Articles | Volume 23, issue 2
https://doi.org/10.5194/hess-23-669-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-669-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry
Tim Busker
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Department of Physical Geography, Utrecht University, Utrecht, 3584
CS, the Netherlands
Ad de Roo
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Emiliano Gelati
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Christian Schwatke
Deutsches Geodätisches Forschungsinstitut der Technischen
Universität München (DGFI-TUM), Munich, 80333, Germany
Marko Adamovic
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Berny Bisselink
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Jean-Francois Pekel
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Andrew Cottam
European Commission, Joint Research Centre (JRC), Ispra (VA),
21027, Italy
Related authors
No articles found.
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Emiliano Gelati, Zuzanna Zajac, Andrej Ceglar, Simona Bassu, Bernard Bisselink, Marko Adamovic, Jeroen Bernhard, Anna Malagó, Marco Pastori, Fayçal Bouraoui, and Ad de Roo
Adv. Sci. Res., 17, 227–253, https://doi.org/10.5194/asr-17-227-2020, https://doi.org/10.5194/asr-17-227-2020, 2020
Short summary
Short summary
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in several areas of the
Euro-Mediterranean region. In the southern Iberian Peninsula, we estimate the potential effects of reducing irrigation groundwater abstractions to sustainable amounts to prevent long-term decline of groundwater storage. These restrictions may cause crop production losses but halt groundwater depletion and increase river flow during dry periods which is beneficial for ecosystems.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Carmelo Cammalleri, Jürgen V. Vogt, Bernard Bisselink, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 6329–6343, https://doi.org/10.5194/hess-21-6329-2017, https://doi.org/10.5194/hess-21-6329-2017, 2017
Short summary
Short summary
Drought can affect large regions of the world, implying the need for a global monitoring tool. For the JRC Global Drought Observatory (GDO,
http://edo.jrc.ec.europa.eu/gdo/), 3 soil moisture anomaly datasets have been compared, in order to evaluate their consistency. The analysis performed on five macro-regions (North America, Europe, India, southern Africa and Australia) suggests the need to combine these different data sources in order to obtain robust assessments over a variety of conditions.
Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, Patrick Le Moigne, Bertrand Decharme, Jean-Francois Mahfouf, and Jean-Christophe Calvet
Geosci. Model Dev., 10, 3889–3912, https://doi.org/10.5194/gmd-10-3889-2017, https://doi.org/10.5194/gmd-10-3889-2017, 2017
Short summary
Short summary
LDAS-Monde, a global land data assimilation system, is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. It is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the ISBA land surface model coupled with the CTRIP continental hydrological system. Assimilation of SSM and LAI leads to a better representation of evapotranspiration and gross primary production.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Hylke E. Beck, Albert I. J. M. van Dijk, Ad de Roo, Emanuel Dutra, Gabriel Fink, Rene Orth, and Jaap Schellekens
Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, https://doi.org/10.5194/hess-21-2881-2017, 2017
Short summary
Short summary
Runoff measurements for 966 catchments around the globe were used to assess the quality of the daily runoff estimates of 10 hydrological models run as part of tier-1 of the eartH2Observe project. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty.
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
Anaïs Barella-Ortiz, Jan Polcher, Patricia de Rosnay, Maria Piles, and Emiliano Gelati
Hydrol. Earth Syst. Sci., 21, 357–375, https://doi.org/10.5194/hess-21-357-2017, https://doi.org/10.5194/hess-21-357-2017, 2017
Short summary
Short summary
L-band radiometry is considered to be one of the most suitable techniques for estimating surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM. This paper compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones. It shows that models and remote-sensed values agree well in temporal variability, but not in their spatial structures.
D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati
Hydrol. Earth Syst. Sci., 19, 4811–4830, https://doi.org/10.5194/hess-19-4811-2015, https://doi.org/10.5194/hess-19-4811-2015, 2015
Short summary
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
V. Thiemig, B. Bisselink, F. Pappenberger, and J. Thielen
Hydrol. Earth Syst. Sci., 19, 3365–3385, https://doi.org/10.5194/hess-19-3365-2015, https://doi.org/10.5194/hess-19-3365-2015, 2015
M. Adamovic, I. Braud, F. Branger, and J. W. Kirchner
Hydrol. Earth Syst. Sci., 19, 2427–2449, https://doi.org/10.5194/hess-19-2427-2015, https://doi.org/10.5194/hess-19-2427-2015, 2015
Short summary
Short summary
This study explores how catchment heterogeneity and variability can be summarized in simplified models, representing the dominant hydrological processes. We apply simple dynamical system approach (Kirchner, 2009) in the Ardèche catchment (south-east France). The simple dynamical system hypothesis works especially well in wet conditions (peaks and recessions are well modelled) and for granite catchments, which are likely to be characterized by shallow subsurface flow.
