Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2207-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-2207-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Charlotte Marie Emery
CORRESPONDING AUTHOR
LEGOS, 16 Avenue Edouard Belin, 31400 Toulouse, France
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
now at: CS-Group, Space Business Unit, 31500 Toulouse, France
Sylvain Biancamaria
LEGOS, 16 Avenue Edouard Belin, 31400 Toulouse, France
Aaron Boone
CNRM-GAME, Meteo-France, 42 Avenue Gaspard Coriolis, 31000 Toulouse, France
Sophie Ricci
CECI, Université de Toulouse, CERFACS, CNRS, 42 Avenue Gaspard Coriolis, 31057 Toulouse CEDEX 1, France
Mélanie C. Rochoux
CECI, Université de Toulouse, CERFACS, CNRS, 42 Avenue Gaspard Coriolis, 31057 Toulouse CEDEX 1, France
Vanessa Pedinotti
Magellium, 1 Rue Ariane, 31520 Ramonville-Saint-Agne, France
Cédric H. David
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
No articles found.
Matthieu Lafaysse, Marie Dumont, Basile De Fleurian, Mathieu Fructus, Rafife Nheili, Léo Viallon-Galinier, Matthieu Baron, Aaron Boone, Axel Bouchet, Julien Brondex, Carlo Carmagnola, Bertrand Cluzet, Kévin Fourteau, Ange Haddjeri, Pascal Hagenmuller, Giulia Mazzotti, Marie Minvielle, Samuel Morin, Louis Quéno, Léon Roussel, Pierre Spandre, François Tuzet, and Vincent Vionnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-4540, https://doi.org/10.5194/egusphere-2025-4540, 2025
Short summary
Short summary
This article is a comprehensive description of the 3.0 stable release of the Crocus snowpack model. It describes various new implementations since the last reference article in 2012 and a review of the available scientific evaluations and applications of the model. This provides guidance for the future of numerical snow modelling.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Malak Sadki, Gaëtan Noual, Simon Munier, Vanessa Pedinotti, Kaushlendra Verma, Clément Albergel, Sylvain Biancamaria, and Alice Andral
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-328, https://doi.org/10.5194/hess-2024-328, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study explores how 20 years of remote-sensed discharge data from the ESA CCI improve large-scale hydrological models, CTRIP and MGB, through data assimilation. Using an EnKF framework across the Niger and Congo basins, it shows how assimilating denser temporal discharge data reduces biases and improves flow variability, enhancing accuracy. These findings underscore the role of long-term discharge data in refining models for climate assessments, water management, and forecasting.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Théo Defontaine, Sophie Ricci, Corentin J. Lapeyre, Arthur Marchandise, and Etienne Le Pape
EGUsphere, https://doi.org/10.5194/egusphere-2023-2621, https://doi.org/10.5194/egusphere-2023-2621, 2024
Preprint archived
Short summary
Short summary
This work presents how machine learning models predict discharge and outperforms the 6 h lead-time empirical model used operationally in Toulouse. The 40 k points database includes discharge and rainfall data, for 36 flood events. The approach also provides a reliable solution for extended 8 h lead-time. The scarcity and the heterogeneity of the data, especially in presence of outliers, heavily weigh on the learning strategy. Rainfall data processing increases the predictive performances.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Cited articles
Andreadis, K. M. and Schumann, G. J. P.:
Estimating the impact of satellite observations on the predictability of large-scale hydraulic models,
Adv. Water Res.,
73, 44–54, https://doi.org/10.1016/j.advwatres.2014.06.006, 2014. a
Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Alsdorf, D. E.:
Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model,
Geophys. Res. Lett.,
34, L10403, https://doi.org/10.1029/2007GL029721, 2007. a
Beighley, R. E., Eggert, K. G., Dunne, T., He, Y., Gummadi, V., and Verdin, K. L.:
Simulating hydrologic and hydraulic processed throughout the Amazon basin,
Hydrol. Process.,
23, 1221–1235, https://doi.org/10.1002/hyp.7252, 2009. a
