
voirs, namely URu and URI. The grey box in Fig. 2 also
identifies the deeper reservoirs and the routing function that
simulates subsurface and surface runoff based on deeper soil
layer water storage. In SFX, the deeper reservoirs are typi-
cally two interconnected fast and slow reservoirs with asso-
ciated lag functions whose outflows are summed up to com-
pute the surface runoff (Fenicia et al., 2016). In this study,
since we focus on the two upper root zone layers that are of
interest for the simulation of soil moisture, the deeper reser-
voirs and the routing function are switched off and not further
referred to in the remainder. It is worth mentioning that the
removal of the deeper reservoirs of SFX has no effect on the
soil moisture simulations as in SFX there is no upward water
circulation from the deeper reservoirs to the upper ones. As a
matter of fact, when deeper reservoirs are switched off, wa-
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ter exits root zone soil layers based on the usual percolation
and/or subsurface flow equations (e.g. Eq. 1). The soil mois-
ture simulations within both root zone reservoirs are there-
fore not impacted.

The upper reservoir (URu) is fed by precipitation and loses
water through evapotranspiration to the atmosphere and per-
colation to the second reservoir (UR/). The latter is then fed
by the incoming percolation from the first reservoir and loses
water through evapotranspiration to the atmosphere and per-
colation to deeper soil. Outflow Q from the two root zone
layers is estimated based on the simulated storage S and the
incoming water amount, using a power function with expo-
nent « as follows:

. QURx,i
SURx,t (t) ) ’ (1)

SmaxURx R

QURx,i (t) = Pury,i (t) x (

where ¢ is time, i represents the model grid cell number, x
stands for upper (u) or lower (/) reservoir, Pyry,; is the in-
put to the reservoir (precipitation for the upper reservoir and
outflow from the upper reservoir for the lower reservoir) and
Smax is a parameter representing maximum storage capacity.
The actual evapotranspiration (Ea) from the two soil
layers is estimated based on the simulated storage within
the considered reservoir and the potential evapotranspiration
(Ep), using a power function with exponent 8 as follows:

SuURx,i (1) )ﬂUR"’i
SmaxURu’,- + SmaxUR[’,- '

2

The variation of storage within the two reservoirs is esti-
mated by solving the water balance equation as follows:

dSury,i (1)
dr

For each reservoir, the soil moisture is derived from the stor-
age according to the following:

Eayry,i(t) = Ep;(t) X <

= Pyrx,i(t) — QuRx,i (t) — Eaury,i (1). 3)

SURx,i (F)
SmaxURx,i ’

OURx,i (1) = CEFx,i “)
where 6 is the predicted soil moisture, and Cgr is a so-called
effective field capacity.

In the model architecture, the two root zone reservoirs
are meant to conceptually represent two stratified soil lay-
ers, allowing us to simulate soil moisture over different soil
depths. To maintain constant depths of these two layers over
the model domain (namely 7 and 21 cm in accordance with
the depth of the two upper soil layers depicted in the ERA-
Interim data set) the respective reservoir maximum capac-
ities are computed depending on the Cgf, considering that
the maximum storage capacity of a soil layer can be derived
from the Cgr and the soil layer depth d according to the fol-
lowing:

Smaxyrx,i = CEFx,i X dEFx. )
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Figure 2. SUPERFLEX (SFX) model architecture.

It is worth noting here that the model structure presented
before is replicated on each model grid cell i. As a matter
of fact, the distributed SFX implemented in this study does
not simulate lateral flows within the root zone soil layers.
As a consequence, for each grid cell, the model has six cal-
ibration parameters, namely Cgfy,i, ®URu,i> BURu.i» CEFLi,
ayry,; and Byur;,;. Moreover, the maximum storage capaci-
ties Smaxyry,; are computed based on fixed soil layer depths
drryx and calibrated effective field capacities Cgpy,;.

From the SFX model description, it appears that this con-
ceptual model is much simpler than CLM, in particular for
the following reasons:

— CLM estimates latent heat fluxes between soil and at-
mosphere based on aerodynamic diffusion equation and
the Monin—Obukhov similarity theory (Oleson et al.,
2013), and by taking into account much informa-
tion such as soil and vegetation type, surface rough-
ness, atmospheric stability and the vegetation coverage,
whereas SFX lumps the energy balance contribution to
the water balance via a simpler potential evapotranspi-
ration formula, namely the Hamon formula.

— In this study, SFX is structured with two soil layers (re-
spectively 0—7 cm and 7-21 cm), whereas CLM consid-
ers five layers for the same soil depth range.

— The set-up of CLM therefore requires much more in-
put data (e.g. soil types and land use), and SFX has a
limited number of parameters (six parameters per cell)
compared to CLM (potentially tens of parameters per
cell, Hou et al., 2012).

It is worth noting here that this list is not exhaustive, and
that many other processes are further simplified in SFX com-
pared to CLM. A detailed presentation of CLM is available
in Oleson et al. (2013). Table 1 reports the main processes
represented in our implementation of SFX and in the CLM
set-up of (Rains et al., 2017).

