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Abstract. Conventional flood risk methods typically focus
on estimation at a single location, which can be inadequate
for civil infrastructure systems such as road or railway infras-
tructure. This is because rainfall extremes are spatially de-
pendent; to understand overall system risk, it is necessary to
assess the interconnected elements of the system jointly. For
example, when designing evacuation routes it is necessary to
understand the risk of one part of the system failing given
that another region is flooded or exceeds the level at which
evacuation becomes necessary. Similarly, failure of any sin-
gle part of a road section (e.g., a flooded river crossing) may
lead to the wider system’s failure (i.e., the entire road be-
comes inoperable). This study demonstrates a spatially de-
pendent intensity–duration–frequency (IDF) framework that
can be used to estimate flood risk across multiple catchments,
accounting for dependence both in space and across different
critical storm durations. The framework is demonstrated via a
case study of a highway upgrade comprising five river cross-
ings. The results show substantial differences in conditional
and unconditional design flow estimates, highlighting the im-
portance of taking an integrated approach. There is also a
reduction in the estimated failure probability of the overall
system compared with the case where each river crossing
is treated independently. The results demonstrate the poten-
tial uses of spatially dependent intensity–duration–frequency
methods and suggest the need for more conservative design
estimates to take into account conditional risks.

1 Introduction

Methods for quantifying the flood risk of civil infrastructure
systems such as road and rail networks require considerably
more information compared to traditional methods that focus
on flood risk at a point. For example, the design of evacua-
tion routes requires the quantification of the risk that one part
of the system will fail at the same time that another region is
flooded or exceeds the level at which evacuation becomes
necessary. Similarly, a railway route may become impass-
able if any of a number of bridges are submerged, such that
the “failure probability” of that route becomes some aggre-
gation of the failure probabilities of each individual section.
Successful estimation of flood risk in these systems there-
fore requires recognition both of the networked nature of the
civil infrastructure system across a spatial domain, as well as
the spatial and temporal structure of flood-producing mech-
anisms (e.g., storms and extreme rainfall) that can lead to
system failure (e.g., Leonard et al., 2014; Seneviratne et al.,
2012; Zscheischler et al., 2018).

One way to estimate such flood probabilities is to di-
rectly use information contained in historical streamflow
data. For example, annual maximum streamflow at two lo-
cations might be assumed to follow a bivariate generalized
extreme-value (GEV) distribution (Favre et al., 2004; Wang,
2001; Wang et al., 2009), which can then be used to esti-
mate both conditional probabilities (e.g., the probability that
one river is flooded given that the other river level exceeds
a specified threshold) and joint probabilities (e.g., the prob-
ability that one or both rivers are flooded). Several frame-
works have been demonstrated based directly on streamflow
observations, including functional regression (Requena et al.,
2018), multisite copulas (Renard and Lang, 2007), and spa-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4852 P. D. Le et al.: Spatially dependent flood probabilities to support the design of civil infrastructure systems

tial copulas (Durocher et al., 2016). However, in many in-
stances continuous streamflow data are unavailable or insuf-
ficient at the locations of interest, or the catchment condi-
tions have changed such that historical streamflow records
are unrepresentative of likely future risk. For these situations,
rainfall-based methods are often more appropriate.

There are two primary classes of rainfall-based methods to
estimate flood probability. The first uses continuous rainfall
data (either historical or generated) to compute continuous
streamflow data using a rainfall-runoff model (Boughton and
Droop, 2003; Cameron et al., 1999; He et al., 2011; Heg-
nauer et al., 2014; Pathiraja et al., 2012), with flood risk
then estimated based on the simulated streamflow time se-
ries. This method is computationally intensive, and given the
challenge of reproducing a wide variety of statistics across
many scales, it can have difficulties in modeling the depen-
dence of extremes. Most spatial rainfall models operate at
the daily timescale (Bárdossy and Pegram, 2009; Baxevani
and Lennartsson, 2015; Bennett et al., 2016b; Hegnauer et
al., 2014; Kleiber et al., 2012; Rasmussen, 2013), whereas
many catchments respond at sub-daily timescales. This is
likely because the capacity of space–time rainfall models to
simulate the statistics of sub-daily rainfall remains a chal-
lenging research problem (Leonard et al., 2008), although
one approach is to exploit the relative abundance of data at
the daily scale then apply a downscaling model to reach sub-
daily scales (Gupta and Tarboton, 2016). Continuous simu-
lation is receiving ongoing attention and increasing applica-
tion, yet there remain limitations when applying these mod-
els in many practical contexts.