Beven, K. and Freer, J.:
Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using GLUE methodology,
J. Hydrol.,
249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. a
Beven, K. J.:
Down to basics: runoff processes and the modelling of processes,
in:
Rainfall-Runoff Modelling,
John Wiley and Sons, West Sussex, UK, chap. 1, 1–22, 2012. a
Biancamaria, S., Bates, P., Boone, A., and Mognard, N.:
Large-scale coupled hydrologic and hydraulic modelling of teh Ob river in Siberia,
J. Hydrol.,
379, 136–150, https://doi.org/10.1016/j.jhydrol.2009.09.054, 2009. a
Biancamaria, S., Durant, M., Andreadis, K. M., Bates, P. D., Boone, A., Mognard, N. M., Rodriguez, E., Alsdorf, D. E., Lettenmaier, D. P., and Clark, E. A.:
Assimilation of virtual wide swath altimetry to improve Arctic river modeling,
Remote Sens. Environ.,
115, 373–381, https://doi.org/10.1016/j.rse.2010.09.008, 2011. a, b
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.:
The SWOT mission and its capabilities for land hydrology,
Surv. Geophys.,
37, 307–337, https://doi.org/10.1007/s10712-015-9346-y, 2016. a
Bierkens, M. F. P.:
Global hydrology 2015: State, trends, and directions,
Water Resour. Res.,
51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015. a
Birkett, C. M., Mertes, L. A. K., Dunne, T., Costa, M. H., and Jasinski, M. J.:
Surface water dynamics in the Amazon basin: Application of satellite radar altimetry,
J. Geophys. Res.,
107, L10403, https://doi.org/10.1029/2001JD000609, 2002. a
Bishop, C. H., Etherton, B. J., and Majumbar, S. J.:
Adaptative sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects,
Mon. Weather Rev.,
129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a
Boone, A., Calvet, J.-C., and Noilhan, J.:
Inclusion of a Third Soil Layer in a Land Surface Scheme Using the Force-Restore Method,
J. Hydrometeorol.,
38, 1611–1630, https://doi.org/10.1175/1520-0450(1999)038<1611:IOATSL>2.0.CO;2, 1999. a
Brisset, P., Monnier, J., Garambois, P.-A., and Roux, H.:
On the assimilation of altimetry data in 1D Saint-Venant river models,
Adv. Water Res.,
119, 41–59, https://doi.org/10.1016/J.advwatres.2018.06.004, 2018. a
Buis, S., Piacentini, A., and Declat, D.: PALM: a computational framework for assembling high-performance computing applications, Concurrency Computat.: Pract. Exper., 18, 247–262, 2006 (data available at: http://www.cerfacs.fr/globc/PALM_WEB/, last access: 20 April 2020). a
Burgers, G., Leeuwen, P. J. V., and Evensen, G.:
Analysis Scheme in the Ensemble Kalman Filter,
Mon. Weather Rev.,
126, 1719–1724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.:
Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model,
Adv. Water Res.,
31, 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008. a
Cretaux, J.-F., Calmant, S., Romanoski, V., Shabunin, A., Lyard, F., Berge-Nguyen, M., Cazenave, A., Hernandez, F., and Perosanz, F.:
An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia,
J. Geodesy,
83, 723–735, https://doi.org/10.1007/s00190-008-0289-7, 2009. a
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.:
Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage,
J. Hydrometeorol.,
11, 601–617, https://doi.org/10.1175/2010JHM1212.1, 2010. a
Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H., and Prigent, C.:
Global off-line evaluation of the ISBA-TRIP flood model,
Clim. Dynam.,
38, 1389–1412, https://doi.org/10.1007/s00382-011-1054-9, 2012 (data available at: http://www.cnrm-game-meteo.fr/surfex/, last access: 20 April 2020). a, b, c, d, e, f
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.‐P., Alias, A., Saint‐Martin, D., Séférian, R., Sénési, S., and Voldoire, A.:
Recent changes in the ISBA-CTRIP land surface system for use in CNRM-CM6 climate model and global off-line hydrological applications,
J. Adv. Model. Earth Sy.,
11, 1207–1252, https://doi.org/10.1029/2018MS001545, 2019. a, b, c
Deng, C., Liu, P., Guo, S., Li, Z., and Wang, D.: Identification of hydrological model parameter variation using ensemble Kalman filter, Hydrol. Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016, 2016. a
Doll, P., Douville, H., Güntner, A., Schmied, H. M., and Wada, Y.:
