Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4851-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-4851-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially dependent flood probabilities to support the design of civil infrastructure systems
Phuong Dong Le
CORRESPONDING AUTHOR
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia
Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
Michael Leonard
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia
Seth Westra
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia
Related authors
No articles found.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Wenyan Wu, Seth Westra, and Michael Leonard
Hydrol. Earth Syst. Sci., 25, 2821–2841, https://doi.org/10.5194/hess-25-2821-2021, https://doi.org/10.5194/hess-25-2821-2021, 2021
Short summary
Short summary
Flood probability estimation is important for applications such as land use planning, reservoir operation, infrastructure design and safety assessments. However, it is a challenging task, especially in estuarine areas where floods are caused by both intense rainfall and storm surge. This study provides a review of approaches to flood probability estimation in these areas. Based on analysis of a real-world river system, guidance on method selection is provided.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Bree Bennett, Mark Thyer, Michael Leonard, Martin Lambert, and Bryson Bates
Hydrol. Earth Syst. Sci., 23, 4783–4801, https://doi.org/10.5194/hess-23-4783-2019, https://doi.org/10.5194/hess-23-4783-2019, 2019
Short summary
Short summary
A new stochastic rainfall model evaluation framework is introduced, with three key features: (1) streamflow-based, to directly evaluate modelled streamflow performance, (2) virtual, to avoid confounding errors in hydrological models or data, and (3) targeted, to isolate errors according to specific sites/months. The framework identified the importance of rainfall in the
wetting-upmonths for providing reliable predictions of streamflow over the entire year despite their low flow volumes.
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Hong Xuan Do, Lukas Gudmundsson, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, https://doi.org/10.5194/essd-10-765-2018, 2018
Short summary
Short summary
The production of 30 959 daily streamflow time series in the Global Streamflow and Metadata Archive (GSIM) project is presented. The paper also describes the development of three metadata products that are freely available. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Lukas Gudmundsson, Hong Xuan Do, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, https://doi.org/10.5194/essd-10-787-2018, 2018
Short summary
Short summary
Time-series indices characterizing streamflow at annual, seasonal and monthly resolution at more than 30 000 stations around the world are presented. The data belong to the Global Streamflow and Metadata Archive (GSIM) and allow for an assessment of water balance components, hydrological extremes and the seasonality of water availability. The quality of the data is tested using automated methods to aid potential users to gauge the suitability of the data for specific applications.
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Stochastic approaches
Uncertainty estimation of regionalised depth–duration–frequency curves in Germany
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Characteristics and process controls of statistical flood moments in Europe – a data-based analysis
Objective functions for information-theoretical monitoring network design: what is “optimal”?
Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach
Numerical investigation on the power of parametric and nonparametric tests for trend detection in annual maximum series
Technical note: Stochastic simulation of streamflow time series using phase randomization
Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 1: theoretical development
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 2: numerical application
Characterizing the spatial variations and correlations of large rainstorms for landslide study
Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic
Dealing with uncertainty in the probability of overtopping of a flood mitigation dam
Flood frequency analysis of historical flood data under stationary and non-stationary modelling
Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland
Towards modelling flood protection investment as a coupled human and natural system
A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation
Examination of homogeneity of selected Irish pooling groups
Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models
Design flood hydrographs from the relationship between flood peak and volume
Introducing empirical and probabilistic regional envelope curves into a mixed bounded distribution function
HESS Opinions "A random walk on water"
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 2075–2097, https://doi.org/10.5194/hess-27-2075-2023, https://doi.org/10.5194/hess-27-2075-2023, 2023
Short summary
Short summary
Design rainfall volumes at different duration and frequencies are necessary for the planning of water-related systems and facilities. As the procedure for deriving these values is subjected to different sources of uncertainty, here we explore different methods to estimate how precise these values are for different duration, locations and frequencies in Germany. Combining local and spatial simulations, we estimate tolerance ranges from approx. 10–60% for design rainfall volumes in Germany.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021, https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Short summary
We investigate statistical properties of observed flood series on a European scale. There are pronounced regional patterns, for instance: regions with strong Atlantic influence show less year-to-year variability in the magnitude of observed floods when compared with more arid regions of Europe. The hydrological controls on the patterns are quantified and discussed. On the European scale, climate seems to be the dominant driver for the observed patterns.