Hydrol. Earth Syst. Sci., 24, 4793-4812, 2020

2.2.2 The radiative transfer model

To simulate Tb using soil moisture predictions of the SFX
hydrological model, we use the Community Microwave
Emission Model version 5.1 (CMEM; de Rosnay et al.,
2009). The parameterisation of CMEM and most of the forc-
ings (except SM and soil temperature) are identical to the
ones used in the study of Rains et al. (2017), in order to en-
able a meaningful comparison between both experiments. In
particular, the time invariant input data (i.e. soil sand and clay
fractions, permanent water surface fractions, ground eleva-
tion and vegetation cover types) and the equations used to run
CMEM are exactly the same. The ECOCLIMAP vegetation
classes (Champeaux et al., 2005) are used to providle CMEM
with the plant functional types. The development cycle of
vegetation classes is defined in CMEM based on the leaf area
index (LAI; Rains et al., 2017). LAl is interpolated at a daily
scale from a monthly data set for low vegetation, and a con-
stant LAI value is fixed for high vegetation. The dielectric
constant computation is carried out using the Mironov model
(Mironov et al., 2004), and the required effective tempera-
ture is computed via the Wigneron model (Wigneron et al.,
2001). The Fresnel, Choudhury (Choudhury et al., 1979) and
Wigneron (Wigneron et al., 2007) models are used to as-
sess smooth surface emissivity, soil roughness and vegeta-
tion opacity, respectively. Atmospheric contributions are es-
timated via the Pellarin method (Pellarin et al., 2003). How-
ever, the soil layer depths in CMEM are identical to the ones
used in the SFX model, and the soil moisture simulated by
SFX is used as an input of CMEM. Moreover, as SFX does
not integrate energy balance processes (while CLM does),
the soil temperature in our experiment is derived from the
ERA-Interim data set.

2.2.3 Model calibration

On each grid cell, the SFX model has six calibration param-
eters (see Sect. 2.2.1). To carry out the calibration, Monte

https://doi.org/10.5194/hess-24-4793-2020
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Table 1. Main processes implemented in the CLM- and SFX-based studies.

Main processes CLM

SFX

Radiative fluxes

Solar and long-wave radiations

Evaporation and Ground latent heat flux

transpiration Vegetation latent heat flux

Lumped evapotranspiration (Hamon formula)

(Monin—Obukhov similarity)

Subsurface vertical flow

Across 10 soil layers (adapted Richards equation)

Across two soil layers (power law dynamics)

Subsurface lateral flow

Only in the saturated groundwater -

Carlo simulations, using Latin hypercube sampling within
plausible parameter ranges, are carried out. To do so, param-
eter sets are first randomly generated within such plausible
parameter ranges. Next, a SFX—CMEM simulation is carried
out for each individual parameter set, and the simulated Tb
is compared, at the grid cell scale, to the values derived from
SMOS observations. Eventually, for each individual model
grid cell, the parameter set yielding the lowest unbiased root
mean square deviation (ubRMSD; Entekhabi et al., 2010, see
Eq. 6) while comparing simulated and SMOS-derived Tb is
selected as optimal. The ubRMSD is chosen here has it al-
lows one to remove the bias between simulated and observed
soil moisture (and Tb) which is common in brightness tem-
perature assimilation studies.

ubRMSD = \/<((ys(t) —(y%),) — (o) — (y°),))2>t, (6)

where y® is the simulated Tb and y° the observed one, and
(.); indicates the average over time. The parameters of the
CMEM model were not adjusted, and their default values
were used to keep the current experiment quasi-identical to
the one of Rains et al. (2017).

2.3 Data assimilation
2.3.1 Data assimilation filter

In this section, we present the method used to assimi-
late SMOS Tb into the SFEX—-CMEM coupled models. The
method proposed in this study uses a local ensemble trans-
form Kalman filter (LETKF) introduced by Hunt et al. (2007)
and implemented by Miyoshi and Yamane (2007) as the as-
similation filter. As usual in ensemble Kalman filtering, the
uncertainty in model predictions is represented via a set of
k stochastic model realisations (k = 32 in this experiment)
with different perturbed forcings and/or parameters, while
the model and observation errors are assumed to be normally
distributed. The localisation is set up so that the assimilation
is carried out at the model grid scale. The observation oper-
ator is linearly approximated during the analysis step in the
LETKF (see Eq. 18 in Hunt et al., 2007). As argued in Hunt
et al. (2007), LETKEF is deterministic as no additional ran-
dom error is added to the observation. Let us denote our non-
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linear model M, namely SFX, that propagates state variables
in time (including soil moisture 8) between two assimilation
time steps (Eq. 7) in the following:

Ny =M(xf;_1,j), %)

where x,t,", i is the background at time 7, when the assimilation
is supposed to be carried out for ensemble member number
J, and xZ‘_l’j is the analysis computed at time #,_1, i.e. the
previous assimilation time step.

The step prior to the assimilation is to run the hydrological
model between #,_ and ¢, to yield the background ensem-
ble. In our study, the application of the LETKF proposed by
Hunt et al. (2007) consists of the seven main steps listed here-
after (please note that the temporal index n is not repeated
later on for the sake of conciseness).

1. Apply the observation operator, namely CMEM, to the
model background ensemble to form the observational
background ensemble yb = [y}’, oo y,'?].