Modelling Freshwater Resources at the Global Scale: Challenges and Propects,
Surv. Geophys.,
37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2015. a
Durand, M., Andreadis, K., Alsdorf, D., Lettenmaier, D., Moller, D., and Wilson, M.:
Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model,
Geophys. Res. Lett.,
35, L20401, https://doi.org/10.1029/2008GL034150, 2008. a, b, c
Emery, C. M., Biancamaria, S., Boone, A., Garambois, P.-A., Ricci, S., Rochoux, M. C., and Decharme, B.:
Temporal variance-based sensitivity analysis of the river routing component of the large scale hydrological model ISBA-TRIP: Application on the Amazon Basin,
J. Hydrometeorol.,
17, 3007–3027, https://doi.org/10.1175/JHM-D-16-0050.1, 2016. a, b, c, d, e, f, g, h, i, j, k
Emery, C. M., Paris, A., Biancamaria, S., Boone, A., Calmant, S., Garambois, P.-A., and Santos da Silva, J.: Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product, Hydrol. Earth Syst. Sci., 22, 2135–2162, https://doi.org/10.5194/hess-22-2135-2018, 2018. a, b, c, d
Esteban Fernandez, D.:
SWOT Project, Mission performance and error budget,
Tech. rep., Jet Propulsion Laboratory, 2017. a
Evensen, G.:
Sequential data assimilation with a nonlinear quasi-geostropic model using Monte Carlo methods to forecast error statistics,
J. Geophys. Res.,
99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. a
Evensen, G.:
Advanced data assimilation for strongly nonlinear dynamics,
Mon. Weather Rev.,
125, 1342–1354, https://doi.org/10.1175/1520-0493(1997)125<1342:ADAFSN>2.0.CO;2, 1997. a
Evensen, G.:
The Ensemble Kalman Filter: theoretical formulation and practical implementation,
Ocean Dynam.,
53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003. a
Evensen, G.:
Sampling strategies and square root analysis schemes for the EnKF,
Ocean Dynam.,
54, 539–560, https://doi.org/10.1007/s10236-004-0099-2, 2004. a, b
Evensen, G. and Leeuwen, P. V.:
An ensemble kalman smoother for nonlinear dynamics,
Mon. Weather Rev.,
128, 1852–1867, https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2, 2000. a, b
Fjørtoft, R., Gaudin, J.-M., Pourthie, N., Lalaurie, J.-C., Mallet, A., Nouvel, J.-F., Martinot-Lagarde, J., Oriot, H., Borderies, P., Ruiz, C., and Daniel, S.:
KaRIn on SWOT: Characteristics of near-nadir Ka-band interferometric SAR imagery,
IEEE T. Geosci. Remote,
52, 2172–2185, https://doi.org/10.1109/TGRS.2013.2258402, 2014. a
Guillet, O., Weaver, A., Vasseur, X., Michel, M., Gratton, S., and Gürol, S.:
Modelling spatially correlated observation errors in variational data assimilation using a diffusion operator on an unstructured mesh,
Q. J. Roy. Meteor. Soc., 145, 1947–1967,
https://doi.org/10.1002/qj.3537, 2018. a
Gupta, H. V., Sorooshian, S., and Yapo, P. O.:
Toward improved calibration of hydrological models: multiple and noncommensurable measures of information,
Water Resour. Res.,
34, 751–763, https://doi.org/10.1029/97WR03495, 1998. a
Hafliger, V., Martin, E., Boone, A., Ricci, S., and Biancamaria, S.:
Assimilation of synthetic SWOT river depths in a regional hydrometeorological model,
Water,
11, 78, https://doi.org/10.3390/w11010078, 2019. a, b
Hunt, B., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. T., Sauer, T., Szunyogh, I., Yorke, J. A., and Zimin, A. V.:
Four-dimensional ensemble Kalman filtering,
Tellus,
56, 273–277, https://doi.org/10.1111/j.1600-0870.2004.00066.x, 2004. a
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.:
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter,
Physica D,
230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007. a
International Association of Hydrological Sciences Ad Hoc Group on Global Water Sets, Vörösmarty, C., Askew, A., Grabs, W., Barry, R. G., Birkett, C., Döll, P., Goodison, B., Hall, A., Jenne, R., Kitaev, L., Landwehr, J., Keeler, M., Leavesley, G., Schaake, J., Strzepek, K., Sundarvel, S. S., Takeuchi, K., and Webster, F.:
Global water data: a newly endangered species,
EOS T. Am. Geophys. Un.,
82, 54–58, https://doi.org/10.1029/01EO00031, 2001. a