Hossein Foroozand and Steven V. Weijs
Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021, https://doi.org/10.5194/hess-25-831-2021, 2021
Short summary
Short summary
In monitoring network design, we have to decide what to measure, where to measure, and when to measure. In this paper, we focus on the question of where to measure. Past literature has used the concept of information to choose a selection of locations that provide maximally informative data. In this paper, we look in detail at the proper mathematical formulation of the information concept as an objective. We argue that previous proposals for this formulation have been needlessly complicated.
Manuela I. Brunner and Eric Gilleland
Hydrol. Earth Syst. Sci., 24, 3967–3982, https://doi.org/10.5194/hess-24-3967-2020, https://doi.org/10.5194/hess-24-3967-2020, 2020
Short summary
Short summary
Stochastically generated streamflow time series are used for various water management and hazard estimation applications. They provide realizations of plausible but yet unobserved streamflow time series with the same characteristics as the observed data. We propose a stochastic simulation approach in the frequency domain instead of the time domain. Our evaluation results suggest that the flexible, continuous simulation approach is valuable for a diverse range of water management applications.
Vincenzo Totaro, Andrea Gioia, and Vito Iacobellis
Hydrol. Earth Syst. Sci., 24, 473–488, https://doi.org/10.5194/hess-24-473-2020, https://doi.org/10.5194/hess-24-473-2020, 2020
Short summary
Short summary
We highlight the need for power evaluation in the application of null hypothesis significance tests for trend detection in extreme event analysis. In a wide range of conditions, depending on the underlying distribution of data, the test power may reach unacceptably low values. We propose the use of a parametric approach, based on model selection criteria, that allows one to choose the null hypothesis, to select the level of significance, and to check the test power using Monte Carlo experiments.
Manuela I. Brunner, András Bárdossy, and Reinhard Furrer
Hydrol. Earth Syst. Sci., 23, 3175–3187, https://doi.org/10.5194/hess-23-3175-2019, https://doi.org/10.5194/hess-23-3175-2019, 2019
Short summary
Short summary
This study proposes a procedure for the generation of daily discharge data which considers temporal dependence both within short timescales and across different years. The simulation procedure can be applied to individual and multiple sites. It can be used for various applications such as the design of hydropower reservoirs, the assessment of flood risk or the assessment of drought persistence, and the estimation of the risk of multi-year droughts.
Cong Jiang, Lihua Xiong, Lei Yan, Jianfan Dong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 23, 1683–1704, https://doi.org/10.5194/hess-23-1683-2019, https://doi.org/10.5194/hess-23-1683-2019, 2019
Short summary
Short summary
We present the methods addressing the multivariate hydrologic design applied to the engineering practice under nonstationary conditions. A dynamic C-vine copula allowing for both time-varying marginal distributions and a time-varying dependence structure is developed to capture the nonstationarities of multivariate flood distribution. Then, the multivariate hydrologic design under nonstationary conditions is estimated through specifying the design criterion by average annual reliability.
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 1993–2005, https://doi.org/10.5194/hess-22-1993-2018, https://doi.org/10.5194/hess-22-1993-2018, 2018
Short summary
Short summary
A new method is proposed to solve the stochastic unsteady open-channel flow system in only one single simulation, as opposed to the many simulations usually done in the popular Monte Carlo approach. The derivation of this new method gave a deterministic and linear Fokker–Planck equation whose solution provided a powerful and effective approach for quantifying the ensemble behavior and variability of such a stochastic system, regardless of the number of parameters causing its uncertainty.
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 2007–2021, https://doi.org/10.5194/hess-22-2007-2018, https://doi.org/10.5194/hess-22-2007-2018, 2018
Short summary
Short summary
A newly proposed method is applied to solve a stochastic unsteady open-channel flow system (with an uncertain roughness coefficient) in only one simulation. After comparing its results to those of the Monte Carlo simulations, the new method was found to adequately predict the temporal and spatial evolution of the probability density of the flow variables of the system. This revealed the effectiveness, strength, and time efficiency of this new method as compared to other popular approaches.
