Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4353-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4353-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach
Brady A. Flinchum
CORRESPONDING AUTHOR
Commonwealth Scientific Industrial Research Organization (CSIRO), Deep Earth Imaging Future Science Platform & Land and Water, Urrbrae, 5064, Australia
Eddie Banks
National Centre for Groundwater Research and Training, College of
Science and Engineering, Flinders University, Adelaide, 5001, Australia
Michael Hatch
National Centre for Groundwater Research and Training, College of
Science and Engineering, Flinders University, Adelaide, 5001, Australia
Department of Geosciences, School of Physics, University of Adelaide, Adelaide, Australia
Okke Batelaan
National Centre for Groundwater Research and Training, College of
Science and Engineering, Flinders University, Adelaide, 5001, Australia
Luk J. M. Peeters
Commonwealth Scientific Industrial Research Organization (CSIRO), Deep Earth Imaging Future Science Platform & Land and Water, Urrbrae, 5064, Australia
Sylvain Pasquet
Université de Paris, Institut de physique du globe de Paris,
CNRS, 75005 Paris, France
Related authors
No articles found.
Zhechen Zhang, Huade Guan, Erik Veneklaas, Kamini Singha, and Okke Batelaan
Hydrol. Earth Syst. Sci., 29, 3975–3992, https://doi.org/10.5194/hess-29-3975-2025, https://doi.org/10.5194/hess-29-3975-2025, 2025
Short summary
Short summary
We developed a new method using sap-flow and water-potential data to estimate key plant water-use properties without destructive sampling. Testing on drooping sheoak showed that our approach captures seasonal changes in plant water transport and that these hydraulic properties have seasonal variation. This method could improve models predicting how vegetation responds to drought and climate change.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Cited articles
Abdulrazzak, M. J.: Losses of flood water from alluvial channels, Arid Soil Res. Rehab., 9, 15–24, https://doi.org/10.1080/15324989509385870, 1995.
Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N.,
Ginebreda, A., McGregor, G., Sabater, S., Tockner, K., and Palmer, M. A.: Why
Should We Care About Temporary Waterways?, Science, 343, 1080–1081,
https://doi.org/10.1126/science.1246666, 2014.
Allison, G. B., Cook, P. G., Barnett, S. R., Walker, G. R., Jolly, I. D., and
Hughes, M. W.: Land clearance and river salinisation in the western Murray
Basin, Australia, J. Hydrol., 119, 1–20, https://doi.org/10.1016/0022-1694(90)90030-2, 1990.
Anderson, T. A., Bestland, E. A., Wallis, I., and Guan, H. D.: Salinity
balance and historical flushing quantified in a high-rainfall catchment
(Mount Lofty Ranges, South Australia), Hydrogeol. J., 27, 1229–1244,
https://doi.org/10.1007/s10040-018-01916-7, 2019.
Auken, E., Pellerin, L., Christensen, N. B., and Sørensen, K.: A survey of
current trends in near-surface electrical and electromagnetic methods,
Geophysics, 71, G249–G260, https://doi.org/10.1190/1.2335575, 2006.
Auken, E., Christiansen, A. V., Kirkegaard, C., Fiandaca, G., Schamper, C.,
Behroozmand, A. A., Binley, A., Nielsen, E., Effersø, F., Christensen, N.
B., Sørensen, K., Foged, N., and Vignoli, G.: An overview of a highly
versatile forward and stable inverse algorithm for airborne, ground-based
and borehole electromagnetic and electric data, Explor. Geophys., 46, 223–235, https://doi.org/10.1071/EG13097, 2015.
Bachrach, R. and Nur, A.: High-resolution shallow-seismic experiments in sand, Part I: Water table, fluid flow, and saturation, Geophysics, 63, 1225–1233, https://doi.org/10.1190/1.1444423, 1998.
Bachrach, R., Dvorkin, J., and Nur, A.: Seismic velocities and Poisson's
ratio of shallow unconsolidated sands, Geophysics, 65, 559–564,
https://doi.org/10.1190/1.1444751, 2000.