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1), Data set, Data Integration and Analysis System, https://doi.org/10.20783/DIAS.501, 2017. a
Kurtz, W., Hendricks-Frassen, H.-J., and Vereecken, H.:
Identification of time-variant river bed properties with Ensemble Kalman Filter,
Water Resour. Res.,
48, W10534, https://doi.org/10.1029/2011WR011743, 2012. a
Leeuwen, P. V. and Evensen, G.:
Data assimilation and inverse methods in terms of a probabilistic formulation,
Mon. Weather Rev.,
124, 2898–2913, https://doi.org/10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2, 1996. a
Liu, Y. and Gupta, H. V.:
Uncertainty in hydrological modeling: Towards an integrated data assimilation framework,
Water Resour. Res.,
43, W07401, https://doi.org/10.1029/2006WR005756, 2007. a, b
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a
Maidment, D. R.:
Handbook of Hydrology,
McGraw Hill Professional, 1993. a
Manning, R.:
On the flow of water in open channels and pipes,
Institution of Civil Engineers of Ireland,
20, 161–207, 1891. a
Meade, R., Rayol, J., Conceicão, S. D., and Natividade, J.:
Backwater Effects in the Amazon River Basin of Brazil,
Environ. Geol. Water S.,
18, 105–114, https://doi.org/10.1007/BF01704664, 1991. a
Melsen, L., Teuling, A., Torfs, P., Zappa, M., Mizukami, N., Clark, M., and Uijlenhoet, R.: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin, Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, 2016. a, b
Mersel, M. K., Smith, L. C., Andreadis, K. M., and Durand, M. T.:
Estimation of river depth from remotely-sensed hydraulic relationship,
Water Resour. Res.,
49, 3165–3179, https://doi.org/10.1002/wrcr.20176, 2013. a
Michailovsky, C. I. and Bauer-Gottwein, P.: Operational reservoir inflow forecasting with radar altimetry: the Zambezi case study, Hydrol. Earth Syst. Sci., 18, 997–1007, https://doi.org/10.5194/hess-18-997-2014, 2014. a
Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.:
Assimilation of radar altimetry to a routing model of the Brahmaputra river,
Water Resour. Res.,
49, 4807–4816, https://doi.org/10.1002/wrcr.20345, 2013. a, b
Molinier, M., Guyot, J.-L., Orstom, B., Guimarães, V., de Oliveira, E., and Dnaee, B.: Hydrologie du bassin de l'Amazone,
in: Grands Bassins Fluviaux Périatlantiques,
PEGI-INSA-CNRS-ORSTOM, Paris, available at: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/carton01/40102.pdf
(last access: 4 May 2020), 335–345, 1993. a
Montzka, C., Moradkhani, H., Weihermüller, L., Hendricks-Franssen, H.-J., Canty, M., and Vereecken, H.:
Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter,
J. Hydrol.,
399, 410–421, https://doi.org/10.1016/j.jhydrol.2011.01.020, 2011. a
Moradkhani, H., Hsu, K.-L., Gupta, H., and Sorooshian, S.:
Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter,
Water Resour. Res.,
41, W05012, https://doi.org/10.1029/2004WR003604, 2005. a, b, c
Munier, S., Polebistki, A., Brown, C., Belaud, G., and Lettenmaier, D. P.:
SWOT data assimilation for operational reservoir management on the upper Niger river basin,
Water Resour. Res.,
51, 554–575, https://doi.org/10.1002/2014WR016157, 2015. a
Noilhan, J. and Planton, S.:
A simple parameterization of land surface processes for meteorological models,
Mon. Weather Rev.,
117, 536–549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a, b
Oki, T. and Sud, Y. C.:
Design of Total Integrating Pathways (TRIP)—A Global River Channel Network,
Earth Interact.,
2, 1–36, https://doi.org/10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2, 1998. a, b, c
Ott, E., Hunt, B. R., Szunyogh, I., Kostelich, A. V. Z. A. J., Corazza, M., Kalnay, E., Patil, D. J., and Yorke, J. A.:
A local ensemble Kalman filter for atmospheric data assimilation,
Tellus A,
56, 415–428, https://doi.org/10.1111/j.1600-0870.2004.00076.x, 2004. a
Oubanas, H., Gejadze, I., Malaterre, P.-O., Durand, M., Wei, R., Frasson, R. P. M., and Domeneghetti, A.:
Discharge estimation in ungauged basins through variational data assimilation: the potential of the SWOT mission,
Water Resour. Res.,
54, 2405–2423, https://doi.org/10.1002/2017WR021735, 2018. a, b, c
Paiva, R. C. D., Buarque, D. C., Collischonn, W., Bonnet, M.-P., Frappart, F., Calmant, S., and Mendes, C. A. B.:
