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Abstract. Land surface models combined with river routing
models are widely used to study the continental part of the
water cycle. They give global estimates of water flows and
storages, but they are not without non-negligible uncertain-
ties, among which inexact input parameters play a significant
part. The incoming Surface Water and Ocean Topography
(SWOT) satellite mission, with a launch scheduled for 2021
and with a required lifetime of at least 3 years, will be ded-
icated to the measuring of water surface elevations, widths
and surface slopes of rivers wider than 100 m, at a global
scale. SWOT will provide a significant number of new ob-
servations for river hydrology and maybe combined, through
data assimilation, with global-scale models in order to cor-
rect their input parameters and reduce their associated uncer-
tainty. Comparing simulated water depths with measured wa-
ter surface elevations remains however a challenge and can
introduce within the system large bias. A promising alter-
native for assimilating water surface elevations consists of
assimilating water surface elevation anomalies which do not
depend on a reference surface. The objective of this study
is to present a data assimilation platform based on the asyn-
chronous ensemble Kalman filter (AEnKF) that can assimi-
late synthetic SWOT observations of water depths and wa-
ter elevation anomalies to correct the input parameters of
a large-scale hydrologic model over a 21 d time window. The
study is applied to the ISBA-CTRIP model over the Ama-

zon basin and focuses on correcting the spatial distribution
of the river Manning coefficients. The data assimilation al-
gorithm, tested through a set of observing system simula-
tion experiments (OSSEs), is able to retrieve the true value
of the Manning coefficients within one assimilation cycle
much of the time (basin-averaged Manning coefficient root
mean square error, RMSEn, is reduced from 33 % to [1 %–
10 %] after one assimilation cycle) and shows promising per-
spectives with assimilating water anomalies (basin-averaged
Manning coefficient RMSEn is reduced from 33 % to [1 %–
2 %] when assimilating water surface elevation anomalies
over 1 year), which allows us to overcome the issue of un-
known bathymetry.

1 Introduction

Global hydrological models (GHMs) are extensively ex-
ploited to study the continental component of the global
water cycle (Doll et al., 2015; Sood and Smakhtin, 2015).
Such models have been extensively developed over the past
2 decades in order to quantify freshwater flows and storage
changes over continental surfaces (Bierkens, 2015). They are
based on the coupling of a land surface model (LSM) with
a river routing model (RRM). As an example, the ISBA-
CTRIP (Decharme et al., 2019) hydrologic model results
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from the coupling of the ISBA LSM (Noilhan and Planton,
1989) and the TRIP RRM (Oki and Sud, 1998). LSMs sim-
ulate the energy and water balance at the soil–atmosphere–
vegetation interface, while RRMs emulate the lateral transfer
of freshwater toward the continent–ocean interface. The cur-
rent study focuses on the river component of the terrestrial
water cycle simulated by the RRM.

GHMs give a global view of the state of the water flow and
storage at model spatial and temporal resolutions. Nonethe-
less, they suffer from multiple sources of uncertainties which
are related to the model structure, the external forcing and the
input parameters (Liu and Gupta, 2007; Renard et al., 2010).
Model structure uncertainties initially arose from a lack of
knowledge of the hydrologic processes or from simplifying
assumptions made to limit simulation computational cost.
Still, with the increase in computational power, models are
more and more complex (Liu and Gupta, 2007; Melsen et al.,
2016): they run at finer spatial resolution, they include new
physical processes and they use an increasing number of fully
distributed forcing and parameter datasets (Liu et al., 2012).
This has led to an increase in the number of model input
parameters and potentially inflates the model uncertainty in
those parameters. Input parameters express the spatial and/or
temporal properties of the system. The spatial scale of param-
eters measurable on the field may differ from the model scale,
while other conceptual parameters are not directly observ-
able and measurable on the field (Moradkhani et al., 2005;
Melsen et al., 2016) and are inferred using a geomorpholog-
ical empirical formula and/or indirect methods such as cali-
bration (Gupta et al., 1998; Beven, 2012).

Another way in which to study the terrestrial water cy-
cle is to use direct observations of the system. Most parts of
the terrestrial water cycle are currently observed and mea-
sured from in situ or remote techniques (Sanoo et al., 2011;
Vinukollu et al., 2011; Rodell et al., 2015). For the obser-
vations of rivers, in situ techniques measure river water el-
evations at gauge stations. In situ measurements are com-
monly very accurate and also frequent (i.e., sub-daily), but
their main limitation is their spatially sparse sampling and
their decreasing number over recent decades at a global scale
(International Association of Hydrological Sciences Ad Hoc
Group on Global Water Sets et al., 2001). Coincidentally, re-
motely sensed data provided by satellite missions have in-
creased quite significantly since the 90s and deliver effec-
tive river observations. The most common instrument oper-
ating to assess river water levels remains the nadir altime-
ter. Nadir altimetry gives localized water elevation measure-
ments along the satellite ground track. Initially, altimeters
were designed to monitor ocean topography, but their ap-
plication has broadened to the observation of lakes (Cretaux
et al., 2009), floodplains (Birkett et al., 2002) and, later on,
rivers (Silva et al., 2010). However, their main limitation re-
mains their limited spatial and temporal samplings: gener-
ally several days between two consecutive measurements at
a limited number of locations. Besides, over continental sur-

faces, the signal is not always retrievable. Current river ob-
servations therefore provide a more accurate view of the river
system than models, but they are quite limited by their sparse
availability in space and time.

The incoming Surface Water and Ocean Topography
(SWOT) mission, jointly developed by NASA, CNES, CSA
and UKSA and scheduled for launch in 2021, will be ded-
icated to the observation of continental free surface water
with a better spatial and temporal coverage than the current
nadir missions (such as EnviSat, the JASON series or also
Sentinel-3A/B). SWOT’s main payload, called KaRIn, for
Ka-band Radar INterferometer (Fjørtoft et al., 2014), will
observe surfaces under two swaths of 50 km each separated
by a nadir gap of 20 km and will have a near-global cov-
erage. For hydrology, SWOT will observe rivers wider than
100 m as well as lakes and wetlands larger than 250× 250 m2

within the latitudes 78◦ S and 78◦ N and with a revisit time
of 21 d. SWOT will provide two-dimensional images of wa-
ter surface elevations with a vertical accuracy of 10 cm when
averaged over 1 km2 of water area. Along with water surface
elevation measurements in rivers, SWOT will also provide
observations of river width, surface slope and estimates of
discharge based on SWOT observations. SWOT will provide
a significant amount of new data for surface hydrology. It
will give an ensemble of constraints that will allow a bet-
ter depiction of surface water in hydrological models. These
new data could be combined or integrated into global-scale
hydrological models in order to correct them and improve
their performances and forecasting capabilities.

Data assimilation techniques are a set of mathematical
methods which combine a physical model and related ex-
ternal measurements, taking their relative uncertainties into
account. Data assimilation aims at improving the model’s
ability to forecast and/or emulate the physical system’s evo-
lution. For this purpose, data assimilation methods are built
to correct either the model’s outputs (state estimation) or
the model’s input parameters (parameter estimation or PE),
and sometimes both simultaneously. Data assimilation for
state estimation has been widely applied in meteorology and
oceanography and is more and more developed for large-
scale terrestrial hydrology (Clark et al., 2008; Michailovsky
et al., 2013; Paiva et al., 2013; Emery et al., 2018). Data
assimilation for PE in hydrology was initially developed as
a dynamic alternative to model calibration (Montzka et al.,
2011; Panzeri et al., 2013; Ruiz et al., 2013; Shi et al., 2015).
In most models, parameters are assumed to be constant in
time, whereas, in reality, they may vary seasonally or under
evolving climate and/or anthropogenic conditions. Sequen-
tial data assimilation can therefore help track model param-
eter variations in time (Kurtz et al., 2012; Deng et al., 2016;
Pathiraja et al., 2016). PE is also used to retrieve conceptual
parameters of hydrologic models such as friction coefficients
(Pedinotti et al., 2014; Oubanas et al., 2018; Hafliger et al.,
2019) or residence times of quick- and slow-flow reservoirs
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and partition of runoff excess (Vrugt et al., 2012; Pathiraja
et al., 2016), which can not be directly measured.

Before launch, in the preparatory phase, observing system
simulation experiments (OSSEs) can be performed in order
to assess the benefits of assimilating SWOT data into a hy-
drological model and to evaluate the most adapted method-
ologies to assimilate these data into models. Several studies
assimilating synthetic and/or simplified SWOT-like data have
been published so as to evaluate the correction of river model
state, namely river depth (Andreadis et al., 2007; Bianca-
maria et al., 2011), river storages (Munier et al., 2015) and
river discharges (Andreadis and Schumann, 2014), at various
scales. But also, several studies focused on the possibility of
using SWOT data to retrieve critical river parameters such
as river bathymetry (Durand et al., 2008; Yoon et al., 2012;
Mersel et al., 2013) and/or riverbed roughness/friction coef-
ficient (Pedinotti et al., 2014; Oubanas et al., 2018; Hafliger
et al., 2019). Indeed, SWOT is a scientific mission with a 3-
year nominal lifetime. Therefore, SWOT observations will
help to better calibrate hydrological models and to improve
their performances even over time periods beyond its life-
time. Moreover, other studies using real remote-sensing data
have also been published and give insight into the chal-
lenges related to the assimilation of space-borne products,
such as Michailovsky et al. (2013), Michailovsky and Bauer-
Gottwein (2014) and Emery et al. (2018), which assimilate
nadir radar altimetry data.