I. Braud, P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.-P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.-F. Didon-Lescot, J.-M. Domergue, J. Douvinet, G. Dramais, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.-L. Seidel, J.-D. Taupin, O. Vannier, B. Vincendon, and A. Wijbrans
Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://doi.org/10.5194/hess-18-3733-2014, 2014
N. Wanders, D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 18, 2343–2357, https://doi.org/10.5194/hess-18-2343-2014, https://doi.org/10.5194/hess-18-2343-2014, 2014
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Remote quantification of the trophic status of Chinese lakes
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic–hydraulic forecasting model: a proof of concept
A simple cloud-filling approach for remote sensing water cover assessments
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B
Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions
Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery
River-ice and water velocities using the Planet optical cubesat constellation
Exposure of tourism development to salt karst hazards along the Jordanian Dead Sea shore
Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series
Technical note: Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle
Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model
Observing river stages using unmanned aerial vehicles
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging
Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications
Satellite radar altimetry for monitoring small rivers and lakes in Indonesia
Quantifying river form variations in the Mississippi Basin using remotely sensed imagery
River ice flux and water velocities along a 600 km-long reach of Lena River, Siberia, from satellite stereo
Geometric dependency of Tibetan lakes on glacial runoff
Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data
River monitoring from satellite radar altimetry in the Zambezi River basin
Flood occurrence mapping of the middle Mahakam lowland area using satellite radar
Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling
Hydro-physical processes at the plunge point: an analysis using satellite and in situ data
Regional scale analysis of landform configuration with base-level (isobase) maps
Reconstructing the Tropical Storm Ketsana flood event in Marikina River, Philippines
Reading the bed morphology of a mountain stream: a geomorphometric study on high-resolution topographic data
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024, https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Short summary
Headwaters streams, which are small streams at the top of a watershed, represent two-thirds of the total length of streams, yet their exact locations are still unknown. This article compares different techniques in order to remotely detect the position of these streams. Thus, a database of more than 464 km of headwaters was used to explain what drives their presence. A technique developed in this article makes it possible to detect headwater streams with more accuracy, despite the land uses.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021, https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary
Short summary
We identified ± 150 glacial lakes in the Poiqu River basin (central Himalayas), and we explore the changes in five lakes over the last few decades based on remote sensing images, field surveys, and satellite photos. We reconstruct the lake basin topography, calculate the water capacity, and propose a water balance equation (WBE) to explain glacial lake evolution in response to local weather conditions. The WBE also provides a framework for the water balance in rivers from glacierized sources.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Connor Mullen, Gopal Penny, and Marc F. Müller
Hydrol. Earth Syst. Sci., 25, 2373–2386, https://doi.org/10.5194/hess-25-2373-2021, https://doi.org/10.5194/hess-25-2373-2021, 2021
Short summary
Short summary
The level of lake water is rapidly changing globally, and long-term, consistent observations of lake water extents are essential for ascertaining and attributing these changes. These data are rarely collected and challenging to obtain from satellite imagery. The proposed method addresses these challenges without any local data, and it was successfully validated against lakes with and without ground data. The algorithm is a valuable tool for the reliable historical water extent of changing lakes.
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021, https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary
Short summary
This study comprehensively evaluated 11 satellite radar altimetry missions (including their official retrackers) for lake water level retrieval and developed a strategy for constructing consistent long-term water level records for inland lakes. It is a two-step bias correction and normalization procedure. First, we use Jason-2 as the initial reference to form a consistent TOPEX/Poseidon–Jason series. Then, we use this as the reference to remove the biases with other radar altimetry missions.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Jean Bergeron, Gabriela Siles, Robert Leconte, Mélanie Trudel, Damien Desroches, and Daniel L. Peters
Hydrol. Earth Syst. Sci., 24, 5985–6000, https://doi.org/10.5194/hess-24-5985-2020, https://doi.org/10.5194/hess-24-5985-2020, 2020
Short summary
Short summary
We want to assess how well the Surface Water and Ocean Topography (SWOT) satellite mission will be able to provide information on lake surface water elevation and how much of an impact wind conditions (speed and direction) can have on these retrievals.