Banks, E. W., Simmons, C. T., Love, A. J., Cranswick, R., Werner, A. D.,
Bestland, E. A., Wood, M., and Wilson, T.: Fractured bedrock and saprolite
hydrogeologic controls on groundwater/surface-water interaction: a
conceptual model (Australia), Hydrogeol. J., 17, 1969–1989,
https://doi.org/10.1007/s10040-009-0490-7, 2009.
Banks, E. W., Simmons, C. T., Love, A. J., and Shand, P.: Assessing spatial
and temporal connectivity between surface water and groundwater in a
regional catchment: Implications for regional scale water quantity and
quality, J. Hydrol., 404, 30–49, https://doi.org/10.1016/j.jhydrol.2011.04.017, 2011.
Batlle-Aguilar, J., Banks, E. W., Batelaan, O., Kipfer, R., Brennwald, M. S., and Cook, P. G.: Groundwater residence time and aquifer recharge in
multilayered, semi-confined and faulted aquifer systems using environmental
tracers, J. Hydrol., 546, 150–165, https://doi.org/10.1016/j.jhydrol.2016.12.036, 2017.
Behroozmand, A. A., Keating, K., and Auken, E.: A Review of the Principles
and Applications of the NMR Technique for Near-Surface Characterization,
Surv. Geophys., 36, 27–85, https://doi.org/10.1007/s10712-014-9304-0, 2015.
Berryman, J. G., Berge, P. A., and Bonner, B. P.: Estimating rock porosity
and fluid saturation using only seismic velocities, Geophysics, 67, 391–404, https://doi.org/10.1190/1.1468599, 2002.
Bertin, C. and Bourg, A. C. M.: Radon-222 and Chloride as Natural Tracers of the Infiltration of River Water into an Alluvial Aquifer in Which There Is Significant River/Groundwater Mixing, Environ. Sci. Technol., 28, 794–798, https://doi.org/10.1021/es00054a008, 1994.
Bloch, F.: Nuclear Induction, Phys. Rev., 70, 460–474,
https://doi.org/10.1103/PhysRev.70.460, 1946.
Bresciani, E., Cranswick, R. H., Banks, E. W., Batlle-Aguilar, J., Cook, P. G., and Batelaan, O.: Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers, Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, 2018.
Brownstein, K. R. and Tarr, C. E.: Importance of classical diffusion in NMR
studies of water in biological cells, Phys. Rev. A, 19, 2446–2453,
https://doi.org/10.1103/PhysRevA.19.2446, 1979.
Brunner, P., Simmons, C. T., and Cook, P. G.: Spatial and temporal aspects of
the transition from connection to disconnection between rivers, lakes and
groundwater, J. Hydrol., 376, 159–169, https://doi.org/10.1016/j.jhydrol.2009.07.023, 2009.
Carey, A. M. and Paige, G. B.: Ecological Site-Scale Hydrologic Response in
a Semiarid Rangeland Watershed, Rangeland Ecol. Manage., 69, 481–490,
https://doi.org/10.1016/j.rama.2016.06.007, 2016.
Chapman, T.: A comparison of algorithms for stream flow recession and
baseflow separation, Hydrol. Process., 13, 701–714,
https://doi.org/10.1002/(sici)1099-1085(19990415)13:5<701::aid-hyp774>3.0.co;2-2, 1999.
Claes, N., Paige, G. B., and Parsekian, A. D.: Uniform and lateral preferential flows under flood irrigation at field scale, Hydrol. Process., 33, 2131–2147, https://doi.org/10.1002/hyp.13461, 2019.
Coates, G. R., Xiao, L., and Prammer, M. G.: NMR logging principles and
applications, Halliburton Energy Services, United States, 1999.
Cohen, M. H. and Mendelson, K. S.: Nuclear magnetic relaxation and the internal geometry of sedimentary rocks, J. Appl. Phys., 53, 1127–1135, https://doi.org/10.1063/1.330526, 1982.