In the present study, a data assimilation framework is used
to correct input parameters of the large-scale ISBA-CTRIP
model. More specifically, synthetic SWOT observations of
water surface depths and anomalies are assimilated in order
to correct the spatially distributed riverbed friction coeffi-
cients (or Manning coefficients). As SWOT will not directly
measure water depths (it provides water elevation and the
bathymetry is required to derive water depth), the purpose of
this study is to evaluate the possibility of assimilating water
elevation anomalies to correct the model’s parameters and to
assess how the assimilation performances are impacted, com-
pared to the direct assimilation of water depths. Assimilating
water elevation anomalies is done to overcome a potential
lack of bathymetry data.

This study is presented as a complementary study to that
of Emery et al. (2018), which is dedicated to the state es-
timation (river storage and discharge) of the same ISBA-
CTRIP model, using real satellite-based discharge products.
The choice of the roughness coefficient as a control variable
was made following the results from the ISBA-CTRIP sen-
sitivity analysis in Emery et al. (2016). In this preliminary
study, the sensitivity of the simulated water depths and also
anomalies to several river input parameters (such as riverbed
width, depth, slope and also friction coefficient) was evalu-
ated. The results showed that the highest sensitivity was in
the Manning coefficient.

This study is, furthermore, also built on the conclusions
from the work of Pedinotti et al. (2014). In our study, an en-

semble Kalman filter (EnKF) is used (instead of the extended
Kalman filter in Pedinotti et al., 2014) to better account for
the nonlinearities of the system and to better estimate the
model errors. Also, Pedinotti et al. (2014) chose to update
the Manning coefficient distribution at the grid cell scale, and
the question of equifinality arose (Beven and Freer, 2001) in
their results. For the current study, it was decided to update
the Manning coefficient distribution not at the grid-cell res-
olution, but at a coarser zonal resolution, by applying mul-
tiplying correcting factors uniformly over each zone, identi-
cal to the one used in Emery et al. (2016). Finally, Pedinotti
et al. (2014) used an assimilation window of 2 d. This con-
figuration resulted in updated Manning coefficient time se-
ries displaying “unrealistic jumps” with a frequency of about
20 d associated with the orbit repeat cycle (longer than the 2 d
window). To avoid this phenomenon, the present study uses
an assimilation window of 21 d corresponding to the current
SWOT orbit repeat cycle.

Section 2 will first give a description of the ISBA-CTRIP
model used for this study. Section 3 will present the partic-
ular data assimilation method developed for this study and,
finally, after presenting the assimilation strategy in Sect. 4,
Sects. 5 and 6 will give the data assimilation results.

2 Model

2.1 The ISBA-CTRIP large-scale hydrological model

The ISBA model (Noilhan and Planton, 1989) is a LSM
defined at global scale on a 0.5◦× 0.5◦ regular mesh grid
that establishes the energy and water budget over continen-
tal surfaces. This study operates the ISBA-3L version based
on a three-layer soil (Boone et al., 1999). The budget equa-
tions are solved separately on each grid cell. Still, larger-
scale spatial patterns in the radiative and precipitation forc-
ing, the soil composition and the vegetation cover ensure spa-
tial correlations between those cells (for more details, see
Decharme et al., 2012, 2019). In particular, ISBA gives a di-
agnostic of the surface runoff (QISBA,sur) and the gravita-
tional drainage (QISBA,sub, i.e., water percolating to the deep
layers of the soil) later used as forcing inputs for the RRM
denoted CTRIP.

The CTRIP model (Decharme et al., 2010, 2012, 2019), is
defined on the same mesh grid as ISBA and follows a river
network to laterally transfer water from one cell to another,
down to the interface with the ocean (Oki and Sud, 1998).
The study is based on the CTRIP version from Decharme
et al. (2012) with three reservoirs, as illustrated in Fig. 1a.
The water mass (kg) stored in a groundwater reservoirG and
a floodplain reservoir F interacts with the water mass in the
surface reservoir S representing the river. Only the surface
reservoir S is related to the river network and fills with the
surface runoffQISBA,sur, the outflow from upstream cells and
the delayed drainageQISBA,sub by means of the groundwater
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reservoir. Occasionally, when the amount of water in the river
exceeds a given threshold (defined by the water level in the
reservoir), the river spills into the floodplains.

2.2 CTRIP parameters

Within a 0.5◦× 0.5◦ cell, the surface reservoir is a unique
river channel that may gather multiple real river branches.
Its rectangular cross section is described by its slope s (–),
its width W (m), its bankful depth Hc (m), its length L (m)
and finally a Manning or friction coefficient N (sm−1/3) that
assesses the reach resistance at the bottom of the river.

Each cell’s elevation is deduced from the STN-30p digi-
tal elevation model (http://daac.ornl.gov/ISLSCP_II/islscpii.
shtml, last access: 20 April 2020). These elevations are then
compared to determine the riverbed slope s. Global empiri-
cal geomorphologic relationships are used to define the river
width W and bankful depth Hc. The arc length between grid
cell centers, inflated by a meandering factor µ, results in the
river reach length L. More details on these parameters can be
found in Oki and Sud (1998) and Decharme et al. (2012).

The Manning coefficient N is generally more complicated
to estimate. Following Maidment (1993), it should take val-
ues between 0.025 and 0.03 for natural streams and values
between 0.075 and 0.1 for smaller and mountainous tribu-
taries and also floodplains. Global studies can apply either
a constant (Beighley et al., 2009; Biancamaria et al., 2009)
or a spatially distributed (Decharme et al., 2012) Manning
coefficient. However, it is ordinarily accepted that this pa-
rameter should vary in space and even in time across the river
catchment. Consequently, CTRIP uses a spatially distributed
Manning coefficient based on a simple linear relationship be-
tween the relative stream size in the current cell, denoted SO,
and the size at the river mouth and the source cells, so that

N =Nmin+ (Nmax−Nmin)
SOmax−SO

SOmax−SOmin
. (1)

SO is the stream size relative measure at the current cell,
SOmax (whose value depends on the network depth) the same
measure at the river mouth and SOmin = 1 the measure at
source cells (namely cells without any upstream cells, ac-
cording to the river network). The Manning coefficient is
then set to be constant in time while its spatial values de-
crease towards the river outlet (following the river network),
with values between Nmin = 0.04 and Nmax = 0.06.

All these parameters are eventually essential to estimate
the spatially and time-varying average cross-sectional flow
velocity in the surface reservoir v(t) following the Manning
formula (Manning, 1891):

v(t)=
s

1
2

N

(
WhS(t)

W + 2hS(t)

) 2
3
, (2)

where hS is the river water depth estimated from the river
storage S by

hS =
S

ρWL
(3)

and ρ is the water density. The flow velocity is ultimately
used to estimate the discharge leaving the CTRIP cell:

QS
out(t)=

v(t)

L
S(t). (4)

As the definitions of most of these parameters are based
on empirical relationships, we have to be aware that they in-
evitably have substantial uncertainties.

2.3 CTRIP implementation over the Amazon basin

In this study, we present an OSSE test case over the Ama-
zon River basin, whose hydrology is carefully described in
Molinier et al. (1993) and Wisser et al. (2010). This choice
was motivated by the present work following and comple-
menting studies over the same domain (Emery et al., 2016,
2018).

For ISBA-CTRIP, the Amazon basin is composed of a total
number of 2028 cells. Based on the basin geomorphology
and hydrology (Meade et al., 1991), the basin has been split
into nine spatial regions. These zones, illustrated in Fig. 1b,
were initially introduced in (Emery et al., 2016) and will be
re-exploited here within the application of data assimilation.
For a detailed description of the zones, the reader can refer
to Emery et al. (2016).

2.4 ISBA-CTRIP forcing

For the present study, ISBA-CTRIP needs external atmo-
spheric forcing in order to run. Similarly to Emery et al.
(2016), such data are provided by Global Soil Wetness Pro-
jet 3 (GSWP3, http://hydro.iis.u-tokyo.ac.jp/GSWP3, last
access: 20 April 2020) at a 3-hourly time resolution.

3 Method: synthetic parameter estimation on
ISBA-CTRIP

3.1 OSSE framework

In OSSEs, we introduce beforehand a reference configuration
for the model input parameters that we will consider there-
after to be the truth. From those true parameters, we directly
deduce the true run from a ISBA-CTRIP model integration.
The synthetic observations used for data assimilation are ob-
tained by perturbing the true observables (variables that are
used as observations) using an error model that is representa-
tive of the real observation errors. The control variables (the
model variables to be corrected with data assimilation) first
guess is obtained by directly perturbing the true control vari-
ables. Control error also has to be chosen to be representative
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Figure 1. (a) The ISBA-CTRIP system for a given grid cell. ISBA surface runoff (QISBA,sur) flows into the river/surface reservoir S, and
ISBA gravitational drainage (QISBA,sub) feeds groundwater reservoir G. The surface water is transferred from one cell to another following
the TRIP river routing network. (b) Hydro-geomorphological areas of the Amazon basin from Emery et al. (2016) with the gauge of Óbidos
located by the white circle at the entry of zone 3.

of the real modeling errors. OSSEs are prerequisite tests to
ensure that the implementation of the EnKF algorithm is cor-
rect and adapted to the hydrologic problem under consider-
ation (temporal/spatial length scales, sources of uncertainty,
observation operator, etc.).