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020, https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Short summary
The flow of freshwater in rivers is commonly studied with computer programs known as hydrological models. An important component of those programs lies in the description of the river environment, such as the channel resistance to the flow, that is critical to accurately predict the river flow but is still not well known. Satellite data can be combined with models to enrich our knowledge of these features. Here, we show that the coming SWOT mission can help better know this channel resistance.
Anette Eltner, Hannes Sardemann, and Jens Grundmann
Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, https://doi.org/10.5194/hess-24-1429-2020, 2020
Short summary
Short summary
An automatic workflow is introduced to measure surface flow velocities in rivers. The provided tool enables the measurement of spatially distributed surface flow velocities independently of the image acquisition perspective. Furthermore, the study illustrates how river discharge in previously ungauged and unmeasured regions can be retrieved, considering the image-based flow velocities and digital elevation models of the studied river reach reconstructed with UAV photogrammetry.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
Najib Abou Karaki, Simone Fiaschi, Killian Paenen, Mohammad Al-Awabdeh, and Damien Closson
Hydrol. Earth Syst. Sci., 23, 2111–2127, https://doi.org/10.5194/hess-23-2111-2019, https://doi.org/10.5194/hess-23-2111-2019, 2019
Short summary
Short summary
The Dead Sea shore is a unique salt karst system. Development began in the 1960s, when the water resources that used to feed the Dead Sea were diverted. The water level is falling at more than 1 m yr−1, causing a hydrostatic disequilibrium between the underground fresh water and the base level. Despite these conditions, tourism development projects have flourished. Here, we show that a 10 km long strip of coast that encompasses several resorts is exposed to subsidence, sinkholes and landslides.
Andrew Ogilvie, Gilles Belaud, Sylvain Massuel, Mark Mulligan, Patrick Le Goulven, and Roger Calvez
Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, https://doi.org/10.5194/hess-22-4349-2018, 2018
Short summary
Short summary
Accurate monitoring of surface water extent is essential for hydrological investigation of small lakes (1–10 ha), which supports millions of smallholder farmers. Landsat monitoring of long-term surface water dynamics is shown to be suited to lakes over 3 ha based on extensive hydrometric data from seven field sites over 15 years. MNDWI water classification optimized here for the specificities of small water bodies reduced mean surface area errors by 57 % compared to published global datasets.
Filippo Bandini, Daniel Olesen, Jakob Jakobsen, Cecile Marie Margaretha Kittel, Sheng Wang, Monica Garcia, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 22, 4165–4181, https://doi.org/10.5194/hess-22-4165-2018, https://doi.org/10.5194/hess-22-4165-2018, 2018
Short summary
Short summary
Water depth observations are essential data to forecast flood hazard, predict sediment transport, or monitor in-stream habitats. We retrieved bathymetry with a sonar wired to a drone. This system can improve the speed and spatial scale at which water depth observations are retrieved. Observations can be retrieved also in unnavigable or inaccessible rivers. Water depth observations showed an accuracy of ca. 2.1 % of actual depth, without being affected by water turbidity or bed material.
Kiana Zolfaghari, Claude R. Duguay, and Homa Kheyrollah Pour
Hydrol. Earth Syst. Sci., 21, 377–391, https://doi.org/10.5194/hess-21-377-2017, https://doi.org/10.5194/hess-21-377-2017, 2017
Short summary
Short summary
A remotely-sensed water clarity value (Kd) was applied to improve FLake model simulations of Lake Erie thermal structure using a time-invariant (constant) annual value as well as monthly values of Kd. The sensitivity of FLake model to Kd values was studied. It was shown that the model is very sensitive to variations in Kd when the value is less than 0.5 m-1.