Cook, P. G., Solomon, D. K., Sanford, W. E., Busenberg, E., Plummer, L. N., and Poreda, R. J.: Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers, Water Resour. Res., 32, 1501–1509, https://doi.org/10.1029/96WR00354, 1996.
Crosbie, R. S., Peeters, L. J. M., Herron, N., McVicar, T. R., and Herr, A.:
Estimating groundwater recharge and its associated uncertainty: Use of
regression kriging and the chloride mass balance method, J. Hydrol., 561, 1063–1080, https://doi.org/10.1016/j.jhydrol.2017.08.003, 2018.
Cuthbert, M. O., Acworth, R. I., Andersen, M. S., Larsen, J. R., McCallum,
A. M., Rau, G. C., and Tellam, J. H.: Understanding and quantifying focused,
indirect groundwater recharge from ephemeral streams using water table
fluctuations, Water Resour. Res., 52, 827–840, https://doi.org/10.1002/2015WR017503, 2016.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019.
Dahan, O., Shani, Y., Enzel, Y., Yechieli, Y., and Yakirevich, A.: Direct
measurements of floodwater infiltration into shallow alluvial aquifers, J. Hydrol., 344, 157–170, https://doi.org/10.1016/j.jhydrol.2007.06.033, 2007.
Dahan, O., Tatarsky, B., Enzel, Y., Kulls, C., Seely, M., and Benito, G.:
Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid
Desert, Groundwater, 46, 450–461, https://doi.org/10.1111/j.1745-6584.2007.00414.x,
2008.
Department for Water: Northern Adelaide Plains PWA Groundwater Level and
Salinity Status Report 2009–2010, Government of South Australia, Adelaide,
South Australia, 2010.
Desper, D. B., Link, C. A., and Nelson, P. N.: Accurate water-table depth
estimation using seismic refraction in areas of rapidly varying subsurface
conditions, Near Surf. Geophys., 13, 455–467, https://doi.org/10.3997/1873-0604.2015039, 2015.
Dijkstra, E. W.: A note on two problems in connexion with graphs, Numer.
Math., 1, 269–271, https://doi.org/10.1007/BF01386390, 1959.
Dunn, K. J., Bergman, D. J., and LaTorraca, G. A.: Nuclear Magnetic
Resonance: Petrophysical and Logging Applications, Elsevier, Kidlington, Oxford, UK, 2002.
Dvorkin, J. and Nur, A.: Elasticity of high-porosity sandstones: Theory for
two North Sea data sets, Geophysics, 61, 1363–1370,
https://doi.org/10.1190/1.1444059, 1996.
Earman, S., Campbell, A. R., Phillips, F. M., and Newman, B. D.: Isotopic
exchange between snow and atmospheric water vapor: Estimation of the
snowmelt component of groundwater recharge in the southwestern United
States, J. Geophys. Res.-Atmos., 111, D09302, https://doi.org/10.1029/2005JD006470, 2006.
Flinchum, B.: Seismic Reflection Data in the North Adelaide Plains, v1. CSIRO, Data Collection, https://doi.org/10.25919/5dcc9dedd8a67, 2019.
Flinchum, B. A.: Transient Electromagnetic Data form the North Adelaide Plains, HydroShare, available at: http://www.hydroshare.org/resource/6a918b747dd64eeb9ae891d697f0e42d (last access: August 2020), 2020a.
Flinchum, B. A.: Downhole Nuclear Magnetic Resonance in the North Adelaide Plains, South Australia, HydroShare, available at: http://www.hydroshare.org/resource/6baf60ed02b84e488dfe8d0b8b0f7046 (last access: August 2020), 2020b.
Flinchum, B. A., Holbrook, W. S., Rempe, D., Moon, S., Riebe, C. S., Carr,
B. J., Hayes, J. L., Clair, J., and Peters, M. P.: Critical Zone Structure
Under a Granite Ridge Inferred From Drilling and Three-Dimensional Seismic
Refraction Data, J. Geophys. Res.-Earth, 123, 1317–1343, https://doi.org/10.1029/2017JF004280, 2018.