3.2 Data assimilation variables

3.2.1 Observation variables and their errors

The observation vector, denoted yo
k at the assimilation cycle

k, is composed of the ny available observations at cycle k:

yo
k =

[
yo
k,1, yo

k,2, . . ., yo
k,ny

]
, (5)

where yo
k,j , j = 1 . . . ny is the j th observation among the ny

at cycle k.
In the present study, the observed variables are water

depths issued from a simplified SWOT simulator. Note that
this simulator will produce water depths, while the real
SWOT satellite will provide water elevations. As in Bianca-
maria et al. (2011) and Pedinotti et al. (2014), this SWOT
simulator replicates SWOT spatio-temporal coverage. At
a given date, the simulator selects the ISBA-CTRIP cells
contained (at least 50 % of their area) in the SWOT ground
tracks. Figure 2 shows some selected ISBA-CTRIP cells un-
der the real swaths over the Amazon basin. The true run is
used as a basis to get the true water depths ytk . Then, in order
to generate the observation vector yo

k from the extracted true
water depths, each of them is randomly perturbed by adding
a white noise characterized by a standard deviation σ o so that

∀ j = 1 . . . ny, yo
k,j = y

t
k,j + ε

o
j , ε

o
j 'N (0,σ o). (6)

Using water depth observations is a strong simplification
of the real SWOT product. Therefore, in order to take into

account that SWOT will provide water elevations and not di-
rectly water depths, this study will look at the assimilation of
both water depths and water anomalies. The method for gen-
erating these anomalies will be further detailed in Sect. 4.2.

The observation error is the addition of the measure-
ment error and the representativeness error. The first is as-
sociated with inherent instrumental errors when processes
are observed and the second represents the error introduced
when the observed and simulated variables are not exactly
the same (in nature or scale). Following the SWOT uncer-
tainty requirements (Esteban Fernandez, 2017), SWOT-like
water surface elevation measurements have a vertical accu-
racy of 10 cm (when averaged over a water area of 1 km2).
This uncertainty accounts for measurement errors due to the
remotely sensed acquisition such as instrumental thermal
noise, speckle, troposphere and ionosphere effects. More-
over, we omit error correlations along the swath so that ob-
servation errors follow a white noise model. Accounting for
spatially correlated observation errors is an active research
area in the field of data assimilation (Guillet et al., 2018),
which is beyond the scope of demonstrating the feasibility of
assimilating SWOT-type data. In the framework of OSSEs,
observed and simulated water depths have the same scale as
the ISBA-CTRIP model which is used to generate both. In
the following, we assume therefore that there is no represen-
tativeness error related to the scale in the system. However, it
is worth acknowledging that we should expect higher errors
in water depths, compared to water elevations, as we do not
know the bathymetry. Assimilation of water depths is per-
formed as a benchmark against which assimilation of water
anomalies will be compared. Ultimately, σ o is chosen as be-
ing equal to 10 cm for all observed variables (i.e., both water
depths and water elevation anomalies).
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Figure 2. SWOT swaths at ISBA-CTRIP resolution over the Amazon basin.

3.2.2 Control, observation space and their errors

The control vector is denoted by xk ∈ Rnx . It includes the
nx uncertain variables to be estimated through the kth data
assimilation cycle. The choice of the control variables deter-
mines the observation operator Hk:

yk =Hk(xk), (7)

where yk are the simulated observables; in other words, Hk

maps the control variables onto the observation space. They
are then compared to the measured observations yo

k during
the data assimilation experiment. This difference is referred
to as the innovation vector.

Following the conclusions from Emery et al. (2016),
we determined that assimilating water-depth-like observa-
tions would be efficient for the correction of the distribu-
tion of the river Manning coefficients. These coefficients are
spatially distributed at the grid-cell scale. However, from
Pedinotti et al. (2014), equifinality issues were raised through
the correcting of the distribution at this scale. They also af-
fected its upstream-to-downstream spatial distribution. We
chose to correct it therefore by applying multiplying fac-
tors defined at a coarser scale, namely at the scale of the
nine hydro-geomorphological areas defined in Sect. 2.3 and
illustrated in Fig. 1b. Within the same area, the Manning co-
efficient values are all identically modified by being multi-
plied by the same factor.

The control vector is composed therefore of the nx multi-
plying factors Nmult,i , i = 1 . . . nx , applied to the correction
of the spatial distribution of the river Manning coefficient:

xk =
[
Nmult,1 . . . Nmult,nx

]T
, (8)

giving nx = 9.
The observation operator Hk maps the control variables

(Manning coefficient dimensionless multiplying factors) into
the observables (river water depths in meters) as follows:

1. first, apply the multiplying factors (xk) to the Manning
coefficient distribution;

2. then, apply the ISBA-CTRIP model M[k−1,k] over the
assimilation window [k− 1,k] to determine the model
states that correspond to the perturbed Manning coeffi-
cient distribution;

3. afterwards, turn the CTRIP surface water storage into
equivalent water depths following Eq. (3) (we denote by
Zk the diagnostic operator turning the surface storage
variable into the water depth variable);

4. finally, select the simulated water depths under the
SWOT swath mask (we denote by Sk this operator).

The observation operator is therefore the composition of
three operators:

yk =
(
Sk ◦Zk ◦M[k−1,k]

)
(xk)=Hk(xk). (9)

Such a nonlinear observation operator Hk is difficult to for-
mulate explicitly, which is why we use an EnKF algorithm to
estimate the Kalman gain in a statistical way.

3.3 The EnKF general formulation

In the EnKF framework, the model M[k−1,k] and observa-
tion Hk operators are generally not linear. The main assump-
tion for the EnKF is to use stochastic ensembles to represent
first- and second-order moments (namely the means and the
covariances) of the control variable errors (Evensen, 1994,
2003). Indeed, it is assumed that the distribution of the en-
semble is similar to that of the error of the control vector,
and it is also assumed that the probability density function
(PDF) of the error is Gaussian and thus well described by its
first and second moments. The background control variables
xb
k (the first guess) are therefore represented by an ensemble

of ne members:

Xb
e,k =

[
x
b,[1]
k x

b,[2]
k . . . x

b,[ne]
k

]
. (10)

To avoid the collapsing of the ensemble, the observation
vector in Eq. (5) is randomized by adding a supplementary
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white noise with the same observation error standard devia-
tion σ o (Burgers et al., 1998) so that

∀ j = 1 . . . ny, ∀ l = 1 . . . ne, y
o,[l]
k,j

= yo
k,j + ε

o,[l]
j , εo

j 'N (0,σ o). (11)

An observation ensemble is generated:

Yo
e,k =

[
y

o,[1]
k y

o,[2]
k . . . y

o,[ne]
k

]
. (12)

Note that alternatives exist to the observation randomization
chosen here. However, for the present study, we choose to
use a full stochastic filter.

Finally, the EnKF analysis step is applied to each member
of the ensemble so that

∀ l = 1 . . . ne, x
a,[l]
k = x

b,[l]
k +Ke,k

(
y

o,[l]
k −Hk(x

b,[l]
k )

)
, (13)

where Ke,k is the Kalman gain. It is built from the control
and observation error covariance matrices P and R and the
linearized observation operator H so that (see Appendix A
for more details)

Ke,k = [PHT
]e,k

(
[HPHT

]e,k +Rk
)−1

. (14)

Figure 3 summarizes the general OSSE framework used
for the present study. The figure reads from top to bottom
and from left to right. An assimilation cycle [k− 1, k] in-
cludes a forecast step where an ensemble of ISBA-CTRIP
simulations is integrated, each member having a different
spatially distributed Manning coefficient; an analysis step
where the ensemble of Manning coefficients is corrected
using synthetic observations through the Kalman filter up-
date in Eq. (13); and a cycling step where the ISBA-CTRIP
model is re-run with these analysis estimates to obtain up-
dated model states.

3.4 SWOT-based data assimilation special feature

3.4.1 Choice of the assimilation window

We use a 21 d assimilation window corresponding to
a SWOT orbit revisit period. During one assimilation win-
dow, every pixel under the observation mask is therefore ob-
served at least once. However, this implies that new obser-
vations are available at times which differ from the update
time. Such a case has already been addressed in several stud-
ies. The ensemble Kalman smoother (EnKS) for example,
introduced by Evensen and Leeuwen (2000), is a direct ex-
tension of the EnKF. It consists of generating an update of
the control variables taking into consideration the present
and all past observations when a new observation is avail-
able. The EnKS is actually a sequential version of the en-
semble smoother (Leeuwen and Evensen, 1996). The lat-
ter takes into consideration all past and future observations,

but turned out to be less effective than the EnKF and the
EnKS (Evensen, 1997; Evensen and Leeuwen, 2000). Alter-
natively, Hunt et al. (2004) developed the 4D-EnKF (4D as in
the 4D-VAR variational assimilation methods; Talagrand and
Courtier, 1987), which also assimilates observations avail-
able at different time steps. In the 4D-EnKF, all model obser-
vations are expressed as a linear combination of the model
observations at analysis time, and the problem is transformed
into a classic EnKF problem. Similarly, Hunt et al. (2007)
also presented an asynchronous version of the local ensemble
transform Kalman filter (Bishop et al., 2001; Ott et al., 2004).
In the framework of the present study, we apply an asyn-
chronous ensemble Kalman filter (AEnKF) as described by
Sakov et al. (2010) and Rakovec et al. (2015). The principle
is to increase the dimension of the state in order to consider
observations at past and analysis times. This increases the di-
mension of the matrices which contain covariances between
observations available at different times. To our knowledge,
the AEnKF has not been used for parameter estimation, as
Sakov et al. (2010) and Rakovec et al. (2015) described the
method for state estimation experiments.