Tomasz Niedzielski, Matylda Witek, and Waldemar Spallek
Hydrol. Earth Syst. Sci., 20, 3193–3205, https://doi.org/10.5194/hess-20-3193-2016, https://doi.org/10.5194/hess-20-3193-2016, 2016
Short summary
Short summary
We study detectability of changes in water surface areas on orthophotomaps. We use unmanned aerial vehicles to acquire visible light photographs. We offer a new method for detecting changes in water surface areas and river stages. The approach is based on the application of the Student's t test, in asymptotic and bootstrapped versions. We test our approach on aerial photos taken during 3-year observational campaign. We detect transitions between all characteristic river stages using drone data.
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary
Short summary
This work shows that satellite thermal infrared images (LANDSAT) can be used to locate and quantify groundwater discharge into a large river (Loire River, France - 100 to 300 m wide). Groundwater discharge rate is found to be highly variable with time and space and maximum during flow recession periods and in winter. The main identified groundwater discharge area into the Loire River corresponds to a known discharge area of the Beauce aquifer.
M. D. Wilson, M. Durand, H. C. Jung, and D. Alsdorf
Hydrol. Earth Syst. Sci., 19, 1943–1959, https://doi.org/10.5194/hess-19-1943-2015, https://doi.org/10.5194/hess-19-1943-2015, 2015
Short summary
Short summary
We use a virtual mission analysis on a ca. 260km reach of the central Amazon River to assess the hydraulic implications of potential measurement errors in swath-altimetry imagery from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission. We estimated water surface slope from imagery of water heights and then derived channel discharge. Errors in estimated discharge were lowest when using longer reach lengths and channel cross-sectional averaging to estimate water slopes.
Y. B. Sulistioadi, K.-H. Tseng, C. K. Shum, H. Hidayat, M. Sumaryono, A. Suhardiman, F. Setiawan, and S. Sunarso
Hydrol. Earth Syst. Sci., 19, 341–359, https://doi.org/10.5194/hess-19-341-2015, https://doi.org/10.5194/hess-19-341-2015, 2015
Short summary
Short summary
This paper investigates the possibility of monitoring small water bodies through Envisat altimetry observation. A novel approach is introduced to identify qualified and non-qualified altimetry measurements by assessing the waveform shapes for each returned radar signal. This research indicates that small lakes (extent < 100 km2) and medium-sized rivers (e.g., 200--800 m in width) can be successfully monitored by satellite altimetry.
Z. F. Miller, T. M. Pavelsky, and G. H. Allen
Hydrol. Earth Syst. Sci., 18, 4883–4895, https://doi.org/10.5194/hess-18-4883-2014, https://doi.org/10.5194/hess-18-4883-2014, 2014
Short summary
Short summary
Many previous studies have used stream gauge data to estimate patterns of river width and depth based on variations in river discharge. However, these relationships may not capture all of the actual variability in width and depth. We have instead mapped the widths of all of the rivers wider than 100 m (and many narrower) in the Mississippi Basin and then used them to also improve estimates of depth as well. Our results show width and depth variations not captured by power-law relationships.
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
V. H. Phan, R. C. Lindenbergh, and M. Menenti
Hydrol. Earth Syst. Sci., 17, 4061–4077, https://doi.org/10.5194/hess-17-4061-2013, https://doi.org/10.5194/hess-17-4061-2013, 2013
N. M. Velpuri and G. B. Senay
Hydrol. Earth Syst. Sci., 16, 3561–3578, https://doi.org/10.5194/hess-16-3561-2012, https://doi.org/10.5194/hess-16-3561-2012, 2012
C. I. Michailovsky, S. McEnnis, P. A. M. Berry, R. Smith, and P. Bauer-Gottwein
Hydrol. Earth Syst. Sci., 16, 2181–2192, https://doi.org/10.5194/hess-16-2181-2012, https://doi.org/10.5194/hess-16-2181-2012, 2012
H. Hidayat, D. H. Hoekman, M. A. M. Vissers, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 16, 1805–1816, https://doi.org/10.5194/hess-16-1805-2012, https://doi.org/10.5194/hess-16-1805-2012, 2012
M. Potes, M. J. Costa, and R. Salgado
Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, https://doi.org/10.5194/hess-16-1623-2012, 2012
A. T. Assireu, E. Alcântara, E. M. L. M. Novo, F. Roland, F. S. Pacheco, J. L. Stech, and J. A. Lorenzzetti
Hydrol. Earth Syst. Sci., 15, 3689–3700, https://doi.org/10.5194/hess-15-3689-2011, https://doi.org/10.5194/hess-15-3689-2011, 2011
C. H. Grohmann, C. Riccomini, and M. A. C. Chamani
Hydrol. Earth Syst. Sci., 15, 1493–1504, https://doi.org/10.5194/hess-15-1493-2011, https://doi.org/10.5194/hess-15-1493-2011, 2011
C. C. Abon, C. P. C. David, and N. E. B. Pellejera
Hydrol. Earth Syst. Sci., 15, 1283–1289, https://doi.org/10.5194/hess-15-1283-2011, https://doi.org/10.5194/hess-15-1283-2011, 2011
S. Trevisani, M. Cavalli, and L. Marchi
Hydrol. Earth Syst. Sci., 14, 393–405, https://doi.org/10.5194/hess-14-393-2010, https://doi.org/10.5194/hess-14-393-2010, 2010
Cited articles
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small
reservoirs storage from satellite remote sensing in inaccessible areas,
Hydrol. Earth Syst. Sci., 21, 6445–6459,
https://doi.org/10.5194/hess-21-6445-2017, 2017.