Genereux, D. P. and Hemond, H. F.: Naturally Occurring Radon 222 as a Tracer
for Streamflow Generation: Steady State Methodology and Field Example, Water Resour. Res., 3065–3075, https://doi.org/10.1029/WR026i012p03065, 2010.
Gleeson, T., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: Water
balance of global aquifers revealed by groundwater footprint, Nature, 488, 197–200, https://doi.org/10.1038/nature11295, 2012.
Gottschalk, I. P., Hermans, T., Knight, R., Caers, J., Cameron, D. A.,
Regnery, J., and McCray, J. E.: Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge
and recovery site, J. Hydrol., 555, 407–419, https://doi.org/10.1016/j.jhydrol.2017.10.028, 2017.
Goyder Institute for Water Research: Northern Adelaide Plains Water Stocktake Technical Report, Goyder Institute for Water Research, Adelaide, South Australia, 2016.
Gregory, A. R.: Fluid saturation effects on dynamic elastic properties of
sedimentary rocks, Geophysics, 41, 895–921, https://doi.org/10.1190/1.1440671, 1976.
Grunewald, E. and Knight, R.: Nonexponential decay of the surface-NMR signal
and implications for water content estimation, Geophysics, 77, EN1–EN9,
https://doi.org/10.1190/geo2011-0160.1, 2012.
Hashin, Z. and Shtrikman, S.: A variational approach to the theory of the
elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 127–140, https://doi.org/10.1016/0022-5096(63)90060-7, 1963.
Hatch, M., Batelaan, O., Banks, E., Flinchum, B., and Hancock, M.: Sustainable expansion of irrigated agriculture and horticulture in Northern
Adelaide Corridor: Task 4 – assessment of depth to groundwater (proof of
concept), Technical Report Series, Goyder Institue for Water Research blackbox[CE]Please provide location of issuing organisation., 2019.
He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., and Wysocki, D. A.:
Evaluation of 1:5 soil to water extract electrical conductivity methods,
Geoderma, 185–186, 12–17, https://doi.org/10.1016/j.geoderma.2012.03.022, 2012.
Hoehn, E. and Gunten, H. R. V.: Radon in groundwater: A tool to assess
infiltration from surface waters to aquifers, Water Resour. Res., 25, 1795–1803, https://doi.org/10.1029/WR025i008p01795, 1989.
Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., and
Elwaseif, M.: Monitoring groundwater-surface water interaction using
time-series and time-frequency analysis of transient three-dimensional
electrical resistivity changes, Water Resour. Res., 48, W07506,
https://doi.org/10.1029/2012wr011893, 2012.
Kotikian, M., Parsekian, A. D., Paige, G., and Carey, A.: Observing
Heterogeneous Unsaturated Flow at the Hillslope Scale Using Time-Lapse
Electrical Resistivity Tomography, Vadose Zone J., 18, 1–16, https://doi.org/10.2136/vzj2018.07.0138, 2019.
Lamontagne, S., Leaney, F. W., and Herczeg, A. L.: Groundwater–surface water
interactions in a large semi-arid floodplain: implications for salinity
management, Hydrol. Process., 19, 3063–3080, https://doi.org/10.1002/hyp.5832, 2005.
Lamontagne, S., Taylor, A. R., Cook, P. G., Crosbie, R. S., Brownbill, R.,
Williams, R. M., and Brunner, P.: Field assessment of surface water–groundwater connectivity in a semi-arid river basin (Murray–Darling,
Australia), Hydrol. Process., 28, 1561–1572, https://doi.org/10.1002/hyp.9691, 2014.
Levitt, M. H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance, John
Wiley & Sons, Chichester, New York, ISBN 0471489220, 2001.
Lowrie, W.: Fundamentals of Geophysics, Cambridge University Press, Cambridge, 2007.
Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C.:
Mountain-Block Recharge: A Review of Current Understanding, Water Resour.
Res., 55, 8278–8304, https://doi.org/10.1029/2019WR025676, 2019.