The second rainfall-based method proceeds by applying
probability calculations on rainfall to construct “intensity–
duration–frequency” curves, which are then translated to a
runoff event of an equivalent probability either via empiri-
cal models such as the rational method to estimate peak flow
rate (Kuichling, 1889; Mulvaney, 1851) or via event-based
rainfall-runoff models that are able to simulate the full flood
hydrograph (Boyd et al., 1996; Chow et al., 1988; Laurenson
and Mein, 1990). Regional frequency analysis is one type of
method to estimate intensity–duration–frequency (IDF) val-
ues, where the precision of at-site estimates is improved by
pooling data from sites in the surrounding region (Hosking
and Wallis, 1997). These methods can be combined with spa-
tial interpolation methods to estimate parameters for any un-
gauged location of interest (Carreau et al., 2013). To deter-
mine an effective mean depth of rainfall over a catchment
with the same exceedance probability as at a gauge location,
the pointwise estimate of extreme rainfall is multiplied by
an areal reduction factor (ARF) (Ball et al., 2016). However,
such methods do not account for information on the spatial
dependence of extreme rainfall – whether for a single storm
duration or the more complex case of different durations
across a region (Bernard, 1932; Koutsoyiannis et al., 1998).
The underlying independence assumption prevents these ap-
proaches from being applied to estimate conditional or joint

flood risk at multiple points in a catchment or across several
catchments, as would be required for a civil infrastructure
system.

Although multivariate approaches can be tailored to es-
timate conditional and joint probabilities of extreme rain-
fall for specific situations (e.g., Kao and Govindaraju, 2008;
Wang et al., 2010; Zhang and Singh, 2007), the develop-
ment of a unified methodology that integrates with exist-
ing IDF-based flood estimation approaches remains elusive.
This is particularly challenging given that it is not only
necessary to account for the dependence of rainfall across
space, but it is also necessary to account for the dependence
across storm burst durations, as different parts of the sys-
tem may be vulnerable to different critical-duration storm
events. To this end, the theory of the max-stable process
has been demonstrated to represent storm-level dependence
(de Haan, 1984; Schlather, 2002) and used to calculate con-
ditional probabilities for a spatial domain (Padoan et al.,
2010). The max-stable process has also been used to repre-
sent the co-occurrence of extreme daily rainfall in the French
Mediterranean region (Blanchet and Creutin, 2017). Copulas
including the extremal t copula (Demarta and McNeil, 2005)
and the Hüsler–Reiss copula (Hüsler and Reiss, 1989) have
also been used to model rainfall dependence.

This study applies a max-stable approach with an empha-
sis on practical flood estimation problems. To this end, any
proposed approach needs to account for the following:

1. The spatial dependence of rainfall “events” both for
single durations and also across multiple different du-
rations. This was addressed by Le et al. (2018b), who
linked a max-stable model with the duration-dependent
model of Koutsoyiannis et al. (1998), to create a model
that could be used to reflect dependencies between
nearby catchments of different sizes.

2. The asymptotic properties of spatial dependence as the
events become increasingly extreme, given the focus of
many flood risk estimation methods on rare flood events.
Recent evidence is emerging that rainfall has an asymp-
totically independent characteristic (Le et al., 2018a;
Thibaud et al., 2013), which means that the level of
the rainfall’s dependence reduces with an increasing re-
turn period (Wadsworth and Tawn, 2012). The require-
ment of asymptotic independence indicates that inverted
max-stable models are preferable over max-stable mod-
els.

This study adapts the methods developed by Le et al. (2018b)
to inverted max-stable models to derive spatially dependent
IDF estimates and ARFs as the basis for transforming rainfall
into flood flows. The approach is demonstrated on a highway
system spanning 20 km with five separate river crossings.

The case study is designed to address two related ques-
tions. (i) “What flood flow needs to be used to design a bridge
that will fail on average only once on average every M times
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given that a neighboring catchment is flooded?” (ii) “What
is the probability that the overall system fails given that each
bridge is designed to a specific exceedance probability event
(e.g., the 1 % annual exceedance probability event)?” The
method for resolving these questions represents a new ap-
proach to estimate flood risk for engineering design, by fo-
cusing attention on the risk of the entire system, rather than
the risk of individual system elements in isolation.

In the remainder of the paper, Sect. 2 emphasizes the need
for spatially dependent IDF estimates in flood risk design and
is followed by Sect. 3, which outlines the case study and data
used. Section 4 explains the implementation of the frame-
work, including a method for analyzing the spatial depen-
dence of extreme rainfall across different durations. Results
on the behavior of floods due to the spatial and duration de-
pendence of rainfall extremes are provided in Sect. 5. Con-
clusions and discussion follow in Sect. 6.

2 The need for spatially dependent IDF estimates in
flood risk estimation

The main limitation of conventional methods of flood risk
estimation is that they isolate bursts of rainfall and break the
dependence structure of extreme rainfall. Figure 1 demon-
strates a traditional process of estimating at-site extreme rain-
fall for two locations (gauge 1 and gauge 2) and three dura-
tions (1, 3, and 5 h) (Stedinger et al., 1993). The process first
involves extracting the extreme burst of rainfall for each site,
as well as the duration and year from the continuous rainfall
data, and then fitting a probability distribution (such as the
generalized extreme-value distribution) to the extracted data.
Figure 1 demonstrates that, through the process of convert-
ing the continuous rainfall data to a series of discrete rainfall
“bursts”, this process breaks the dependence both with re-
spect to duration and space. Firstly, the duration dependence
is broken by extracting each duration separately, whereas for
the hypothetical storm in Fig. 1 it is clear that the annual
maxima from some of the extreme bursts come from the
same storm. Secondly, the spatial dependence is broken be-
cause each site is analyzed independently. Again, for the hy-
pothetical storm of Fig. 1 it can be seen that the 5 h storm has
occurred at the same time across the two catchments, and this
information is lost in the subsequent probability distribution
curves. Lastly, there is cross-dependence in space and dura-
tion. For example, the 1 h extreme from gauge 2 occurs at
the same time as the 5 h extreme from gauge 1. This may be
relevant if there are two catchments with times of concentra-
tion matching 1 and 5 h, respectively, which can arise where
catchments are neighboring or nested.