2. Compute the ensemble observational background per-
turbations, based on the ensemble mean y?, as follows:

YO =Dy — b op =0l

3. Compute the ensemble background perturbations, based

on ensemble mean x?, as follows:

XP = [x%)—xb, ...,x,tg—xb].

4. Compute the matrix P¢ =
-1
[(k—l)I—i-(Yb)TR_le] . where I is the iden-
tity matrix and R the observation error covariance

matrix.

. 12
5. Compute the matrix W? = [(k - l)Pa]

6. Compute  the  k-dimensional vector w?=
f’a(Yb)TR_l (»°—3"), and derive wY by adding
w*? to each column of W2,

7. Compute the individual member analysis x';? =x°+
XPwd
i
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This process is repeated for each cell of the model domain
where a SMOS observation is available at time step 7,. Once
the analysis has been carried out, state variables, namely the
storage in the two soil layers of SFX (Sect. 2.3.1), are up-
dated, and the simulation is resumed until the next assimila-
tion time step.

As mentioned in many studies dealing with the assimila-
tion of satellite SM or Tb (e.g. Al Bitar et al., 2012; Mat-
gen et al., 2012; Rains et al., 2017; Al-Yaari et al., 2017),
bias removal prior to the assimilation is often a necessary
step. In our study, we reduce the bias between simulations
and observations by deriving model and observation anoma-
lies, following an identical approach to the one described in
Rains et al. (2017). Anomalies are defined as the difference
between the original Tb time series and their interannual cli-
matologies (time-averaged SMOS observation acquired in a
20d sliding window centred on the considered day of year).
The climatology is computed by, first, smoothing the Tb time
series using a 20 d moving average and, next, computing the
interannual average of the smoothed signal. The model back-
ground used in the assimilation filter is the simulated Tb
anomaly computed as the difference between the simulated
Tb and its climatology, computed as the climatology of the
ensemble mean of the open loop run. The data assimilation
is therefore carried out based on the simulated and observed
Tb anomalies.

2.3.2 Ensemble generation

To generate an ensemble of simulated Tb, the meteorolog-
ical forcings of the SFX—-CMEM models derived from the
ERA-Interim data set, namely the rainfall and the air and soil
temperature time series, are randomly perturbed. As in Rains
et al. (2017), the perturbation applied to rainfall time series
is multiplicative and randomly generated from a log-normal
statistical distribution of mean 0 and standard deviation 0.5.
The air temperature time series are perturbed using an addi-
tive Gaussian random noise of mean 0 K and standard devia-
tion 2.5 K. Each time step and each model grid cell has an in-
dependently drawn random perturbation. Moreover, to main-
tain a set-up similar to the one used in Rains et al. (2017),
where air temperature perturbations are propagated to the soil
temperature via the CLM model, perturbed soil temperature
predictions are here drawn from the perturbed air tempera-
ture. This is done in two steps. First, linear regressions are
carried out on each grid cell between the ERA-Interim pre-
dictions of air temperature and soil temperature (separately
for the two soil layers). Next, perturbed soil temperatures are
derived from the perturbed air temperatures based on the co-
efficients obtained from the linear regressions. This allows
us to maintain a certain level of consistency between per-
turbed air and soil temperatures for each ensemble member.
The main difference between our experiment and the one of
Rains et al. (2017) is that we do not perturb soil texture, as
this parameter of CLM does not apply to SFX. Table 2 re-
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ports the similarities and differences between the two quasi-
identical assimilation experiments.

2.4 Analyses used to evaluate the proposed soil
moisture prediction chain

The proposed modelling framework is evaluated and com-
pared to the one proposed in Rains et al. (2017), using a se-
ries of empirical tests as follows:

1. We assess the performance of the calibrated conceptual
SFX model by comparing, via the Pearson correlation
(referred to as p in the remainder), the ubRMSD (Eq. 6)
and the mean bias, the simulated and observed SMOS
Tb.

2. We compare the SFX-based model performance to the
one of the forward CLM model previously introduced
in Rains et al. (2017). To do so, we make use of the
root mean square deviation (RMSD) and the p together
with the Taylor diagrams computed based on the com-
parison between CLM (restrictively SFX) model simu-
lations and observations of Tb (SMOS observation) and
SM (in situ measurements).

3. We assess the effect of the assimilation of SMOS Tb
by comparing the open loop and the assimilation sim-
ulations of SM with in situ SM measurements via the
RMSD, the p, the ubRMSD, the assimilation efficiency
(Eq. 8) and Taylor diagrams, and we analyse the spa-
tial distribution of p improvement by mapping the p
changes between predictions and in situ measurements
of soil moisture at each stations.

4. We further evaluate the influence of the assimilation of
SMOS observations on the prediction of evapotranspi-
ration by comparing the open loop and the assimilation
simulation of evapotranspiration with in situ measure-
ments. This comparison is carried out graphically, via
Taylor diagrams and time series plots, and numerically,
via the percentage improvement (Eq. 9).