Mavko, G., Mukerji, T., and Dvorkin, J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2nd Edn., Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511626753, 2009.
Mokhtar, T. A., Herrmann, R. B., and Russell, D. R.: Seismic velocity and Q model for the shallow structure of the Arabian Shield from short-period
Rayleigh waves, Geophysics, 53, 1379–1387, https://doi.org/10.1190/1.1442417, 1988.
Moser, T.: Shortest-Path Calculation of Seismic Rays, Geophysics, 56, 59–67, https://doi.org/10.1190/1.1442958, 1991.
Moser, T. J., Nolet, G., and Snieder, R.: Ray bending revisited, B. Seismol. Soc. Am., 82, 259–288, 1992.
Neducza, B.: Stacking of surface wavesSSW provides high-quality dispersion,
Geophysics, 72, V51–V58, https://doi.org/10.1190/1.2431635, 2007.
Nur, A. and Simmons, G.: The effect of saturation on velocity in low
porosity rocks, Earth Planet. Sc. Lett., 7, 183–193,
https://doi.org/10.1016/0012-821X(69)90035-1, 1969.
O'Neil, A.: Full-waveform reflectivity for modeling, inversion and appraisal
of seismic surface wave dispersion in shallow site investigations, PhD thesis, University of Western Australia, Perth, 2003.
Orlando, J., Comas, X., Hynek, S. A., Buss, H. L., and Brantley, S. L.:
Architecture of the deep critical zone in the Río Icacos watershed
(Luquillo Critical Zone Observatory, Puerto Rico) inferred from drilling and
ground penetrating radar (GPR): Drilling and GPR explore weathering in the
Rio Icacos LCZO watershed, Earth Surf. Proc. Land, 41, 1826–1840, https://doi.org/10.1002/esp.3948, 2016.
Parasnis, D. S.: Principles of Applied Geophysics, 4th Edn., Chapman and Hall, New york, USA, https://doi.org/10.1007/978-94-009-4113-7, 1986.
Park, C. B., Miller, R. D., and Xia, J.: Multichannel analysis of surface
waves, Geophysics, 64, 800–808, https://doi.org/10.1190/1.1444590, 1999.
Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S., and Slater, L.: Multiscale geophysical imaging of the critical zone: Geophysical Imaging
of the Critical Zone, Rev. Geophys., 53, 1–26, https://doi.org/10.1002/2014RG000465, 2015.
Pasquet, S. and Bodet, L.: SWIP: An integrated workflow for surface-wave
dispersion inversion and profiling, Geophysics, 82, WB47–WB61,
https://doi.org/10.1190/geo2016-0625.1, 2017.
Pasquet, S., Bodet, L., Dhemaied, A., Mouhri, A., Vitale, Q., Rejiba, F.,
Flipo, N., and Guérin, R.: Detecting different water table levels in a
shallow aquifer with combined P-, surface and SH-wave surveys: Insights from
VP/VS or Poisson's ratios, J. Appl. Geophys., 113, 38–50,
https://doi.org/10.1016/j.jappgeo.2014.12.005, 2015a.
Pasquet, S., Bodet, L., Longuevergne, L., Dhemaied, A., Camerlynck, C.,
Rejiba, F., and Guérin, R.: 2D characterization of near-surface: surface-wave dispersion inversion versus refraction tomography, Near Surf. Geophys., 13, 315–332, https://doi.org/10.3997/1873-0604.2015028, 2015b.
Pasquet, S., Holbrook, W. S., Carr, B. J., and Sims, K. W. W.: Geophysical
imaging of shallow degassing in a Yellowstone hydrothermal system: Imaging
Shallow Degassing in Yellowstone, Geophys. Res. Lett., 43, 12027–12035, https://doi.org/10.1002/2016GL071306, 2016.
Prasad, M.: Acoustic measurements in unconsolidated sands at low effective
pressure and overpressure detection, Geophysics, 67, 405–412,
https://doi.org/10.1190/1.1468600, 2002.