Liang Gao, Limin Zhang, and Mengqian Lu
Hydrol. Earth Syst. Sci., 21, 4573–4589, https://doi.org/10.5194/hess-21-4573-2017, https://doi.org/10.5194/hess-21-4573-2017, 2017
Short summary
Short summary
Rainfall is the primary trigger of landslides. However, the rainfall intensity is not uniform in space, which causes more landslides in the area of intense rainfall. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a trend surface and a random field of residuals. The scales of fluctuation of the residuals are found between 5 km and 30 km.
Elena Shevnina, Ekaterina Kourzeneva, Viktor Kovalenko, and Timo Vihma
Hydrol. Earth Syst. Sci., 21, 2559–2578, https://doi.org/10.5194/hess-21-2559-2017, https://doi.org/10.5194/hess-21-2559-2017, 2017
Short summary
Short summary
This paper presents the probabilistic approach to evaluate design floods in a changing climate, adapted in this case to the northern territories. For the Russian Arctic, the regions are delineated, where it is suggested to correct engineering hydrological calculations to account for climate change. An example of the calculation of a maximal discharge of 1 % exceedance probability for the Nadym River at Nadym is provided.
Eleni Maria Michailidi and Baldassare Bacchi
Hydrol. Earth Syst. Sci., 21, 2497–2507, https://doi.org/10.5194/hess-21-2497-2017, https://doi.org/10.5194/hess-21-2497-2017, 2017
Short summary
Short summary
In this research, we explored how the sampling uncertainty of flood variables (flood peak, volume, etc.) can reflect on a structural variable, which in our case was the maximum water level (MWL) of a reservoir controlled by a dam. Next, we incorporated additional information from different sources for a better estimation of the uncertainty in the probability of exceedance of the MWL. Results showed the importance of providing confidence intervals in the risk assessment of a structure.
M. J. Machado, B. A. Botero, J. López, F. Francés, A. Díez-Herrero, and G. Benito
Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, https://doi.org/10.5194/hess-19-2561-2015, 2015
Short summary
Short summary
A flood frequency analysis using a 400-year historical flood record was carried out using a stationary model (based on maximum likelihood estimators) and a non-stationary model that incorporates external covariates (climatic and environmental). The stationary model was successful in providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.
L. Gaál, P. Molnar, and J. Szolgay
Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, https://doi.org/10.5194/hess-18-1561-2014, 2014
P. E. O'Connell and G. O'Donnell
Hydrol. Earth Syst. Sci., 18, 155–171, https://doi.org/10.5194/hess-18-155-2014, https://doi.org/10.5194/hess-18-155-2014, 2014
A. I. Requena, L. Mediero, and L. Garrote
Hydrol. Earth Syst. Sci., 17, 3023–3038, https://doi.org/10.5194/hess-17-3023-2013, https://doi.org/10.5194/hess-17-3023-2013, 2013
S. Das and C. Cunnane
Hydrol. Earth Syst. Sci., 15, 819–830, https://doi.org/10.5194/hess-15-819-2011, https://doi.org/10.5194/hess-15-819-2011, 2011
B. A. Botero and F. Francés
Hydrol. Earth Syst. Sci., 14, 2617–2628, https://doi.org/10.5194/hess-14-2617-2010, https://doi.org/10.5194/hess-14-2617-2010, 2010
L. Mediero, A. Jiménez-Álvarez, and L. Garrote
Hydrol. Earth Syst. Sci., 14, 2495–2505, https://doi.org/10.5194/hess-14-2495-2010, https://doi.org/10.5194/hess-14-2495-2010, 2010
B. Guse, Th. Hofherr, and B. Merz
Hydrol. Earth Syst. Sci., 14, 2465–2478, https://doi.org/10.5194/hess-14-2465-2010, https://doi.org/10.5194/hess-14-2465-2010, 2010
D. Koutsoyiannis
Hydrol. Earth Syst. Sci., 14, 585–601, https://doi.org/10.5194/hess-14-585-2010, https://doi.org/10.5194/hess-14-585-2010, 2010
Cited articles
Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retallick, M.,
and Testoni, I.: Australian Rainfall and Runoff: A Guide to Flood
Estimation, ©Commonwealth of Australia (Geoscience Australia),
available at: http://book.arr.org.au.s3-website-ap-southeast-2.amazonaws.com/ (last access: 25 October 2019), 2016.
Bárdossy, A. and Pegram, G. G. S.: Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299–2314,
https://doi.org/10.5194/hess-13-2299-2009, 2009.