The assimilation efficiency is computed as follows:

— 3oy ) % 100, if SDan < SDoL ®

E(ty) = i
(B35 1) <100, if5Dsa > SDo.

wi, [SPoL@) = 1417 OoL (1) — Bons (1))
SDan(tn) = 341~ @an(1) — Bons (1)),

(1 SDA (1)

where E(t,) is the efficiency of the analysis at time step #,,
SDaj is the squared deviation of the analysis run, SDgp is the
squared deviation of the open loop run, Oops is the observed
soil moisture, 6, is the analysis soil moisture prediction and
OoL is the open loop soil moisture prediction. The efficiency
evaluates the squared deviation change as a result of the as-
similation. Positive values indicate an error reduction, while
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Table 2. Similarities and differences between the two quasi-identical assimilation experiments.

Experiment characteristics

CLM-based study

SFX-based study

Number of root zone soil layers Five

Two

Ensemble generation

Perturbed input rainfall
Perturbed input air temperature

Perturbed input rainfall
Perturbed input air temperature

Perturbed soil texture parameters —

Simulation time steps

Identical; 1 h

Model grid size

Identical; 0.25°

Source of model forcings

Identical; ERA-Interim

Radiative transfer model

Identical; CMEM using the same parameterisation

Assimilation filter

Identical; LETKF

Assimilated satellite observations

Identical; SMOS Tb

negative ones indicate that the squared deviation increased
after the analysis step.
The percentage improvement is computed as follows:

|EaoL(t) — Eaops(t)| — |Eaan(t) — Eaops(1)|

|EaoL(t) — Eaops(?)]
x 100, )]

1(t) =

where 7 is the time step, [ is the percentage improvement and
Eaoys, Eaor and Eaay, respectively, are the observed, back-
ground and analysis evapotranspiration. The positive (restric-
tively negative) percentage improvement values indicate that
absolute errors are reduced (restrictively increased) as a re-
sult of the assimilation of SMOS Tb.

3 Results and discussion

In this section, the performance of the conceptual SFX model
is assessed and compared to the one of the physically based
CLM land surface model by comparing the simulated and
observed time series of Tb and soil moisture.

3.1 Evaluation of the calibrated SFX hydrological
model

Figure 3 shows the p coefficient, the RMSD and the
mean bias maps obtained by comparing SFX-simulated and
SMOS-observed Tb time series, and Table 3 reports the as-
sociated spatial statistics during the calibration (2010-2011)
and the validation (2012-2015). The p values associated to p
coefficients are all below 0.01, lending, therefore, weight to
the significance of the p between simulated Tb and SMOS
Tb. From this figure and this table, the following results can
be noted:

1. The calibrated model yields rather satisfying predic-
tions of Tb. In addition, the obtained performances are
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comparable to those obtained in Rains et al. (2017). In
particular, in our study we have an average p of 0.7,
an average ubRMSD of 14.8 K and an average bias of
30.21 K during the validation period. In the study of
Rains et al. (2017) using CLM, the RMSD has an av-
erage value of 30K, and the average p has a value of
0.7.

2. The three performance metrics have rather similar val-
ues and spatial variability when computed during the
calibration and the validation periods, although slight
differences are visible in Table 3.

3. A general gradient in the performance of SFX can be
seen from the eastern to the western part of the basin,
whereas this gradient is not observed in the CLM.

4. The lowest performances are mainly exhibited on pixels
located in the Darling River floodplain (Fig. 1).

Results 1 and 2 lead us to conclude that model results are
satisfactory in view of previous applications. Result 3 can
be explained based on the fact that the hydrological regimes
vary from east to west in the MDB. Where the eastern part is
more dominated by rainfall, the western part receives limited
amounts of rainfall, and evapotranspiration plays a more im-
portant role in the hydrological cycle. Considering that in our
set-up, the representation of the evapotranspiration is rather
simplistic as it is based on the Hamon formula; this could
explain the poorer performance of the model in the west-
ern part of the basin. Indeed, the simplified representation of
the SFX model does not allow us to adequately capture the
evapotranspiration-induced controls of soil moisture, which
revealed a poorer performance of the model in the western
part of the basin. Result 4 can be explained considering the
input data used for running CMEM concerning the fraction
of the grid cell that is covered by surface water. This input is
considered invariant over time in our set-up, while in reality
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Figure 3. Performance and error metrics of SFX-simulated Tb using, as a reference, SMOS Tb. p coefficients (a, d), unbiased root mean
square deviations (ubRMSD; b, e) and mean biases (c, f) between SFX—CMEM predictions and SMOS observations of Tb during the

calibration (a—c) and the validation (d—f) periods.

an important number of lakes and ponds in the Darling River
floodplain are periodically drying out and filling up during
the year, potentially modifying the water fraction on the cor-
responding model grid cells.

3.2 Comparison of the performances of the
SUPERFLEX and CLM models

To compare the SFX-based model performance to the one of
the forward CLM model previously introduced in Rains et al.
(2017), we first make use of Taylor diagrams (Fig. 4). These
represent useful tools for evaluating and inter-comparing
model performances as they display, on a unique plot, three
key performance statistics, namely the normalised standard
deviation of model results, the RMSD and the p between
model predictions and observations. The normalisation of
the standard deviation and RMSD is carried out with respect
to observed time series statistics. The perfect model would
therefore be a point located in the black circle in Fig. 4, with
values of normalised SD, normalised RMSD and p equal to
1, 0 and 1, respectively.