3.4.2 The asynchronous EnKF

To start with, k represents the assimilation cycle index, but it
needs to be distinguished from the day index (within the as-
similation cycle), which is the time unit for the observations.
We will then denote by k(i), i = 1 . . . 21 the ith day in the
current assimilation cycle.

On the ith day of the kth assimilation cycle, the ny,k(i)
observations are gathered in the vector yo

k(i). The overall ob-
servation vector at cycle k, yo

k , then concatenates the 21 daily
observation vectors yo

k(i) so that

yo
k =

[
y

o,T
k(1) . . . y

o,T
k(21)

]T
∈ Rny,k , ny =

21∑
i=1

ny,k(i). (15)

Similarly to the observation vector, the overall observation
operator at the kth cycle, Hk , is the concatenation of the daily
observation operators Hk(i), defined from Eq. (9), but by con-
sidering the operator M integrating the model between k(0)
(= (k− 1)(21)) and k(i) as well as the diagnostic and selec-
tion operators, a time step k(i), Zk(i) and Sk(i).

The observation error covariance matrix Rk is the concate-
nation of the daily observation error covariance matrices:

Rk =


Rk(1)

Rk(2) 0

0
. . .

Rk(21)


with Rk(i) = (σ o)2Iny,k(i) , (16)

where Iny,k(i) is the identity matrix of size ny,k(i)× ny,k(i). It
turns out that

Rk = (σ o)2Iny . (17)
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Figure 3. Data assimilation framework over the assimilation cycle [k− 1, k] including (1) a forecast step to integrate the ensemble of
ISBA-CTRIP simulations, each member having a different spatially distributed Manning coefficient, (2) and an analysis step to correct this
ensemble of Manning coefficients using synthetic observations through the Kalman filter equation and re-run the ISBA-CTRIP model with
these analysis estimates to obtain the updated model states.

Following the same equations as the EnKF, the AEnKF
generates, for each member l = 1 . . . ne of the control en-
semble, an analysis control vector x

a,[l]
k .

3.4.3 Generation of the ensemble

To generate the background control ensemble, we solely
stochastically perturb the variables within the control vec-
tor. Note that it amounts to the assumption that all other
features of the forward model, e.g., the atmospheric forc-
ings, the LSM structure and therefore the surface and sub-
surface runoff, are perfect. While this applies for OSSEs,
such features are never perfect in real-case experiments. This
assumption is further discussed in Sect. 7.

The ensemble of background control vectors Xb
e,k , of

size nx × ne, is generated so that x
b,[l]
k , l = 1 . . . ne follows

a Gaussian law of mean xb
k and covariance matrix Pb

e,k . For
the first assimilation cycle, the control variables’ mean value
xb

1 is arbitrarily chosen as the openloop run input parameter
(the openloop or free run is the model run without assim-
ilation) and the background error covariance matrix Pb

e,1 is
a diagonal matrix defined as

Pb
e,1 =

(
(σ b)2Inx

)
,

with Inx the identity matrix of size nx×nx and σ b the vector
that gathers the initial control variable error standard devia-
tion.

Once the analysis ensemble Xae,k is determined, the next
step is to propagate the correction in time. In a PE frame-
work, it is necessary to re-run the ensemble model runs dur-
ing the current assimilation window with the analysis param-
eters as inputs. Then, the contribution of the updated param-
eters is propagated through the model, up to the end of the
current assimilation window, and put into the model initial
condition for the next assimilation cycle.

For the next assimilation cycles, the background mean es-
timate is set equal to the analysis mean estimate from the
previous cycle:

xb
k = xak−1.

There are different ways of defining Pb
e,k . One could choose

to stochastically estimate Pae,k−1 from the analysis ensem-
ble at the previous cycle and use it as Pb

e,k . Contrary to state
estimation experiments where the analysis error covariance
matrix is propagated in time using the model along with the
control variables, parameter estimation experiments use it
directly as the background error covariance matrix as there
is no dynamical model for the Manning coefficient. The is-
sue with this approach is that the analysis ensemble variance
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can be strongly reduced and provide too small an ensemble
spread to have efficient AEnKF updates in time. To ensure
that enough uncertainty is maintained in the ensemble, one
can maintain the initial background error covariance matrix
through all cycles or impose a minimal value for the variance
elements (see Sect. 5.4).

The background error cross-covariance matrix [PHT
]e,k

and covariance matrix [HPHT
]e,k are directly built from the

definition suggested by Evensen (2004), Moradkhani et al.
(2005) and Durand et al. (2008); see Appendix A for more
details. The matrices are of sizes nx × ny,k and ny,k × ny,k ,
respectively. The elements in the error cross-covariance ma-
trices result directly from the characterization of the back-
ground ensemble; i.e., the parameter uncertainties accounted
for the generation of the control matrix Xb

e,k and H(Xb
e,k).

4 Assimilation strategy

In the incoming experiments, the true control variables xt are

xt = [1.65 0.85 0.85 0.95 0.90 0.95 0.90 1.30 1.40] (18)

and the a priori values at the first assimilation cycle xb
1 are

xb
1 = [1.50 0.50 0.50 0.50 0.50 0.50 0.50 1.50 1.50]. (19)

We increase the Manning value in mountainous zones
(zone 1 in the Andes and zones 8 and 9 over the shields) and
lower the Manning value over the other zones with the low-
est values (in zones 2 and 3) corresponding to the main stem.
Both true and background values were chosen accordingly.

4.1 Sensitivity tests

During one EnKF assimilation cycle, the analysis potentially
depends on the following parameters: model spinup, time pe-
riod (high/low flow), size of the ensemble, and control error.
Note that the observation error also has an impact on the anal-
ysis, but its value is already fixed for all subsequent experi-
ments (see Sect. 5).

A first set of experiments (either model runs or data as-
similation runs) will serve as sensitivity tests for the data as-
similation platform with respect to the above features. Dur-
ing these sensitivity tests, the different features are tested in-
dividually. Table 1 details the range of variations for each
tested feature.

4.2 Assimilation tests

Following the sensitivity tests, a set of three data assimila-
tion experiments will be run and is presented in Table 2.
The data assimilation experiments are divided into two cat-
egories: the first one uses water depths as observations, and
the second considers water depth anomalies. All experiments
are run across a year, corresponding to 17 assimilation cycles
of 21 d.

The first experiment, denoted PE1, is configured from
the aforementioned sensitivity test outcome. The parameters
defining the experiment (spinup, starting date, ensemble size,
control error) will be those which provide the best results in
the sensitivity tests in Table 2. The reference level between
the observed and simulated water depths is also the same.
In other words, there is no bias in the observation. This first
idealized experiment serves as a proof-of-concept as the ob-
servation type matches exactly the type of the simulated vari-
ables. Consequently, with this experiment, we expect to re-
trieve the true value of the control variables and hence the
correct water depths and discharges.

The next step is to head towards more realistic experiments
by including new sources of uncertainties in the data assim-
ilation system and seeing how to address them. In this con-
text, two additional experiments denoted PE2 and PE3 will
be carried out. As an example of new uncertainties, SWOT
will in fact observe water elevations (water surface eleva-
tion as referenced to a geoid or an ellipsoid), whilst CTRIP
produces water depths (water surface elevation as referenced
to the bottom of the river bed). To perform data assimila-
tion, one needs to convert CTRIP water depths (hCTRIP

S ) into
CTRIP water elevations (HCTRIP

alti ) or inversely for SWOT. It
is highly plausible that this operation induces a bias between
the modeled and observed water elevations. A simplified ex-
ample of such a situation is illustrated in Fig. 4. In this case,
SWOT catches the right water elevation dynamic (as hSWOT

S

and hCTRIP
S are equal), but the direct assimilation of SWOT

water elevation H SWOT
alti will induce a bias as the elevations

of the river bed (H SWOT
bed and HCTRIP

bed ) are different between
CTRIP and SWOT.

A solution for the handling of this issue is to assimilate
water depth anomalies instead of water depths. The next data
assimilation experiments, denoted PE2 and PE3, will there-
fore test the feasibility of assimilating anomalies. In these ex-
periments, the water depth anomalies are generated by sub-
tracting a time-averaged reference water depth from the cur-
rent water depth. For all runs (true, openloop or analysis),
this time-averaged reference water depth is computed as the
mean (true, openloop or analysis) water depth over the year
before the start of the assimilation window. It is therefore
different for each member of the ensemble. Firstly, in exper-
iment PE2, there will still be no bias between the observed
and simulated river bathymetry to observe how the assimila-
tion of anomalies performs. Similarly to PE1, we expect this
experiment to be able to retrieve the true control and state
variables. Finally, the last experiment, PE3, which introduces
a constant relative bias between CTRIP and SWOT, will be
carried out. For this experiment, we anticipate that the assim-
ilation will still be able to retrieve the model state variables.
The use of anomalies as observations should limit the impact
of the inserted bias. We do not exclude the possibility how-
ever that it may be slightly echoed in the control variables.
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Table 1. Tested data assimilation parameters in the sensitivity tests.