Rayment, G. E. and Higginson, F. R.: Australian laboratory handbook of soil
and water chemical methods, Inkata Press, Port Melbourne, Australia, available at: https://trove.nla.gov.au/version/45465694 (last access: 27 June 2019), 1992.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Reynolds, J. M.: An introduction to applied and environmental geophysics,
2nd Edn., Wiley-Blackwell, Chichester, UK, available at:
https://trove.nla.gov.au/version/50745015 (last access: 27 June 2019), 2011.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones,
S. B., Knight, R., Ogden, F., Selker, J., and Wendroth, O.: Soil Moisture
Measurement for Ecological and Hydrological Watershed-Scale Observatories: A
Review, Vadose Zone J., 7, 358, https://doi.org/10.2136/vzj2007.0143, 2008.
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source
library for modelling and inversion in geophysics, Comput. Geosci., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.
Salem, H. S.: Poisson's ratio and the porosity of surface soils and shallow
sediments, determined from seismic compressional and shear wave velocities,
Géotechnique, 50, 461–463, https://doi.org/10.1680/geot.2000.50.4.461, 2000.
Sambridge, M.: Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space, Geophys. J. Int., 138, 479–494,
https://doi.org/10.1046/j.1365-246X.1999.00876.x, 1999.
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39, https://doi.org/10.1007/s10040-001-0176-2, 2002.
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., and Simmers, I.: Global synthesis of groundwater recharge in
semiarid and arid regions, Hydrol. Process., 20, 3335–3370,
https://doi.org/10.1002/hyp.6335, 2006.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and
groundwater recharge through ephemeral and intermittent streambeds: A review
of applied methods, J. Hydrol., 511, 518–529, https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Sheehan, J. R., Doll, W. E., and Mandell, W. A.: An evaluation of methods and
available software for seismic refraction tomography analysis, J. Environ. Eng. Geophys., 10, 21–34, 2005.
Siemon, B., Christiansen, A. V., and Auken, E.: A review of helicopter-borne
electromagnetic methods for groundwater exploration, Near Surf. Geophys., 7, 629–646, https://doi.org/10.3997/1873-0604.2009043, 2009.
Singha, K. and Gorelick, S. M.: Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial
moment analysis, Water Resour. Res., 41, W05023, https://doi.org/10.1029/2004WR003460, 2005.
Smith, M. L., Fontaine, K., and Lewis, S. J.: Regional Hydrogeological
Characterisation of the St Vincent Basin, South Australia: Technical report
for the National Collaboration Framework Regional Hydrogeology Project,
Geoscience Australia, Canberra, Australia, 2015.
Smith, W. and Wessel, P.: Gridding with continuous curvature splines in
tension, Geophysics, 55, 293–305, https://doi.org/10.1190/1.1442837, 1990.
Stein, S. and Wysession, M.: An Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Maldent, MA, USA,
ISBN 0-86542-078-5, 2003.
Taylor, C. B., Brown, L. J., Cunliffe, J. J., and Davidson, P. W.:
Environmental tritium and 18O applied in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zealand, J. Hydrol., 138, 269–319, https://doi.org/10.1016/0022-1694(92)90168-U, 1992.
Telford, W. M., Geldart, L. P., and Sheriff, R. E.: Applied Geophysics,
2nd Edn., Cambrige University Press, New York, USA, ISBN 0-521-33938-3, 1990.
Thayer, D., Parsekian, A. D., Hyde, K., Speckman, H., Beverly, D., Ewers, B., Covalt, M., Fantello, N., Kelleners, T., Ohara, N., Rogers, T., and Holbrook, W. S.: Geophysical Measurements to Determine the Hydrologic Partitioning of Snowmelt on a Snow-Dominated Subalpine Hillslope, Water Resour. Res., 54, 3788–3808, https://doi.org/10.1029/2017WR021324, 2018.
Torrey, H. C.: Bloch Equations with Diffusion Terms, Phys. Rev., 104, 563–565, https://doi.org/10.1103/PhysRev.104.563, 1956.