Baxevani, A. and Lennartsson, J.: A spatiotemporal precipitation generator
based on a censored latent Gaussian field, Water Resour. Res., 51,
4338–4358, https://doi.org/10.1002/2014WR016455, 2015.
Bennett, B., Lambert, M., Thyer, M., Bates, B. C., and Leonard, M.: Estimating Extreme Spatial Rainfall Intensities, J. Hydrol. Eng., 21, 04015074, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001316, 2016a.
Bennett, B., Thyer, M., Leonard, M., Lambert, M., and Bates, B.: A
comprehensive and systematic evaluation framework for a parsimonious daily
rainfall field model, J. Hydrol., 556, 1123–1138, https://doi.org/10.1016/j.jhydrol.2016.12.043, 2016b.
Bernard, M. M.: Formulas for rainfall intensities of long duration, T. Am. Soc. Civ. Eng., 96, 592–606, 1932.
Blanchet, J. and Creutin, J.-D.: Co-Occurrence of Extreme Daily Rainfall in
the French Mediterranean Region, Water Resour. Res., 53, 9330–9349,
https://doi.org/10.1002/2017wr020717, 2017.
Boughton, W., and Droop, O.: Continuous simulation for design flood
estimation – a review, Environ. Model. Softw., 18, 309–318,
https://doi.org/10.1016/S1364-8152(03)00004-5, 2003.
Boyd, M. J., Rigby, E. H., and VanDrie, R.: WBNM – a computer software package for flood hydrograph studies, Environm. Softw., 11, 167–172,
https://doi.org/10.1016/S0266-9838(96)00042-1, 1996.
Cameron, D. S., Beven, K. J., Tawn, J., Blazkova, S., and Naden, P.: Flood
frequency estimation by continuous simulation for a gauged upland catchment
(with uncertainty), J. Hydrol., 219, 169–187, https://doi.org/10.1016/S0022-1694(99)00057-8, 1999.
Carreau, J., Neppel, L., Arnaud, P., and Cantet, P.: Extreme Rainfall Analysis at Ungaug ed Sites in the South of France: Comparison of Three Approaches, Jour nal de la Société Française de Statistique, 154, 119–138, 2013.
Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, McGraw-Hill, New York, 1988.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in:
Springer Series in Statistics, Springer, London, 2001.
Coles, S., Heffernan, J., and Tawn, J.: Dependence Measures for Extreme Value Analyses, Extremes, 2, 339–365, https://doi.org/10.1023/a:1009963131610, 1999.
Davison, A. C. and Smith, R. L.: Models for exceedances over high thresholds, J. Roy. Stat. Soc. B, 52, 393–442, 1990.
Davison, A. C., Padoan, S. A., and Ribatet, M.: Statistical Modeling of Spatial Extremes, Stat. Sci., 27, 161–186, https://doi.org/10.1214/11-STS376, 2012.
de Haan, L.: A Spectral Representation for Max-stable Processes, Ann. Probabil., 12, 1194–1204, 1984.
Demarta, S. and McNeil, A. J.: The t Copula and Related Copulas, International Statistical Review/Revue Internationale de Statistique, 73,
111–129, 2005.
Dombry, C., Engelke, S., and Oesting, M.: Exact simulation of max-stable
processes, Biometrika, 103, 303–317, 2016.
Durocher, M., Chebana, F., and Ouarda, T. B. M. J.: On the prediction of
extreme flood quantiles at ungauged locations with spatial copula, J. Hydrol., 533, 523-532, https://doi.org/10.1016/j.jhydrol.2015.12.029, 2016.
Favre, A. C., Adlouni, S. E., Perreault, L., Thiémonge, N., and Bobée, B.: Multivariate hydrological frequency analysis using copulas,
Water Resour. Res., 40, W01101, https://doi.org/10.1029/2003WR002456, 2004.
Gupta, A. S. and Tarboton, D. G.: A tool for downscaling weather data from
large-grid reanalysis products to finer spatial scales for distributed
hydrological applications, Environ. Model. Softw., 84, 50-69,
https://doi.org/10.1016/j.envsoft.2016.06.014, 2016.
He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous streamflow simulation, Hydrol. Earth Syst. Sci., 15, 3539–3553, https://doi.org/10.5194/hess-15-3539-2011, 2011.