Balmer, M. and Downing, J.: Carbon dioxide concentrations in eutrophic lakes:
undersaturation implies atmospheric uptake, Inl. Waters, 1, 125–132,
https://doi.org/10.5268/IW-1.2.366, 2011.
Barnett, T. P. and Pierce, D. W.: When will Lake Mead go dry?, Water Resour.
Res., 44, https://doi.org/10.1029/2007WR006704,
2008.
Benenati, E. P., Shannon, J. P., Blinn, D. W., Wilson, K. P., and Hueftle, S.
J.: Reservoir-river linkages: Lake Powell and the Colorado River, Arizona, J.
North Am. Benthol. Soc., 19, 742–755, https://doi.org/10.2307/1468131, 2000.
Berg, H., Michélsen, P., Troell, M., Folke, C., and Kautsky, N.: Managing
aquaculture for sustainability in tropical Lake Kariba, Zimbabwe, Ecol.
Econ., 18, 141–159, https://doi.org/10.1016/0921-8009(96)00018-3, 1996.
Biancamaria, S., Lettenmaier, D. P., and Pavelsky, T. M.: The SWOT Mission
and Its Capabilities for Land Hydrology, Surv. Geophys., 37, 307–337,
https://doi.org/10.1007/s10712-015-9346-y, 2016.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and
irrigation water supply during the 20th century, Water Resour. Res.,
47, https://doi.org/10.1029/2009WR008929, 2011.
Birkett, C. M.: The contribution of TOPEX/POSEIDON to the global monitoring
of climatically sensitive lakes, J. Geophys. Res., 100, 179–25, https://doi.org/10.1029/95JC02125, 1995.
Boergens, E., Dettmering, D., Schwatke, C., and Seitz, F.: Treating the
hooking effect in satellite altimetry data: A case study along the mekong
river and its tributaries, Remote Sens., 8, 91–113, https://doi.org/10.3390/rs8020091, 2016.
Bosch, W., Dettmering, D., and Schwatke, C.: Multi-mission cross-calibration
of satellite altimeters: Constructing a long-term data record for global and
regional sea level change studies, Remote Sens., 6, 2255–2281,
https://doi.org/10.3390/rs6032255, 2014.
Chao, B. F., Wu, Y. H., and Li, Y. S.: Impact of artificial reservoir water
impoundment on global sea level, Science, 320, 212–214,
https://doi.org/10.1126/science.1154580, 2008.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W.: North American
drought: Reconstructions, causes, and consequences, Earth-Sci. Rev., 81,
93–134, https://doi.org/10.1016/j.earscirev.2006.12.002, 2007.
Crétaux, J.-F., Biancamaria, S., Arsen, A., Bergé Nguyen, M., and
Becker, M.: Global surveys of reservoirs and lakes from satellites and
regional application to the Syrdarya river basin, Environ. Res. Lett., 10,
15002, https://doi.org/10.1088/1748-9326/10/1/015002, 2015.
Crétaux, J.-F., Abarca-del-Río, R., Bergé-Nguyen, M., Arsen, A.,
Drolon, V., Clos, G., and Maisongrande, P.: Lake Volume Monitoring from
Space, Surv. Geophys., 37, 269–305, https://doi.org/10.1007/s10712-016-9362-6, 2016.