Figure 4 assumes that the SMOS Tb observations are re-
liable and accurate. Figure 4a shows the spatially averaged
model statistics of both models during the calibration and the
validation periods. As can be seen, the performances of both
models are similar, with average p ranging between 0.62 and
0.72 during the calibration and validation periods. Whereas
SFX slightly outperforms CLM during the calibration period,
CLM exhibits relatively better p during the validation pe-

Hydrol. Earth Syst. Sci., 24, 4793-4812, 2020

riod. Overall, both models yield very similar levels of satis-
fying performances. The performances obtained here are also
rather similar to the ones showed in De Lannoy and Reichle
(2016a), with a p between in situ observed and simulated SM
of 0.6 on average over many stations located in the United
States of America. One can notice that both models have a
tendency to underestimate the observed variance of Tb as
normalised standard deviation values are lower than one. Our
interpretation is that the two models are unable to reproduce
the variance of SMOS observations, mainly due to some lim-
itations of the radiative transfer modelling (e.g. inaccurate es-
timates of surface roughness or vegetation optical depth). In-
deed, even with completely dry or wet soils, the simulated Tb
does not reach the extreme values of the SMOS Tb. Figure 4a
shows the model performance for each individual model grid
cell. The model statistics here are computed over the com-
plete simulation period (calibration and validation periods).
At the model grid cell scale, both model statistics cover a
rather wide range of performance levels. This highlights the
fact that both models, albeit yielding good overall levels of
performance, are less accurate for a few cells. Overall, the
performance metrics shown in Fig. 4 confirm that the two
models reach similar levels of performance.

Figure 5 shows the maps of difference in p and RMSD be-
tween both models and the map of average hourly rainfall and
Ep. Figure 5a highlights a gradient in the p values from west
to east; the SFX-predicted Tb is better correlated with SMOS
observations in the eastern part of the basin, where precipi-
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Table 3. Spatial statistics of simulated Tb performance metrics (computed using SMOS Tb as a reference). Note: Cal — calibration period;

Val — validation period.

Performance metric p (=) ubRMSD (K) Mean bias (K)

Spatial statistic Cal Val Cal Val Cal Val
Mean 0.65 0.70 14.75 148 3470  30.21
Median 0.65 0.69 15.31 14.86 3537  31.02
Mode 0.32 0.44 3.91 4.25 0.10 -—1.11
Skewness -0.14 -0.08 —-0.61 —-0.40 -0.01 0.75
Kurtosis 2.78 2.78 3.67 3.98 12.06 23.54

Tb - spatially averaged statistics

0 *  CLM(Cal)
02 .

’ SFX(Cal)

: ¢y CLM(Val)

s - SFX(Val)

0.7 i,

Standard deviation

0.4]
\o.o5

(a) *

Tb - model grid cells

Standard deviation

(b) °°

Figure 4. Taylor diagrams (TDs) based on the comparison between SMOS-observed and SFX- and CLM-simulated Tb, respectively. The
TD in panel (a) is drawn by spatially averaging model grid cell statistics, separating the calibration (Cal) and validation (Val) periods, and
the TD in panel (b) is drawn using model grid cell statistics individually for calibration and validation periods together. Red dots indicate

CLM statistics, and blue dots indicate SFX statistics.

tation is mainly controlling soil moisture dynamics (Fig. 5c),
and the CLM-predicted Tb is better correlated with SMOS
observation in the western part, where evapotranspiration has
a higher impact on soil moisture variations (Fig. 5d). This is
arguably explained by a better representation of the evapo-
transpiration process in CLM and a better capability of SFX
to simulate fast transfer of rainfall to deeper soil layers at
saturation. Figure 5a shows a generally higher deviation in
SFX-based predictions of Tb.

As SMOS observations likely suffer from significant un-
certainties, we propose evaluating the model results using in
situ observed soil moisture time series from a limited num-
ber of available measurement sites further (Fig. 1). In this
context, Fig. 6 shows the Taylor diagrams drawn from the
comparison between the time series of soil moisture observed
and simulated by both models for the thin upper soil layer
(Fig. 6a) and a deeper soil layer (Fig. 6b). For the thin upper
soil layer (0—-8 cm depth), the observations are directly com-
pared with the soil moisture simulations of the upper SFX
reservoir. For the deeper soil layer (030 cm depth), the ob-
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servations are compared with the average soil moisture pre-
dictions computed as the weighted mean, with the weighting
proportional to the maximum storage capacity of the upper
and lower SFX reservoirs (see Fig. 2). Both models exhibit
similar p values. For the upper soil layer, SFX is better in
capturing the observation variance. Regarding the RMSD,
CLM slightly outperforms SFX with sometimes lower val-
ues for the upper soil layer. For the deeper soil layer, both
models again yield similar performance levels with satisfy-
ing p values, with SFX slightly overperforming CLM.