Parameter Nb run Range

Spinup 18 From 0 windows to 17 windows of 21 d
Starting date 17 Starting 1 Jan 2008 and on, every 21 d
ne 9 [10 20 30 40 50 75 100 150 200]
σ b 13 [0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.2 1.5 1.75]

Figure 4. Illustration of a bias case between the water elevation as observed by SWOT (HSWOT
alti ) and the one simulated by CTRIP (HTRIP

alti )
because of a bias between model and true river beds.

Table 2. List of data assimilation experiments. All experiments are
run over approximately 1 year (17 cycles of 21 d) starting on 1 Jan-
uary 2008. The ensemble size is ne = 25, the observation error stan-
dard deviation is σ o

= 0.1 m and the initial control variable error
standard deviation is σ b

= 0.3.

Simulation name Observation variables Bathymetry bias

PE1 Water depths No
PE2 Water depth anomalies No
PE3 Water depth anomalies Yes

5 Assimilation sensitivity tests

5.1 Model spinup sensitivity tests

The objective of the spinup sensitivity tests is to evaluate the
minimum spinup period required by the model before apply-
ing data assimilation. For this purpose, the model is run sev-
eral times across 2 years, from 19 December 2006 to 22 De-
cember 2008, corresponding to 35 windows of 21 d (735 d).

A first simulation is run using the true Manning spatial
distribution (see Eq. 18) over the 2-year time period. We
then run 18 additional simulations over the same period with
a varying length of the spinup period (see Table 1). Initially,
the simulation setup corresponds to the openloop configu-
ration with the openloop Manning spatial distribution (see
Eq. 19). At a given time during the first year, the Manning

spatial distribution is instantaneously changed to the true dis-
tribution (see Eq. 18) and the model is run until the end of the
2 years with the true Manning spatial distribution. Table B1
summarizes, for each run, the date when the Manning coeffi-
cients are changed. The spinup period (expressed as a num-
ber of windows of 21 d) corresponds to the period between
when the Manning distribution is changed and the start of
the second year, i.e., 1 January 2008.

To evaluate the spinup impact, the relative difference be-
tween the reference run and the test runs is evaluated over
the second year of simulation (from 1 January to 22 Decem-
ber 2008) and averaged over every window of 21 d. Figure 5
presents the results for the spinup sensitivity test. Each test
run (on the x axis) is identified by its corresponding spinup
period length (expressed as the number of windows of 21 d;
see Table B1). We then count (on the y axis) the number of
21 d windows during which the relative error between the test
run and the reference run is higher than a given threshold. We
assume that the spinup period is long enough when this num-
ber is equal to 0. This number is evaluated from the basin-
averaged relative difference and from the relative difference
at the downstream station of Óbidos, both in terms of water
depth and discharge. Note that in Fig. 5, when the number of
spinup windows of 21 d is equal to 4 on the x axis, the change
from the openloop Manning distribution to the true one is
imposed on 9 October 2007. Similarly, when this number is
equal to 10, the change is imposed on 5 June 2007. Note also
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that two thresholds are considered, 0.01 and 0.001. Basin-
averaged results are not sensitive to this threshold. There are
some differences at Óbidos; however, we retain the basin-
averaged results to evaluate the required model spinup pe-
riod.

From all of the results we conclude that a minimum spinup
period of four windows of 21 cycles, i.e., 84 d, is required.
This period corresponds to the basin concentration time or, in
other terms, the required time for the river network to totally
empty. In the following sensitivity tests, the model runs start
on 9 October 2007, to be consistent with these results.

5.2 Data assimilation starting date sensitivity tests

To evaluate the impact of the starting date, a set of 17 one-
cycle long data assimilation experiments is carried out over
the second running year. All experiments have the same gen-
eral configuration, except for the initial date starting from
1 January 2008 and shifted by 21 d until 22 December 2008.
This means that the last experiment starts on 2 December
2008. The performance of each experiment is evaluated by
simply evaluating the spatial average difference between the
analysis and the true Manning coefficients. Results presented
in Fig. 6a and b indicate that there are no significant dif-
ferences between the data assimilation experiments (for all
17 experiments, the error of the updated Manning coeffi-
cients with respect to the true value of the coefficients is be-
low 5 %).

Note that the results in Fig. 6a–b show a slight increase in
the errors for the experiment starting at the end of the year,
presently from 9 September to 2 December 2008. This period
corresponds to the low-flow season in the Amazon hydrolog-
ical cycle. Concerning the sensitivity analysis results (Emery
et al., 2016), the water depths showed a very low sensitivity
to the Manning coefficient during the low-flow season. As
a consequence of data assimilation, the EnKF is less effective
in low-flow seasons in the correction of the Manning coeffi-
cient. The analysis relative error (in Fig. 6a) and the analysis
ensemble dispersion (in Fig. 6b) are therefore higher in the
low-flow season.

For all of the following sensitivity tests, we are only
considering therefore one-assimilation-cycle experiments,
which will start on 1 January 2008.

5.3 Ensemble size sensitivity tests

The next sensitivity test is dedicated to the ensemble size ne,
a critical parameter of any EnKF algorithm. This parame-
ter has to be high enough so as to accurately estimate the
Kalman gain matrix but low enough to limit the computa-
tional cost (the higher ne, the more model runs are required
over each data assimilation window to obtain the analysis es-
timate of the Manning coefficients).

We consider different ensemble sizes through a one-
assimilation-cycle experiment; ne varies between 10 and 200.

Figure 6c compares the analysis Manning coefficient relative
error for each ensemble size ne as in Fig. 6a. Results show
that the analysis relative error decreases when the ensem-
ble size ne increases. For an ensemble size ne equal to 20,
the analysis error is below 5 %. Also, for an ensemble size
ne higher than 50, the analysis relative error has converged
to a constant value, while the analysis ensemble dispersion
shown in Fig. 6d stabilizes.

These results indicate that the ensemble size for future data
assimilation experiments should be at least equal to 20; we
consider ne = 25 in the present study to limit computational
time.

5.4 Model error standard deviation sensitivity tests

In this study, we only consider parameter estimation, imply-
ing that the background error covariance matrix is associ-
ated with the parameter space. We assume that the errors in
the Manning coefficients are independent, so that the back-
ground error covariance matrix is initially specified as a di-
agonal matrix, where all diagonal elements correspond to
the error variances in the spatially varying Manning coeffi-
cients and are equal to the same variance (σ b)2, where σ b

is the background error standard deviation. Similarly to pre-
vious sensitivity tests, we study here the sensitivity of the
data assimilation results to the value of σ b through a one-
assimilation-cycle experiment. Figure 6c shows, in logarith-
mic scale on the x axis, the relative error of the updated Man-
ning coefficient with respect to the true coefficient. The anal-
ysis error curve shows a decreasing behavior until σ b is on
the order of 0.4. It then increases again.

Note that the actual Manning coefficient error before data
assimilation is equal to 0.33 (see the blue curve in Fig. 6c
showing the openloop Manning coefficient error). Consis-
tently, the best data assimilation results are obtained when
σ b provides a good approximation of the real error standard
deviation. Note also that when σ b becomes too small, data
assimilation is less effective. The EnKF algorithm is known
to be under-dispersive. Therefore, for future data assimila-
tion experiments, when updating the error covariance matrix
from one cycle to another, we will need to make sure that the
ensemble dispersion is high enough to cover possible model
behavior over the forecast time window by imposing a min-
imum value for the error variance. Given the sensitivity test
results, the minimum value for σ b is set to 0.005. Thus, in
the following data assimilation experiments, we use the anal-
ysis error covariance matrix as the background error covari-
ance matrix for the next assimilation cycle while applying
the minimum threshold value to the matrix diagonal terms.

6 Data assimilation results

We now present the results from the data assimilation experi-
ments described in Table 2 and in Sect. 4.2. Recall that these
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Figure 5. Results for the spinup sensitivity test. Each test run is represented along the x axis and referenced by its number of spinup windows.
The y axis displays the number of windows during which the relative difference between the true run and the openloop run in which the
Manning spatial distribution is modified is above the chosen threshold. These statistics are obtained for the discharge (a, c) and the water
depth (b, d) and evaluated over the entire basin (a, b) and at the downstream station of Óbidos (c, d). Note that the vertical dashed line
corresponds to the minimum model spinup period retained in this study.

Figure 6. Top: relative error (to the truth) and (bottom) dispersion of the analysis control ensemble (averaged over all control variables) for
the sensitivity tests to (a, b) the data assimilation starting date, (c, d) the ensemble size ne, and (e, f) the background error standard deviation
σ b. For each test, a set of one-cycle long data assimilation experiments is run.
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experiments aim at correcting a set of nine multiplying fac-
tors applied to the Manning coefficient distribution and con-
stant over nine hydro-geomorphological zones dividing the
Amazon basin.