Hegnauer, M., Beersma, J., Van den Boogaard, H., Buishand, T., and Passchier, R.: Generator of Rainfall and Discharge Extremes (GRADE) for the Rhine and Meuse basins, Final report of GRADE 2.0, Document extern project, available at: http://publications.deltares.nl/1209424_004_0018.pdf (last access: 25 October 2019), 2014.
Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis – An Approach Based on L-Moments, Cambridge University Press, Cambridge, UK, 1997.
Hüsler, J. and Reiss, R.-D.: Maxima of normal random vectors: Between
independence and complete dependence, Stat. Probabil. Lett., 7, 283–286, https://doi.org/10.1016/0167-7152(89)90106-5, 1989.
Kao, S.-C. and Govindaraju, R. S.: Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas, Water Resour. Res., 44, W02415, https://doi.org/10.1029/2007WR006261, 2008.
Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily spatiotemporal
precipitation simulation using latent and transformed Gaussian processes,
Water Resour. Res., 48, W01523, https://doi.org/10.1029/2011WR011105, 2012.
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework
for studying rainfall intensity-duration-frequency relationships, J. Hydrol., 206, 118–135, https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.
Kuichling, E.: The relation between the rainfall and the discharge of sewers
in populous districts, T. Am. Soc. Civ. Eng., 20, 1–56, 1889.
Laurenson, E. M. and Mein, R. G.: RORB Version 4 Runoff Routing Program User Manual, Monash University Department of Civil Engineering, Clayton, Victoria, 1990.
Le, P. D., Davison, A. C., Engelke, S., Leonard, M., and Westra, S.: Dependence properties of spatial rainfall extremes and areal reduction
factors, J. Hydrol., 565, 711–719, https://doi.org/10.1016/j.jhydrol.2018.08.061, 2018a.
Le, P. D., Leonard, M., and Westra, S.: Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations, Water Resour. Res., 54, 2233–2248, https://doi.org/10.1002/2017WR022231, 2018b.
Le, P. D., Leonard, M., and Westra, S.: Spatially dependent flood probabilities to support the design of civil infrastructure systems – Data sets, https://doi.org/10.6084/m9.figshare.9917072.v1, 2019.
Ledford, A. W. and Tawn, J. A.: Statistics for Near Independence in Multivariate Extreme Values, Biometrika, 83, 169–187, 1996.
Leonard, M., Lambert, M. F., Metcalfe, A. V., and Cowpertwait, P. S. P.: A
space-time Neyman–Scott rainfall model with defined storm extent, Water
Resour. Res., 44, W09402, https://doi.org/10.1029/2007WR006110, 2008.
Leonard, M., Westra, S., Phatak, A., Lambert, M., v. d. Hurk, B., McInnes,
K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound
event framework for understanding extreme impacts, Wiley Interdisciplin. Rev.: Clim. Change, 5, 113–128, https://doi.org/10.1002/wcc.252, 2014.
Mulvaney, T. J.: On the use of self-registering rain and flood gauges in making observation of the relation of rainfall and floods discharges in a
given catchment, Proc. Civ. Eng. Ireland, 4, 18–31, 1851.
Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: A multi-criteria
leave-two-out cross-validation procedure for max-stable process selection,
Spat. Stat., 22, 107–128, https://doi.org/10.1016/j.spasta.2017.09.004, 2017.
Padoan, S. A., Ribatet, M., and Sisson, S. A.: Likelihood-Based Inference for Max-Stable Processes, J. Am. Stat. Assoc., 105, 263–277, https://doi.org/10.1198/jasa.2009.tm08577, 2010.
Pathiraja, S., Westra, S., and Sharma, A.: Why continuous simulation? The role of antecedent moisture in design flood estimation, Water Resour. Res., 48, W06534, https://doi.org/10.1029/2011WR010997, 2012.
Pickands, J.: Statistical Inference Using Extreme Order Statistics, Ann. Stat., 3, 119–131, https://doi.org/10.1214/aos/1176343003, 1975.
Rahman, A., Weinmann, P. E., Hoang, T. M. T., and Laurenson, E. M.: Monte
Carlo simulation of flood frequency curves from rainfall, J. Hydrol., 256, 196–210, https://doi.org/10.1016/S0022-1694(01)00533-9, 2002.
Rasmussen, P. F.: Multisite precipitation generation using a latent
autoregressive model, Water Resour. Res., 49, 1845–1857, https://doi.org/10.1002/wrcr.20164, 2013.