As a conclusion on the comparison between the forward
run of both models, it can be highlighted that the two mod-
els finally reach similar performance levels when using ei-
ther observed SMOS Tb or in situ measured soil moisture as
a reference. It is also important to keep in mind that simi-
lar performance levels have been attained provided that the
SFX model was calibrated, whereas CLM was not calibrated
using SMOS data. We argue that, while a conceptual model
such as SFX requires a calibration effort because its param-
eter values cannot be set a priori, CLM is not supposed to
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Figure 5. Maps of differences in p (a) and RMSD (b) between CLM- and SFX-simulated Tb, using SMOS observation as a reference, and
maps of hourly averages of input rainfall (c) and potential evapotranspiration Ep (d).
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Figure 6. Taylor diagrams (TDs) drawn from the comparison between in situ observed and SFX-simulated soil moisture for two different
soil depths and the two different models. Blue dots indicate SFX statistics, and red dots indicate CLM statistics.

be calibrated as it is physically based, and its parameters
are usually derived from various input data describing, for
example, the characteristics of the catchment (Hou et al.,
2012). Moreover, one can argue that, because of a large num-
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ber of parameters, calibrating CLM using SMOS data would
not be an easy task especially due to the computational de-
mand (Karagiannis et al., 2019) over a large basin such as the
Murray—Darling. The calibration of many parameters would
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consequently lead to a widely reported equifinality issue. Of
course it is worth mentioning here that CLM performs satis-
factorily — even without any calibration.

3.3 Effect of the assimilation of SMOS Tb on the SFX
hydrological model

The data assimilation framework proposed in Sect. 2.3 is ap-
plied over the period 2010-2015. Each time a SMOS obser-
vation is available over a model grid cell, the assimilation
filter is applied on the background, and the soil water storage
variables of SFX are updated. We assimilated SMOS anoma-
lies, and in the error covariance of the SMOS observation
anomalies R is assumed constant and equal to 25K? (as in
Rains et al., 2017). Table 4 reports the spatially averaged per-
formance metrics of the open loop (i.e. without assimilation)
and the analysis SM simulations for two soil layer depths.
As some model grid cells include several soil moisture mea-
surement stations, with the objective of compensating for the
limited footprint, the average performance metrics in Table 4
are computed both over the individual soil moisture measure-
ment stations and over the cells where in situ observations
are available. In the second case, all soil moisture observa-
tions available in a given model grid cell are first averaged.
The performance metrics are next computed, using the “av-
eraged” observations as a reference. Eventually, the average
metrics are obtained by spatially averaging the model grid-
cell-based metrics. As can be seen in Table 4, the assimila-
tion allows for a moderate increase in p for the two soil layers
depicted in the model when comparing observed and simu-
lated soil moisture time series. Specifically, the p increases,
on average, by more than 0.03 for both soil layer depths.
These improvements are similar, although slightly lower than
those obtained in the study by Rains et al. (2017, experiments
DAZ2 and DAO), namely ca. 0.06 for upper layers and 0.03 for
deeper layers. One possible explanation for the slightly lower
improvements in p for the top layer can be found in the SFX
open loop performance already being higher (o = 0.77) than
that of CLM (p = 0.61). This arguably limits the room for
improvement as a result of the assimilation, as the SFX-based
open loop outperforms the one based on CLM. Moreover, the
fact that the SFX model was calibrated using SMOS Tb and
forced using the ERA-Interim data set can also explain the
fact that the improvement in the soil moisture predictions are
slightly lower than in other studies relying on uncalibrated
land surface models (e.g. Rains et al., 2017; De Lannoy and
Reichle, 2016a).

To assess the significance of the p improvement as a re-
sult of the assimilation, we carried out Williams’ significance
tests (Williams, 1959). The null hypothesis in this test is
that the p improvement is not significant. For the upper soil
layer the p values are lower than 0.01, except for two sta-
tions where p remains almost constant. For the deeper soil
layer the p values are lower than 0.01, except for three sta-
tions where p remains almost constant or slightly decreased.
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This shows that the p increase, as a result of the assimilation
of SMOS Tb, can arguably be considered significant for the
large majority of stations.

However, while p values increase due to the positive ef-
fect of the assimilation, one can notice in Table 4 that errors
(RMSD and ubRMSD) tend to remain rather stable. This in-
dicates that the assimilation improves p between model pre-
dictions and observations but fails to reduce average errors in
our experiment. This result is consistent with the findings of
Rains et al. (2017).

To evaluate the effect of the assimilation on individual
measurement points, Fig. 7 shows the Taylor diagrams ob-
tained from the comparison between model predictions and
in situ observations of soil moisture for two soil layer depths.
In this figure, the circles indicate the open loop run perfor-
mances, and the triangles indicate the assimilation run per-
formances. Each colour is assigned to an individual observa-
tion point. In Fig. 7 almost every individual observation point
exhibits a p improvement due to the assimilation, and this is
for both soil layers. More precisely, all p values increase for
the first layer, and all p values, except one, increase for the
second soil layer. The improvement is, however, rather differ-
ent from one point measurement to another. Moreover, Fig. 7
indicates that, in general, the lower the open loop run p, the
higher the improvement. This general feature is especially
visible for the deeper soil layer.