6.1 Assimilation of water depths (PE1)

Figure 7 gives, for each zone, the time evolution of the
mean analysis control variable (red) with its dispersion (even
though it is very narrow) compared to the truth (black) and
the first guess (blue). Similarly, Fig. 8 shows, for each zone,
the time evolution of the analysis water depth (red) compared
to the truth (black) and the openloop (blue). To generate one
plot per zone, we use, for each time step, the ensemble of
water depths over all cells in the zone and estimate the me-
dian value, the first decile and the ninth decile. Furthermore,
zone-averaged normalized RMSEn statistics are given in Ta-
bles D1 and D2 in Appendix D.

In general, the PE1 experiment gives very good results as
the analysis mean for each zone retrieves the true value with
a very low dispersion. However, the data assimilation algo-
rithm features spatially dependent behavior; see Fig. 7.

– Firstly, the control variable for zones 1, 2, 3, 4, 5 and 9
converges instantaneously (in only one assimilation cy-
cle) toward the true values and remains at these true val-
ues for all following cycles.

– A similar behavior can be observed for zones 6, 7 and 8
from the first cycle to around the ninth cycle. For the re-
maining cycles, we notice an increase in the mean anal-
ysis estimate, along with the ensemble dispersion, until
around the thirteenth cycle, and afterwards a decrease
back to the true value.

These observations can be explained with the global sensi-
tivity analysis results for water depths in Emery et al. (2016)
and using Fig. 8.

– Firstly, zones 1, 2 and 3 correspond to the river main
stem, whilst zones 4, 5 and 9 correspond to the main
left-bank tributaries, namely the Caquetá/Japurá River
(zone 4) and the Negro River (zone 5). In these zones,
as the Manning coefficient is directly corrected in the
first assimilation cycle, the analysis water depths (red)
overlap the true water depth (black). Furthermore, Fig. 8
for these zones shows that the openloop (blue) and true
(black) water depths have a very similar variability in
time but differ by a constant bias. The global sensitiv-
ity analysis results in these zones showed a constant
first-order sensitivity in time to the Manning coefficient
all year long. This first-order sensitivity means that the
contribution of the Manning coefficient to the water
depth is linear. Correcting the Manning coefficient in
these zones equates therefore to correcting the bias be-
tween the openloop and the true water depths.

– Subsequently, zones 6, 7 and 8 correspond to right-bank
tributaries, namely the Juruá and Purus rivers (zone 6),
the Madeira River (zone 7) and the Tapajós and Xingu
rivers (zone 8). These right-bank tributary zones are
characterized by a strong seasonal cycle (see Fig. 8,
zones 6–8). By comparing the corresponding plots in
Figs. 7 and 8, we notice that the period when the anal-
ysis control variable spreads from the truth corresponds
to the low-flow season in these zones. According to
the global sensitivity analysis results, water depths in
these zones are less sensitive to the Manning coefficient
in low-flow conditions. Additionally, there is very lit-
tle water in the zones during this period and, conse-
quently, the background control ensemble is not spread
out enough for the EnKF to be efficient. Meanwhile, the
EnKF still sees that the observations are higher than the
model predictions (as seen with the positive innovations
in these zones shown in Fig. E1). In order to increase
the simulated water depth, the EnKF therefore corrects
the Manning coefficient so that its value rises (a higher
Manning coefficient means a slower flow velocity and
then a higher simulated water depth). Finally, once the
low-flow season ends, the analysis Manning coefficient
converges back to the truth (see the last assimilation cy-
cles).

6.2 Assimilation of water anomalies (PE2 and PE3)

The assimilation of anomalies has been tested over two ex-
periments denoted PE2 and PE3 (see Table 2). Note that
the observation error standard deviation σ o remains equal
to 10 cm as, with these experiments, we only aim at test-
ing the feasibility of assimilating water depth anomalies. In
the PE2 experiment, there is no difference of bathymetry be-
tween the simulated and observed water anomalies, whilst
the river bankful depth is different in the PE3 experiment.
Figure 9 gives, for each zone, the time evolution of the mean
analysis control variable for PE2 (orange) and PE3 (purple)
with their dispersion compared to the truth (black) and the
first guess (blue). Again, zone-averaged normalized RMSEn
statistics for these experiments are given in Tables D1 and D2
in Appendix D.

The general configuration of experiments PE1 and PE2 is
the same. The only difference between the two experiments
is the nature of the observations: water depths for PE1 and
water anomalies for PE2. Like experiment PE1, experiment
PE2 (the orange line in Fig. 9) gives very good results. All
control variables converge toward the true values more or
less rapidly. The control variable for zones 4 to 8 instanta-
neously (in only one assimilation cycle) converges toward the
true value, while the convergence is slower for the remaining
zones as around five assimilation cycles are needed to re-
trieve the true value. This slower convergence for these zones
can be explained by the fact that the magnitude of the ob-
served water anomalies is generally smaller compared to the

www.hydrol-earth-syst-sci.net/24/2207/2020/ Hydrol. Earth Syst. Sci., 24, 2207–2233, 2020



2220 C. M. Emery et al.: Assimilation of wide-swath altimetry water elevation anomalies

Figure 7. Control variable assimilation results for the PE1 experiment: evolution of the ensemble-averaged analysis control variable (red
line) for each zone (one zone per subplot) with respect to the assimilation cycle and compared to the corresponding true value (black line)
and the openloop value (blue line).

Figure 8. Water depth assimilation results for the PE1 experiment: daily evolution of the ensemble-averaged analysis water depth (red lines)
compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median (full
line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensembles over all grid cells in the zone are represented.
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Figure 9. Control variable assimilation results for the PE2 and PE3 experiments: evolution of the ensemble-averaged analysis control variable
for the PE2 experiment (orange line) and the PE3 experiment (purple line) for each zone (one zone per subplot) with respect to the assimilation
cycle and compared to the corresponding true value (black line) and the openloop value (blue line).

water depths assimilated in PE1. The ratio between the ob-
servation error and the observations themselves is also then
smaller, resulting in a smaller EnKF gain. The control vari-
able correcting increment is smaller for the anomalies there-
fore than for the water depth, and more cycles are needed to
converge.

As for the PE3 experiment results – the purple line in
Fig. 9 – the assimilation still gives good results, but not as
good as in previous experiments. The control variables still
instantaneously converge toward the truth in zones 4, 5 and 6.
Concerning the other zones, there is no clear convergence to-
wards the true value. Instead, the analysis control variables
either get closer to but remain distinct from the true value
(zones 2 and 3) or temporarily deviate from the truth during
the experiment (zones 1, 7, 8 and 9). Still, despite the con-
trol variables not clearly converging towards the truth, the
simulated water depths using the analysis control variables,
presented in Fig. 10, display a very low deviation from the
truth, confirming the general good performance of the data
assimilation procedure.

Comparing the control variables and water depth time vari-
ations, it appears that the control variables are deviating from
the truth mainly when water depths are decreasing, in be-
tween the high-flow and low-flow seasons. During this pe-
riod, the model goes from a state where floods occur to a state
where there is no flood, particularly in zones 2–3 and 7–8
with a clear seasonal cycle. On the other hand, no flood event
was spotted in zones 4, 5 and 6, where the best results were

obtained. In ISBA-CTRIP, the activation/deactivation of the
flooding scheme is triggered by the simulated water depth ex-
ceeding/becoming lower than the river bankful depth. How-
ever, in experiment PE3, this river bankful depth differs be-
tween the model and the observation because we artificially
inserted a bias between the simulated and observed water
depths. More specifically, the river bankful depth is lower
in the model than in the observations. Therefore, the control
variables deviating from the true value when the water depth
is decreasing are indicative of the simulated water depths pre-
senting floods when there is no flood in the observations. The
activation of the flood scheme changes the dynamics of the
water depth in the river. As part of the water in the river is
spilled into the floodplains, water-level variations in the river
are slower. The flooded model needs then a stronger variation
of the Manning coefficient in order to catch the non-flooded
observed water level. Ultimately, the stronger variations of
the estimated Manning coefficient allow the retrieval of the
true water depths.

7 Discussions

The results presented here are preliminary investigations into
the assimilation of a SWOT water surface elevations prod-
uct into a large-scale hydrological model. This study focused
on the correction of a critical river parameter, here the river
Manning coefficient.
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Figure 10. Water depth assimilation results for the PE3 experiment: daily evolution of the ensemble-averaged analysis water depth (red lines)
compared to the true water depths (black lines) and the openloop water depths (blue line). For each zone (one per subplot), the median (full
line), the first decile (dotted line) and the ninth decile (dashed line) of water depth ensembles over all grid cells in the zone are represented.