Renard, B. and Lang, M.: Use of a Gaussian copula for multivariate extreme
value analysis: Some case studies in hydrology, Adv. Water Resour., 30, 897–912, https://doi.org/10.1016/j.advwatres.2006.08.001, 2007.
Requena, A. I., Chebana, F., and Ouarda, T. B. M. J.: A functional framework
for flow-duration-curve and daily streamflow estimation at ungauged sites,
Adv. Water Resour., 113, 328–340, https://doi.org/10.1016/j.advwatres.2018.01.019, 2018.
Russell, B. T., Cooley, D. S., Porter, W. C., and Heald, C. L.: Modeling the
spatial behavior of the meteorological drivers' effects on extreme ozone,
Environmetrics, 27, 334–344, https://doi.org/10.1002/env.2406, 2016.
Schlather, M.: Models for Stationary Max-Stable Random Fields, Extremes, 5,
33–44, https://doi.org/10.1023/A:1020977924878, 2002.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M.: Managing the
Risks of Extreme Events and Disasters to Advance Climate Change Adaptation:
Changes in Climate Extremes and their Impacts on the Natural Physical
Environment, Cambridge University Press, Cambridge, UK, 109–230, 2012.
SKM: Nambucca Heads Flood Study, available at: http://www.nambucca.nsw.gov.au/cp_content/resources/16152_2011__Nambucca_Heads_Flood_Study_Final_Draft_Chapter_6a.pdf
(last access: 25 October 2019), 2011.
Stedinger, J., Vogel, R., and Foufoula-Georgiou, E.: Frequency Analysis of
Extreme Events, in: Handbook of Hydrology, edited by: Maidment, D. R.,
McGraw-Hill, New York, 18.11–18.66, 1993.
Stephenson, A. G., Lehmann, E. A., and Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations, Weather Clim. Extrem., 13, 44–53, https://doi.org/10.1016/j.wace.2016.07.002, 2016.
Thibaud, E., Mutzner, R., and Davison, A. C.: Threshold modeling of extreme
spatial rainfall, Water Resour. Res., 49, 4633–4644, https://doi.org/10.1002/wrcr.20329, 2013.
Wadsworth, J. L. and Tawn, J. A.: Dependence modelling for spatial extremes, Biometrika, 99, 253–272, https://doi.org/10.1093/biomet/asr080, 2012.
Wang, Q. J.: A Bayesian Joint Probability Approach for flood record
augmentation, Water Resour. Res., 37, 1707–1712, https://doi.org/10.1029/2000WR900401,
2001.
Wang, Q. J., Robertson, D. E., and Chiew, F. H. S.: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at
multiple sites, Water Resour. Res., 45, W05407, https://doi.org/10.1029/2008WR007355, 2009.
Wang, X., Gebremichael, M., and Yan, J.: Weighted likelihood copula modeling
of extreme rainfall events in Connecticut, J. Hydrol., 390, 108–115, https://doi.org/10.1016/j.jhydrol.2010.06.039, 2010.
Westra, S. and Sisson, S. A.: Detection of non-stationarity in precipitation extremes using a max-stable process model, J. Hydrol., 406, 119–128, https://doi.org/10.1016/j.jhydrol.2011.06.014, 2011.
WMAWater: Review of Bellinger, Kalang and Nambucca River Catchments Hydrology, Bellingen Shire Council, Nambucca Shire Council, New South Wales
Government, 2011.
Zhang, L. and Singh, V. P.: Gumbel 2013; Hougaard Copula for Trivariate Rainfall Frequency Analysis, J. Hydrol. Eng., 12, 409–419, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(409), 2007.
Zheng, F., Westra, S., and Leonard, M.: Opposing local precipitation extremes, Nat. Clim. Change, 5, 389–390, https://doi.org/10.1038/nclimate2579, 2015.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
While conventional approaches focus on flood designs at individual locations, there are many situations requiring an understanding of spatial dependence of floods at multiple locations. This research describes a new framework for analyzing flood characteristics across civil infrastructure systems, including conditional and joint probabilities of floods. This work leads to a new flood estimation paradigm, which focuses on the risk of the entire system rather than each system element in isolation.
While conventional approaches focus on flood designs at individual locations, there are many...