To analyse the spatial distribution of p improvement as
a result of the SMOS data assimilation, Fig. 8 maps the p
changes between the predictions and in situ measurements
of soil moisture at all stations and the temporal average of
assimilation SM increments (Fig. 8a—b), together with the
average annual rainfall and Ep, and the number of SMOS
records assimilated over in situ soil moisture measurement
sites (Fig. 8c—d). Figure 8a and b show local p improve-
ments and SM increments in the 8 and 30 cm top soil layer,
respectively. Figure 8c—d show the climate variability over
the Murrumbidgee catchment using, as a proxy, the average
annual rainfall and Ep (data provided by the Australian Bu-
reau of Meteorology) together with the number of SMOS
records assimilated over in situ soil moisture measurement
sites. In Fig. 8c, the same colour scale is used to indicate
the rainfall amount (map) and the number of SMOS obser-
vations assimilated at each measurement station (colour of
each point). The number of stations differs between Fig. 8a
and b as all stations do not measure soil moisture for all soil
depths. Figure 8c—d indicate all measurement stations. Espe-
cially for the first layer, one can notice a gradient from east
to west within the Murrumbidgee basin (where observation
sites are located). Figure 8c—d indicate that it is likely that
the gradient in p increase has its origin in climate variability,
but that it also depends on the number of SMOS observations
that are locally assimilated (Fig. 8c). In the western semi-arid
Murrumbidgee, soil moisture updates tend to have a longer
lasting effect on the performance because evapotranspiration
is the main soil-moisture-controlling process and because the
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Table 4. Time—space average values of background and analysis performance (comparison with in situ observed soil moisture).

Space averaging Layer depth p RMSD ubRMSD
Over measurement stations 8cm  Open loop 0.776 0.1 0.98
Analysis 0.801 0.1 0.98

30cm  Open loop 0.695 0.11 0.071

Analysis 0.727 0.11 0.072

Over model grid cells 8cm  Open loop 0.771 0.1 0.099
Analysis 0.803 0.1 0.1

30cm  Background 0.695 0.11 0.062

Analysis 0.726 0.11 0.064

Depth 8cm Depth 30cm
sa— 02 5 pnaysis Y, 2 e
1.9

Standard deviation

-
(=]

\o.os

--10.99

o 1

Standard deviation
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Figure 7. Taylor diagrams (TDs) drawn from the comparison between in situ observed and SFX-simulated (background and analysis) soil

moisture for the two different soil depths.

extraction of water from the soil due to evapotranspiration
takes much longer than soil recharge due to rainfall. More-
over, one can notice in Fig. 8a—b that p improvements are
higher in areas where the temporal average of the absolute
SM increments are higher and vice versa. This indicates that
the p is further improved when absolute SM increments tend
to be higher.

Overall, our experiment shows that the assimilation of
SMOS data into the SFX model allows for a substantial im-
provement in the p between model predictions and in situ
observations of soil moisture, with improvements similar to
those obtained in a very similar study by Rains et al. (2017)
using the CLM land surface model.

In Fig. 9, we plot the averaged efficiency as a function
of the open loop soil moisture prediction percentiles for two
soil depths to further investigate the effect of the assimila-
tion on soil moisture prediction errors. To do so, we first
compute, for each individual efficiency, the percentile of the

Hydrol. Earth Syst. Sci., 24, 4793-4812, 2020

synchronously obtained open loop soil moisture prediction,
and then we compute the average efficiency for each per-
centile of the open loop soil moisture predictions. Figure 9
shows that the errors in soil moisture prediction are mainly
reduced by the assimilation for the higher quantiles of soil
moisture, while they tend to increase for the lower quan-
tiles. For the upper layer, the assimilation is more efficient
for predicted soil moisture values higher than the median.
For the deeper layer, errors are reduced for quantiles higher
than 80 %. This indicates that the assimilation is more effi-
cient for high soil moisture states. A possible explanation for
this is that the assimilation reduces errors when the upper soil
layers are closer to saturation, mainly during rainfall events
when errors in ERA-Interim rainfall simulations are arguably
affected by larger errors. Although there is no absolute evi-
dence that errors are larger for larger rainfall events for the
Murray—Darling basin, this is something that was often re-
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Figure 8. Correlation improvement in soil moisture prediction in relation to assimilation absolute increment, climate variability and number
of assimilation events. (a, b) Maps of the improvement in soil moisture p and of the time average of absolute assimilation soil moisture
(SM) increments for the two root zone soil layers, and maps of the number of assimilated SMOS Tb observations at each soil moisture
measurement station (indicated via the dot colours) in relation to the interannual average rainfall map (c) and interannual average Ep map

(d). Note: Nb — number.

ported (for different areas of interest) in the literature as, for
example, in the study by Xu et al. (2019).

3.4 Effect of the assimilation on predicted
evapotranspiration

As evapotranspiration is also an important control in soil
moisture dynamics, we propose evaluating the influence of
the assimilation of SMOS observations on the monthly pre-
diction of evapotranspiration further. To do so, we compared
the open loop and analysis simulations of monthly evapo-
transpiration with in situ observations derived from the flux
towers (TERN OzFlux measurement network; http://www.
ozflux.org.au/). Evapotranspiration observations are derived
from monthly averaged flux tower measurements of latent
heat flux. The comparison between observations and simula-
tion results is carried out on the grid cells, including the flux
towers. The spatially averaged performance metrics yielded
by this comparison are reported in Table 5, which reveals
that the predictions of evapotranspiration are improved by
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Table 5. Time—space average values of background and analysis
performances of evapotranspiration predictions (comparison with
in situ observed evapotranspiration).