For all the simulations, the Manning coefficient distribu-
tion is set to be constant in time. For each grid cell, one value
of the Manning coefficient is used for the entire simulation.
However, in reality, it is commonly accepted that this param-
eter could vary in time, depending on the seasonal cycle or
also some extreme hydrological event such as large flood-
ing events, which can even modify the bathymetry itself. The
results showed that, for this OSSE, the data assimilation is
able to converge quite quickly towards the true value. For
example, for the left-bank tributary zones, namely zones 4
and 5, in every experiment, the associated control variable
converges toward the true value in only one assimilation cy-
cle. In a real-case experiment, we could expect to retrieve
the temporal variations of the Manning coefficient from one
assimilation cycle to another. The good performances of the
assimilation platform are mainly related to the fact that, in
the ISBA-CTRIP model, the water depth diagnostic variables
are sensitive to the Manning coefficient (Emery et al., 2016).
Simulated water depths are not then that sensitive to the Man-
ning coefficient (e.g., in the right-bank tributary zones dur-
ing the low-flow season), and the data assimilation perfor-
mances slightly degrade. These results are specific to the
ISBA-CTRIP model. To apply the same method to another
model and even another region, one needs to first study the
sensitivity of the (other) model to the (other) study region.

Secondly, the study investigates the potential of assimilat-
ing water surface anomalies instead of direct water surface
elevations. The use of water surface anomalies is driven by

the need to avoid potential bias between the control and the
observed variables. Indeed, a bias will likely be introduced
from a discrepancy between the elevation of the river bed in
the model and in the observations with respect to a reference
surface such as a geoid or an ellipsoid (see Fig. 4). Under the
assumption that the water variations are the same between
the model and the observations, the use of anomalies as ob-
served variables should prevent this bias from affecting the
results.

Another likely bathymetry error corresponds to errors in
the river bankful depth, the river width and, more gener-
ally, representativeness errors due to the use of a simpli-
fied bathymetry. This type of error was artificially introduced
by perturbing the model bankful depth in PE3. Specifically
to ISBA-CTRIP, the river bankful depth controls when the
model floods, which has a direct impact on the water depth
dynamics. Background anomalies and observed anomalies
may therefore present different dynamics where either the
observed variables flood while the model variables do not
or inversely. Experiment PE3 illustrated the effect of this
bias on the variations of Manning coefficients. Instead of be-
ing maintained at their true value, their value slightly varied
around the true values to account for the difference in dy-
namics between the model and the observations. However,
one could expect even more variations in the updated control
variables around the true value to increase if more and differ-
ent errors in the bathymetry exist (which will likely happen
with more realistic experiments).
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Furthermore, real-case experiments may suffer from an-
other type of bias originating from errors in the atmospheric
forcing and in the surface and sub-surface runoff provided
by the LSM (i.e., ISBA). Both control the amount of wa-
ter entering the river system. A basic idea to attenuate this
issue would be to consider their uncertainties when gener-
ating the background ensemble. This approach may become
limited when the errors in the forcing are very large. It may
also lead to unrealistic, even non-physical, updated Manning
coefficient values. Besides, when correcting the model’s pa-
rameters, we only re-distribute the water volume within the
basin, whilst such types of errors could actually require ad-
dition/withdrawal of water to/from the system. The potential
solution would then be to include such forcing or LSM vari-
ables in the control vector or to update variables closer to the
observations, including CTRIP’s state variables such as the
water storage. This would change the current framework to
a dual state-parameter estimation approach.

Noting this, there may be an additional advantage in as-
similating water anomalies instead of the direct water depths.
Comparing the Kalman gain between the PE1 experiment
(which assimilated direct water depths) and the PE2 and PE3
experiments (which assimilated water anomalies), the gain
magnitude for the water anomalies is lower than the water
depth gain magnitude. This is to be expected as the Kalman
gain is stochastically estimated from an ensemble of model
runs and the magnitude of the simulated water anomalies is
lower than the simulated water depth magnitude. The conse-
quence of this lower gain is that the correction applied to the
control variable is also lower. If the convergence towards the
true value takes more than one assimilation cycle, the diver-
gence from it in the presence of bias is also diminished.

Beyond the bias issues, real-data assimilation configura-
tion will raise the question of the unknown true parameter
value, if it exists. Firstly, there will be no true estimates of
the control variables with which to compare the assimilated
simulations. The assimilation will be evaluated against the
observed variables directly. Then, with the real data, model
structure error will be introduced. To our knowledge, the
model structure error is still a challenging error to estimate,
and most data assimilation studies assume no model struc-
ture error. However, when using an ensemble-based model,
a possibility for dealing with such structure error is to enrich
the background ensemble by considering more uncertainties
from variables that are not necessarily in the control vec-
tor (including errors in the forcing or parameters from both
the LSM and the RRM). The capacity of such ensembles to
tackle model structure errors can be tested using synthetic
observations based on a different hydrological model.

Additionally, the real SWOT data will have a finer resolu-
tion than the synthetic SWOT data currently used. Still, the
coarser-resolution observations are found to provide infor-
mation to constrain the model and to improve the value of the
spatially varying Manning coefficients. Then, when moving
to real-data assimilation experiments, we can consider aver-

aging the fine-scale SWOT product over a coarse grid cell
corresponding to an ISBA-CTRIP cell so that the resolutions
of the observations and the model match.

Ultimately, heading towards more realistic experiments
also implies more realistic representations of the observation
errors. But more complex errors should be expected for the
real SWOT product. Some correlated errors along the swath
should be expected due to the instrument but also due to
the motion of the satellite and delays due to propagation of
the electromagnetic waves in the ionosphere and atmosphere.
Nevertheless, as part of the mission science requirements, the
sum of all errors should not exceed 10 cm when the measured
data are averaged over 1 km2. There should also be additional
errors affecting the observations that can be described as “de-
tectability errors”, such as “dark water”, “layover” and “false
positive”. “Dark water” pixels will result in missing data and
will not be included in the assimilation, and “layover” pixels
will have a higher vertical error due to surrounding vegeta-
tion and topography, but should also be flagged (Biancamaria
et al., 2016). Eventually, “false positive” pixels (i.e., pixels
classified as water, whereas they correspond to land) will be
the most complicated to anticipate. With these additional er-
rors taken into account in the assimilation framework, one
could expect a slower convergence of the control variables.
Note that these aspects of the measurement errors are related
to water surface elevation products.

8 Conclusions

This study presents a series of OSSEs that assimilates
SWOT-like synthetic observations of water depths and
anomalies into the ISBA-CTRIP large-scale hydrological
model in order to correct the spatially distributed Manning
coefficient. The study is applied over the Amazon River
basin. Prior to the actual data assimilation experiments, a se-
ries of sensitivity tests was conducted to study the sensitivity
of the data assimilation performance to the different features
of the EnKF, in particular the size of the ensemble. Then,
three full-year data assimilation experiments were run based
on the outcomes of the sensitivity tests. For all three experi-
ments, the assimilation was able to track back the true value
of the Manning coefficient distribution.

The sensitivity tests successively studied the sensitivity of
the data assimilation platform to model the spinup period,
the experiment starting date through the hydrological year,
the size of the ensemble for the EnKF and the initial con-
trol variable standard deviation. These tests showed first of
all that a spinup of four windows of 21 d is sufficient for the
transitional period due to a sudden change in the Manning
coefficient distribution in the model. The second sensitivity
test then demonstrated that the data assimilation performance
is not clearly sensitive to the period of the hydrological year
when the experiment is done. The next sensitivity test in-
formed us that an ensemble of 25 members was enough to
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obtain good EnKF performances. Finally, the last sensitiv-
ity test studied the effect of the control variable error stan-
dard deviation, and the best performances were obtained for a
prior standard deviation between 0.05 and 0.75, which corre-
sponds to the order of magnitude of the actual error between
the true and openloop control variables.

Using these results, we run three data assimilation exper-
iments over approximately 1 year (the year 2008). The first
experiment (PE1) assimilated direct pseudo-observations of
water depths. Results showed the capability of the data as-
similation algorithm to converge very quickly toward the true
value, generally in only one assimilation cycle. Still, during
the low-flow season, the assimilation was less effective in the
zones with a clear seasonal cycle. This was explained by the
fact that during this period, water depths are less sensitive to
the Manning coefficient.

The other two experiments (PE2 and PE3) introduced
and tested the assimilation of water surface anomalies. The
anomalies were obtained by subtracting a yearly-averaged
water depth from the current water depth in both the model
and the observations. The first water anomaly assimilation
experiment (PE2) provided very good results, with all the
control variables also converging towards their associated
true values. However, the convergence was slightly slower
than during the assimilation of the water depth (between one
and five assimilation cycles). This is explained by a lower
Kalman gain when updating the Manning coefficient.

The last experiment also assimilated water anomalies
(PE3). For this particular experiment however a bias was
artificially introduced in the river bathymetry. For this ex-
periment, the assimilation was still able to get closer to the
true value, but, for some zones like the mainstream zones,
there was no convergence as the control variables kept vary-
ing around the true value. This phenomenon was explained
by the detection of floods in the model but not in the obser-
vations. Still, the statistics of the Manning coefficient distri-
bution and the simulated water depths after assimilation re-
main as improved compared to the openloop simulations. Ul-
timately, these two experiments demonstrated the feasibility
of assimilating water surface anomalies to correct the Man-
ning coefficient.