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J.,
Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J.
M., and Middelburg, J. J.: The global abundance and size distribution of
lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 2388–2397,
https://doi.org/10.4319/lo.2006.51.5.2388, 2006.
Duan, Z. and Bastiaanssen, W. G. M.: Estimating water volume variations in
lakes and reservoirs from four operational satellite altimetry databases and
satellite imagery data, Remote Sens. Environ., 134, 403–416,
https://doi.org/10.1016/j.rse.2013.03.010, 2013.
Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A.:
Preliminary results of ENVISAT RA-2-derived water levels validation over the
Amazon basin, Remote Sens. Environ., 100, 252–264,
https://doi.org/10.1016/j.rse.2005.10.027, 2006a.
Frappart, F., Do Minh, K., L'Hermitte, J., Cazenave, A., Ramillien, G., Le
Toan, T., and Mognard-Campbell, N.: Water volume change in the lower Mekong
from satellite altimetry and imagery data, Geophys. J. Int., 167, 570–584,
https://doi.org/10.1111/j.1365-246X.2006.03184.x, 2006b.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West
Siberian peatlands by 2100, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2004GL022025, 2005.
Fu, L. L. and Cazenave, A.: Satellite altimetry and earth sciences: a
handbook of techniques and applications, Academic Press, 2001.
Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large
reservoir storage from satellite remote sensing, Water Resour. Res., 48,
1–12, https://doi.org/10.1029/2012WR012063, 2012.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki,
N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.
D., Wada, Y., and Wisser, D.: Global water resources affected by human
interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014.
Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for global
river routing models, J. Hydrol., 327, 22–41,
https://doi.org/10.1016/j.jhydrol.2005.11.011, 2006.
Holdren, G. C. and Turner, K.: Characteristics of Lake Mead, Arizona-Nevada,
Lake Reserv. Manag., 26, 230–239, https://doi.org/10.1080/07438141.2010.540699, 2010.
Hwang, C., Guo, J., Deng, X., Hsu, H. Y., and Liu, Y.: Coastal gravity
anomalies from retracked Geosat/GM altimetry: Improvement, limitation and the
role of airborne gravity data, J. Geodesy, 80, 204–216,
https://doi.org/10.1007/s00190-006-0052-x, 2006.
Kouraev, A. V., Zakharova, E. A., Samain, O., Mognard, N. M., and Cazenave,
A.: Ob' river discharge from TOPEX/Poseidon satellite altimetry (1992–2002),
Remote Sens. Environ., 93, 238–245, https://doi.org/10.1016/j.rse.2004.07.007, 2004.
LakeNet: Lake profile: Kariba, available at:
http://www.worldlakes.org/lakedetails.asp?lakeid=8360 (last access: 2
January 2018), 2003.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Liu, Q.: Interlinking climate change with water-energy-food nexus and related
ecosystem processes in California case studies, Ecol. Process.,
5, 144 pp., https://doi.org/10.1186/s13717-016-0058-0, 2016.
Meybeck, M.: Global distribution of lakes, in Physics and Chemistry of Lakes,
Spinger, Berlin, Germany, 1–35, 1995.
Micklin, P.: The future Aral Sea: hope and despair, Environ. Earth Sci., 75,
844, 1–15, https://doi.org/10.1007/s12665-016-5614-5,
2016.
Muala, E., Mohamed, Y. A., Duan, Z., and van der Zaag, P.: Estimation of
reservoir discharges from Lake Nasser and Roseires Reservoir in the Nile
Basin using satellite altimetry and imagery data, Remote Sens., 6,
7522–7545, https://doi.org/10.3390/rs6087522, 2014.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes,
Nature, 540, 1–19, https://doi.org/10.1038/nature20584,
2016.
Ran, L. and Lu, X. X.: Delineation of reservoirs using remote sensing and
their storage estimate: An example of the Yellow River basin, China, Hydrol.
Process., 26, 1215–1229, https://doi.org/10.1002/hyp.8224, 2012.
Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M., and Hess,
L. L.: Outgassing from Amazonian rivers and wetlands as a large tropical
source of atmospheric CO2, Nature, 416, 617–620,
https://doi.org/10.1038/416617a, 2002.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: DAHITI – An
innovative approach for estimating water level time series over inland waters
using multi-mission satellite altimetry, Hydrol. Earth Syst. Sci., 19,
4345–4364, https://doi.org/10.5194/hess-19-4345-2015, 2015a.
Schwatke, C., Dettmering, D., Börgens, E., and Bosch, W.: Potential of
SARAL/AltiKa for Inland Water Applications, Mar. Geod., 38, 626–643,
https://doi.org/10.1080/01490419.2015.1008710, 2015b.
Schwatke, C., Dettmering, D., Bosch, W., and Seitz, F.: Database for
Hydrological Time Series of Inland Waters (DAHITI), Technische
Universität München, available at:
http://dahiti.dgfi.tum.de/en/ (last access: 14 July 2018), 2015.
Smith, L. C. and Pavelsky, T. M.: Remote sensing of volumetric storage
changes in lakes, Earth Surf. Proc. Land., 34, 1353–1358,
https://doi.org/10.1002/esp.1822, 2009.
Tong, X., Pan, H., Xie, H., Xu, X., Li, F., Chen, L., Luo, X., Liu, S., Chen,
P., and Jin, Y.: Estimating water volume variations in Lake Victoria over the
past 22 years using multi-mission altimetry and remotely sensed images,
Remote Sens. Environ., 187, 400–413, https://doi.org/10.1016/j.rse.2016.10.012, 2016.
Tourian, M. J., Schwatke, C., and Sneeuw, N.: River discharge estimation at
daily resolution from satellite altimetry over an entire river basin, J.
Hydrol., 546, 230–247, https://doi.org/10.1016/j.jhydrol.2017.01.009, 2017.
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global
inventory of lakes based on high-resolution satellite imagery, Geophys. Res.
Lett., 41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K., and Knudsen, P.:
CryoSat-2 altimetry for river level monitoring – Evaluation in the
Ganges-Brahmaputra River basin, Remote Sens. Environ., 168, 80–89,
https://doi.org/10.1016/j.rse.2015.05.025, 2015.
Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A.
S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek, J. G., and Roy, D. P.:
The global Landsat archive: Status, consolidation, and direction, Remote
Sens. Environ., 185, 271–283, https://doi.org/10.1016/j.rse.2015.11.032, 2016.
Zajac, Z., Revilla-Romero, B., Salamon, P., Burek, P., Hirpa, F., and Beck,
H.: The impact of lake and reservoir parameterization on global streamflow
simulation, J. Hydrol., 548, 552–568, https://doi.org/10.1016/j.jhydrol.2017.03.022,
2017.
Zakharova, E. A., Kouraev, A. V., Cazenave, A., and Seyler, F.: Amazon River
discharge estimated from TOPEX/Poseidon altimetry, Comptes Rendus Geosci.,
338, 188–196, https://doi.org/10.1016/j.crte.2005.10.003, 2006.
Zhang, G., Xie, H., Kang, S., Yi, D., and Ackley, S. F.: Monitoring lake
level changes on the Tibetan Plateau using ICESat altimetry data
(2003–2009), Remote Sens. Environ., 115, 1733–1742,
https://doi.org/10.1016/j.rse.2011.03.005, 2011.
Zhang, J., Xu, K., Yang, Y., Qi, L., Hayashi, S., and Watanabe, M.: Measuring
water storage fluctuations in Lake Dongting, China, by Topex/Poseidon
satellite altimetry, Environ. Monit. Assess., 115, 23–37,
https://doi.org/10.1007/s10661-006-5233-9, 2006.
Zhou, Y., Jin, S., Tenzer, R., and Feng, J.: Water storage variations in the
Poyang Lake Basin estimated from GRACE and satellite altimetry, Geod.
Geodyn., 7, 108–116, https://doi.org/10.1016/j.geog.2016.04.003, 2016.
Short summary
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015 using remote sensing alone. This study improves on previous methodologies by using the Global Surface Water dataset developed by the Joint Research Centre, which allowed for volume calculations on a global scale, a high resolution (30 m) and back to 1984 using very detailed lake area dynamics. Using 18 in situ volume time series as validation, our volume estimates showed a high accuracy.
This paper estimates lake and reservoir volume variations over all continents from 1984 to 2015...