Large scale hydrological and hydrodynamic modeling of the Amazon River basin,
Water Resour. Res.,
49, 1226–1243, https://doi.org/10.1002/wrcr.20067, 2013. a
Panzeri, M., Riva, M., Guadagnini, A., and Neuman, S. P.:
Data assimilation and parameter estimation via ensemble kalman filter coupled with stochastic moment equations of transient groudwater flow,
Water Resour. Res.,
49, 1334–1344, https://doi.org/10.1002/wrcr.20113, 2013. a
Pathiraja, S., Marshall, L., Sharma, A., and Moradkhani, H.:
Detecting non-stationar hydrologic model parameters in a paired catchment system using data assimilation,
Adv. Water Res.,
94, 103–119, https://doi.org/10.1016/j.advwatres.2016.04.021, 2016. a, b
Pedinotti, V., Boone, A., Ricci, S., Biancamaria, S., and Mognard, N.: Assimilation of satellite data to optimize large-scale hydrological model parameters: a case study for the SWOT mission, Hydrol. Earth Syst. Sci., 18, 4485–4507, https://doi.org/10.5194/hess-18-4485-2014, 2014. a, b, c, d, e, f, g, h
Rakovec, O., Weerts, A. H., Sumihar, J., and Uijlenhoet, R.: Operational aspects of asynchronous filtering for flood forecasting, Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015, 2015. a, b
Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.:
Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors,
Water Resour. Res.,
46, W05521, https://doi.org/10.1029/2009WR008328, 2010. a
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. H., Lettenmaier, D. P., Liu, W. T., Roberton, F. R., Schlosser, C. A., Sheffield, J., and Wood, E. F.:
The observed state of the water cycle in the early twenty-first century,
J. Climate,
28, 8289–8318, https://doi.org/10.1175/JCLI-D-14-00555.1, 2015. a
Ruiz, J. J., Pulido, M., and Miyoshi, T.:
Estimating model parameters with ensemble-based data assimilation,
J. Meteorol. Soc. Jpn.,
91, 79–99, https://doi.org/10.2151/jmsj.2013-201, 2013. a
Sakov, P., Evensen, G., and Bertino, L.:
Asynchronous data assimilation with the EnKF,
Tellus,
62, 24–29, https://doi.org/10.1111/j.1600-0870.2009.00417.x, 2010. a, b
Sanoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.:
Reconciling the global terrestrial water budget using satellite remote sensing,
Remote Sens. Environ.,
115, 1850–1865, https://doi.org/10.1016/j.rse.2011.03.009, 2011. a
Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J., and Yu, X.:
Parameter estimation of physically-based land surface model hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment,
Adv. Water Res.,
83, 421–427, https://doi.org/10.1016/j.advwatres.2015.06.009, 2015. a
Silva, J. S. D., Calmant, S., Seyler, F., Filho, O. C. R., Cochonneau, G., and Mansur, W. J.:
Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions,
Remote Sens. Environ.,
114, 2160–2181, https://doi.org/10.1016/j.rse.2010.04.020, 2010. a
Sood, A. and Smakhtin, V.:
Global hydrological models: a review,
Hydrolog. Sci. J.,
60, 549–565, https://doi.org/10.1080/02626667.2014.950580, 2015.
a
Talagrand, O. and Courtier, P.:
Variational assimilation of meteorological observations with the adjoint vorticity equation, Part 1: Theory,
Q. J. Roy. Meteor. Soc.,
113, 1311–1328, https://doi.org/10.1002/qj.49711347812, 1987. a
Vinukollu, R. K., Meynadier, R., Sheffield, J., and Wood, E. F.:
Multi-model, multi-sensor esti- mates of global evapotranspiration: climatology, uncertainties and trents,
Hydrol. Process.,
25, 3993–4010, https://doi.org/10.1002/hyp.8393, 2011. a
Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., and Shoups, G.:
Hydrological data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications,
Adv. Water Res.,
51, 457–478, https://doi.org/10.1016/j.advwatres.2012.04.002, 2012. a
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010. a
Yoon, Y., Durand, M., Merry, C. J., Clark, E. A., Andreadis, K. M., and Alsdorf, D. E.:
Estimating river bathymetry from data assimilation of synthetic SWOT measurements,
J. Hydrol.,
464-465, 363–375, https://doi.org/10.1016/j.jhydrol.2012.07.028, 2012. a
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
The flow of freshwater in rivers is commonly studied with computer programs known as...