These experiments offer several perspectives. They mainly
consist of approaching more realistic data assimilation exper-
iments which take into account more sources of uncertain-
ties between the model and the observations, such as corre-
lated observation errors or uncertainties in the forcing and
the LSM surface and sub-surface runoff. To test the plat-
form’s limitations regarding the DEM/bathymetry bias is-
sue, one can use simulated water surface elevations refer-
enced to a geoid instead of water depths from the model
or even assimilate water depths from another model where
the bathymetry differs. As most applications generally re-
quire a good estimate of the river flow and river water vol-
ume, another lead of an investigation could maintain the
SWOT-based OSSE framework but correct the simulated wa-
ter storage and/or discharge, either as a single state estima-
tion framework or as a dual state parameter estimation frame-
work (similarly to dual discharge bathymetry inference meth-
ods developed by Oubanas et al., 2018, and Brisset et al.,
2018, for some hydraulic models). Moreover, along with
observations of water surface elevations, SWOT will also
provide two-dimensional maps of river widths and surface
slopes. One can also study the possibility of assimilating such
products to constrain other parameters such as the bankful
depth that controls the model flooding scheme.
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Appendix A: Definition of error covariance matrices

The background error cross-covariance matrices [PHT
]e,k

and [HPHT
]e,k are defined based on Evensen (2004), Morad-

khani et al. (2005), and Durand et al. (2008) so that

[PHT
]e,k = (ne− 1)−1

(
Xb
e,k −Xb

•,k.1
T
ne

)
·

(
H(Xb

e,k)−H(Xb
•,k) · 1

T
ne

)T
(A1)

and

[HPHT
]e,k = (ne− 1)−1

(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)
·

(
H(Xb

e,k)−H(Xb
•,k) · 1

T
ne

)T
. (A2)

In those definitions, Xb
e,k is the control matrix storing the

ne control vectors x
b,[l]
k , l = 1 . . . ne from the background

ensemble such that

Xb
e,k =

[
x
b,[1]
k . . . x

b,[Ne]
k

]
.

Next, H(Xb
e,k) represents the same control matrix but

mapped into the observation space:

H(Xb
e,k)=

[
H(xb,[1]k ) . . .H(xb,[ne]

k )
]
.

Also, Xb
•,k and H(Xb

•,k) are the corresponding ensemble
expectations such that

Xb
•,k =

1
ne

ne∑
l=1

x
b,[l]
k H(Xb

•,k)=
1
ne

ne∑
l=1

H(xb,[l]k ).

These vector dimensions are nx and ny,k , respectively. Fi-
nally, 1ne is a vector of size ne containing only 1s.
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Appendix B: Spinup sensitivity test additional tables

Table B1 summarizes, for each run, the date when the Man-
ning coefficients are changed. The spinup period (expressed
as a number of windows of 21 d) corresponds to the period
between when the Manning distribution is changed and the
start of the second year, i.e., 1 January 2008.

Table B1. Spinup sensitivity test setup: each run consists of an approximately 2-year long ISBA-CTRIP run starting on 16 December
2006 (column 2) and ending on 22 December 2008. After a given number of 21 d windows during the first year (column 3), the Manning
distribution is changed to replicate an assimilation update step, while the reference run (row 2) used the same Manning for the entire
run. The period between the instant when the Manning distribution is changed and the beginning of the second year of simulation
corresponds to the spinup period (column 4). The simulated water depth and discharge during the second year of the run are then
compared to the reference run in order to evaluate the impact of the spinup.

Run Starting date Manning distr. change Spinup length (in windows of 21 d)

Reference 16 Dec 2006 – 18 (= 378 d)

1 16 Dec 2006 9 Jan 2007 17 (= 357 d)
2 16 Dec 2006 30 Jan 2007 16 (= 336 d)
3 16 Dec 2006 20 Feb 2007 15 (= 315 d)
4 16 Dec 2006 13 Mar 2007 14 (= 294 d)
5 16 Dec 2006 3 Apr 2007 13 (= 273 d)
6 16 Dec 2006 24 Apr 2007 12 (= 252 d)
7 16 Dec 2006 15 May 2007 11 (= 231 d)
8 16 Dec 2006 5 Jun 2007 10 (= 210 d)
9 16 Dec 2006 26 Jun 2007 9 (= 189 d)
10 16 Dec 2006 17 Jul 2007 8 (= 168 d)
11 16 Dec 2006 7 Aug 2007 7 (= 147 d)
12 16 Dec 2006 28 Aug 2007 6 (= 126 d)
13 16 Dec 2006 18 Sept 2007 5 (= 105 d)
14 16 Dec 2006 9 Oct 2007 4 (= 84 d)
15 16 Dec 2006 30 Oct 2007 3 (= 63 d)
16 16 Dec 2006 20 Nov 2007 2 (= 42 d)
17 16 Dec 2006 11 Dec 2007 1 (= 21 d)
18 16 Dec 2006 1 Jan 2008 0 (= 0 d)
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Appendix C: Sensitivity test results per zone

Figure C1 displays the sensitivity test results (as in Fig. 6)
but for each zone separately.

Figure C1. Top: relative error (to the truth) and (bottom) dispersion of the analysis control ensemble for each zone for the sensitivity
tests to (a, b) the data assimilation starting date, (c, d) the ensemble size ne, and (e, f) the background error standard deviation σ b. For
each test, a set of one-cycle long data assimilation experiments is run. Top only: the relative errors in zone 1 (dark blue line), zone 2
(orange line), zone 3 (yellow line), zone 4 (purple line), zone 5 (green line), zone 6 (light blue line), zone 7 (burgundy red line), zone 8
(pink line) and zone 9 (gray line) are compared to the basin-averaged openloop relative error (black line).
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Appendix D: Assimilation performances at the zone
scales

At each grid cell of the study domain, we estimated the nor-
malized root mean square error (RMSEn) before and after
assimilation by comparing the openloop and mean analysis
simulations, respectively, to the true simulation, for both the
simulated water depth and discharge:

RMSEni =

√
1
N

∑N
n=1(V

∗

n,i −V
t
n,i)

2

V t.,i

, (D1)

where the state variable V is either the discharge or the water
depth, n is the time index, i is the grid-cell index, the t super-
script represents the “truth” and the ∗ superscript represents
either the openloop or analysis ensemble average.

Tables D1 and D2 give these statistics for all experiments
averaged over each control zone. Table D1 shows the water
depth zone-averaged RMSEn and Table D2 shows the dis-
charge zone-averaged RMSEn.

Table D1. Zone-averaged RMSEn for the openloop water depths (row 2) and the ensemble-averaged analysis water depths (rows 3–5)
compared to the true water depths.

Zones 1 2 3 4 5 6 7 8 9

Openloop 7.57 28.84 30.28 33.51 33.41 37.15 38.83 11.48 5.23
PE1 0.48 0.27 0.37 0.34 0.53 0.88 0.76 1.11 1.58
PE2 1.34 0.30 1.12 0.90 0.31 1.49 0.91 0.06 1.40
PE3 2.23 3.52 8.31 1.48 0.57 1.39 1.56 1.67 1.46

Table D2. Zone-averaged RMSEn for the openloop discharges (row 2) and the ensemble-averaged analysis discharges (rows 3–5)
compared to the true discharges.

Zones 1 2 3 4 5 6 7 8 9

Openloop 2.73 4.65 6.46 3.89 5.57 4.63 9.46 3.50 3.26
PE1 0.35 0.38 0.34 0.15 0.25 0.53 0.29 0.30 0.59
PE2 0.74 0.14 0.22 0.08 0.04 0.34 0.85 0.12 0.45
PE3 1.20 4.52 7.52 0.15 0.30 0.35 2.21 1.65 2.14
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Appendix E: Assimilation results: additional figures

Figure E1 displays the evolution along the assimilation cy-
cles of the averaged innovations. The sign of the innovation
will drive the direction of the correction brought by the as-
similation.

– A positive innovation means that the observations are
higher than the model. Physically, the simulated flow
is too fast and the water leaves the river reservoir too
quickly. This means that the river Manning coefficient
needs to be increased to slow the flow.

– A negative innovation means that the observations are
lower than the model. Physically, the simulated flow is
too slow and the water remains in the river reservoir.
This means that the river Manning coefficient needs to
be increased to accelerate the flow.

Figure E1. Evolution of the EnKF innovations (“
(
y

o,[l]
k
−Hk(x

b,[l]
k

)
)

” term in Eq. 13) with respect to the assimilation cycle for PE1
(red line), PE2 (orange line) and PE3 (purple line). For each zone (one zone per subplot), the displayed innovation is the average of all
the innovations in the corresponding zones.
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Code and data availability. The CTRIP code is open source and is
available as a part of the surface modeling platform called SUR-
FEX, which can be downloaded at http://www.cnrm-game-meteo.
fr/surfex/ (Decharme et al., 2012). SURFEX is updated approx-
imately every 3 to 6 months and the CTRIP version presented
in this paper is from SURFEX version 7.3. If more frequent
updates are needed, please follow the procedure informing you
of how to obtain an SVN or Git account in order to access
real-time modifications of the code (see the instructions in the
previous link). The ISBA-CTRIP model is coupled to the DA
codes via the OpenPalm coupler available at http://www.cerfacs.
fr/globc/PALM_WEB/ (Buis et al., 2006). To get the DA rou-
tines coupled to ISBA-CTRIP with OpenPalm, please directly
contact Charlotte Marie Emery (charlotte.emery@jpl.nasa.gov) or
Sylvain Biancamaria (sylvain.biancamaria@legos.obs-mip.fr). To
obtain the GSWP3 forcings, please refer to the following DOI:
https://doi.org/10.20783/DIAS.501 (Kim, 2017).
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