Uyanık, O.: The porosity of saturated shallow sediments from seismic
compressional and shear wave velocities, J. Appl. Geophys., 73, 16–24, https://doi.org/10.1016/j.jappgeo.2010.11.001, 2011.
Valois, R., Galibert, P.-Y., Guerin, R., and Plagnes, V.: Application of
combined time-lapse seismic refraction and electrical resistivity tomography
to the analysis of infiltration and dissolution processes in the epikarst of
the Causse du Larzac (France), Near Surf. Geophys., 14, 13–22, https://doi.org/10.3997/1873-0604.2015052, 2016.
Walsh, D. O., Turner, P., Grunewald, E. D., Zhang, H., Butler, J. J., Reboulet, E., Knobbe, S., Christy, T., Lane, J. W., Johnson, C. D., Munday,
T., and Fitzpatrick, A.: A Small-Diameter NMR Logging Tool for Groundwater
Investigations, Groundwater, 51, 914–926, https://doi.org/10.1111/gwat.12024, 2013.
Walsh, D. O., Grunewald, E. D., Turner, P., Hinnell, A., and Ferre, T. P. A.:
Surface NMR instrumentation and methods for detecting and characterizing
water in the vadose zone, Near Surf. Geophys., 12, 271–284, https://doi.org/10.3997/1873-0604.2013066, 2014.
Wathelet, M., Jongmans, D., and Ohrnberger, M.: Surface-wave inversion using
a direct search algorithm and its application to ambient vibration
measurements, Near Surf. Geophys., 2, 211–221, https://doi.org/10.3997/1873-0604.2004018, 2004.
West, N., Kirby, E., Nyblade, A. A., and Brantley, S. L.: Climate
preconditions the Critical Zone: Elucidating the role of subsurface
fractures in the evolution of asymmetric topography, Earth Planet. Sc. Lett., 513, 197–205, https://doi.org/10.1016/j.epsl.2019.01.039, 2019.
Wilson, J. L. and Guan, H.: Mountain-block hydrology and mountain-front
recharge, in: Water Science and Application, vol. 9, edited by: Hogan, J. F., Phillips, F. M., and Scanlon, B. R., American Geophysical Union, Washington, D.C., USA, 113–137, 2004.
Winograd, I. J., Riggs, A. C., and Coplen, T. B.: The relative contributions
of summer and cool-season precipitation to groundwater recharge, Spring
Mountains, Nevada, USA, Hydrogeol. J., 6, 77–93, https://doi.org/10.1007/s100400050135, 1998.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M.: Ground Water
and Surface Water: A Single Resource, in: Circular, USGS Numbered Series 1139, US Geological Survey, North Dakota, USA, https://doi.org/10.3133/cir1139, 1998.
Xia, J., Miller, R. D., and Park, C. B.: Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64, 691–700, https://doi.org/10.1190/1.1444578, 1999.
Xia, J., Miller, R. D., Park, C. B., and Tian, G.: Inversion of high frequency surface waves with fundamental and higher modes, J. Appl. Geophys., 52, 45–57, https://doi.org/10.1016/S0926-9851(02)00239-2, 2003.
Xie, Y., Cook, P. G., Brunner, P., Irvine, D. J., and Simmons, C. T.: When
Can Inverted Water Tables Occur Beneath Streams?, Groundwater, 52, 769–774, https://doi.org/10.1111/gwat.12109, 2014.
Zelt, C. A., Haines, S., Powers, M. H., Sheehan, J., Rohdewald, S., Link, C., Hayashi, K., Zhao, D., Zhou, H. -w., Burton, B. L., Petersen, U. K., Bonal, N. D., and Doll, W. E.: Blind Test of Methods for Obtaining 2-D Near-Surface Seismic Velocity Models from First-Arrival Traveltimes, J. Environ. Eng. Geophys., 18, 183–194, https://doi.org/10.2113/JEEG18.3.183, 2013.
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Identifying and quantifying recharge processes linked to ephemeral surface water features is...