P RMSD  ubRMSD

() (mmh™Y  (mmh 1)

Background 0.46 0.057 0.034
Analysis 0.48 0.056 0.034

the assimilation of SMOS observations as the p with in situ
observations increased by 0.02, with a marginal reduction in
RMSD. To assess the significance of the p improvement as
a result of the assimilation, we carried out Williams’ signif-
icance tests (Williams, 1959). The corresponding p values
are all lower than 0.01, except for one station where the p
slightly decreases, indicating that the p increase as a result
of the assimilation of SMOS Tb can arguably be considered
significant for most of the stations.
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Figure 10 shows a Taylor diagram and a map of p improve-
ment for individual measurement stations and the temporal
average of evapotranspiration increments. The effect of the
assimilation on evapotranspiration is substantially positive
for one station, limited for three of them and slightly negative
for the last one. As for SM, one can notice in Fig. 10a that
the p is further improved when absolute evapotranspiration
increments tend to be higher. Figure 11 shows the percentage
improvement in simulated monthly evapotranspiration as a
results of SMOS Tb for each individual flux tower measure-
ment together with averaged monthly rainfall (simulated by
ERA-Interim).

In Fig. 11, the assimilation leads, from time to time, ei-
ther to an increase in or a reduction in the error in simu-
lated evapotranspiration. While the site with low annual pre-
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cipitation (ca. 250 mmyr~! at Calperum) exhibited a quasi-
systematic improvement, sites with medium annual precipi-
tation (between ca. 480 to 560 mmyr~! at Whroo, Riggs and
Yanco) exhibited more contrasting results. The wettest site
(ca. 720 mmyr~! at Tumbarumba) showed a very limited ef-
fect of the assimilation on the absolute error in simulated
evapotranspiration. This result is in agreement with other
studies (e.g. Detto et al., 2006; Vivoni et al., 2008; Mallick
et al., 2018) that showed that water limitations in arid and
semi-arid regions make evapotranspiration very sensitive to
soil moisture variations, thereby explaining the fact that the
assimilation of SMOS Tb is more efficient in reducing errors
of simulated evapotranspiration in water-limited regions of
the MDB.
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4 Conclusions

This study introduced and evaluated a large-scale SM mod-
elling chain that is based on and takes advantage of the as-
similation of SMOS Tb into a spatially distributed conceptual
hydrological model coupled with a radiative transfer model.
We assessed the performance of such a modelling chain and
its associated data assimilation system and compared it with
that of a quasi-identical set-up using the physically based
CLM land surface model (Rains et al., 2017). We evaluated,
therefore, whether a SM modelling chain, based on a con-
ceptual hydrological model, is able to reach the same perfor-
mance level as that of one based on a physically based model,
with the main advantage of a conceptual model being its sub-
stantially lower computational demand. Eventually, we also
evaluated how the assimilation of SMOS Tb can help to im-
prove evapotranspiration predictions.

The following key conclusions can be drawn from our ex-
periment:

1. A 6 year forward run of the SFX-based modelling chain
reaches performance levels similar to those obtained
with CLM both in terms of simulated Tb (comparison
with SMOS data) and SM (comparison with in situ ob-
servations). The average p values between simulated
and observed SMOS Tb range between 0.62 and 0.72
for both models. The local p values between simulated
and in situ observed SM range between 0.3 and 0.8 for
CLM and between 0.3 and 0.9 for SFX.
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2. The assimilation of SMOS Tb observations into the
SFX-based modelling chain increases the correlation
between simulated and in situ observed SM by ca. 0.03.

The improvement in correlation between simulated and
in situ observed SM as a result of the assimilation is
slightly lower in our study than that obtained in Rains
et al. (2017), but the correlation values are higher. As
a result of the assimilation, the average correlations
between simulated and in situ observed SM (top and
deeper root zone soil layers) range between 0.65 and
0.68 for CLM and between 0.73 and 0.8 for SFX.

The assimilation of SMOS Tb observations reduces er-
rors between simulated and in situ observed SM, espe-
cially for the highest SM values, while it tends to in-
crease them for lower SM values. For the upper layer,
errors are reduced for SM values higher than the me-
dian. For the deeper layer, errors are reduced for quan-
tiles higher than 80 %.

The assimilation of SMOS Tb observations increases
the correlation by 0.02 and marginally reduces errors
between simulated and in situ observed evapotranspira-
tion.

Overall, the study provides consistent empirical evidence
that the SM modelling chain based on a conceptual hydrolog-
ical model can reach, and at times exceed, the performance
levels of a modelling chain based on a more physically based
state-of-the-art land surface model. While our assimilation
experiment with SFX was carried out on a personal computer
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within a few hours, a high-performance computing cluster
(using two nodes of 12 cores) was necessary to run the Rains
et al. (2017) experiment over a few days. This shows the
added value of a computationally efficient conceptual model,
especially for applications where computational time is crit-
ical. Although the conceptual model needs to be calibrated,
our experiment shows that this calibration can be carried out
using only satellite data and therefore has the potential to be
applicable to all areas in which satellite data are reliable and
informative.
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