Having obtained the IDF estimates for individual locations
in Fig. 1, the next step is commonly to convert this to spatial
IDF maps by interpolating results between gauged locations.
Figure 2 shows hypothetical IDF maps from individual sites,
with a separate spatial contour map usually provided for each

storm burst duration. In a conventional application the re-
spective maps are used to estimate the magnitude of extreme
rainfall over catchments for a specified time of concentration.
The IDF estimates are combined with an areal reduction fac-
tor to determine the volume of rainfall over a region (since
rainfall is not simultaneously extreme at all locations over
the region). However, because the spatial dependence was
broken in the IDF analysis, the ARFs come from a separate
analysis and are an attempt to correct for the broken spa-
tial relationship within a catchment (Bennett et al., 2016a).
Lastly, the rainfall volume over the catchment is combined
with a temporal pattern (i.e., the distribution of the rainfall
hyetograph within a single “storm burst”) and input into a
runoff model to simulate flood flow at a catchment’s out-
let. Where catchment flows can be considered independently,
this process has been acceptable for conventional design, but
because this process does not account for dependence across
durations and across a region, it is not possible to address
problems that span multiple catchments, as with civil infras-
tructure systems.

The process in Fig. 1 breaks out the dependence of the ob-
served rainfall, which makes the conventional approach un-
able to analyze the dependence of flooding at two or more
separate locations. Instead, this paper advocates for spatially
dependent IDF estimates that are developed by retaining the
dependence of observed rainfall in the estimation of extremal
rainfall. By applying spatially dependent IDF estimates to a
rainfall-runoff model, it becomes possible to represent the
dependence of flooding between separate locations.

3 Case study and data

The region chosen for the case study is in the Mid North
Coast region of New South Wales, Australia. This region has
been the focus of a highway upgrade project and has an an-
nual average daily traffic volume on the order of 15 000 ve-
hicles along the existing highway. The upgrade traverses a
series of coastal foothills and floodplains for a total length
of approximately 20 km. The project’s major river crossings
consist of extensive floodplains with some marsh areas.

The case study has five main catchments that are num-
bered in sequence in Fig. 3: (1) Bellinger, (2) Kalang River,
(3) Deep Creek, (4) Nambucca, and (5) Warrell Creek. The
area and time of concentration of these catchments is sum-
marized in Table 1, with the latter estimated using the ra-
tio of the flow path length and average flow velocity (SKM,
2011). The Deep Creek catchment has a time of concentra-
tion of 8 h, while the other four catchments have much longer
times of concentration, ranging from 27 to 38 h. The differing
durations indicate that it is necessary to consider spatial de-
pendence across this range of durations to estimate joint and
conditional flood risk. The spatial dependence across rainfall
durations is expected to be lower than across a single du-
ration, since short and long rain events are often driven by

www.hydrol-earth-syst-sci.net/23/4851/2019/ Hydrol. Earth Syst. Sci., 23, 4851–4867, 2019



4854 P. D. Le et al.: Spatially dependent flood probabilities to support the design of civil infrastructure systems

Figure 1. Illustration of process to estimate rainfall extremes for each individual location in a conventional flood risk approach; (a) is for
gauge 1, and (b) is for gauge 2.

Table 1. Summary of case study catchment properties.

No. Catchment Area Time of
(km2) concentration

(h)

1 Bellinger 772 37
2 Kalang River 341 33
3 Deep Creek 92 8
4 Nambucca (upper) 1020 38
5 Warrell Creek 294 27

different meteorological mechanisms (Zheng et al., 2015).
However some spatial dependence is still likely to be present,
given that extremal rainfall in the region is strongly associ-
ated with “east coast low” systems off the eastern coastline,
whereby extreme hourly rainfall bursts are often embedded
in heavy multi-day rainfall events.

The black circles in Fig. 3 represent the sub-daily rain sta-
tions used for this study. There were seven sub-daily stations
selected, with 35 years of record in common for the whole
region. The data were available at a 5 min interval and ag-
gregated to longer durations. For convenience in comparing
the times of concentration between the catchments, this study

assumes a time of concentration of 9 h for the Deep Creek
catchment, while identical times of concentration of 36 h are
assumed for the other four catchments.

4 Methodology

This section describes the method used to estimate the con-
ditional and joint probabilities of streamflow for civil in-
frastructure systems based on rainfall extremes, with the se-
quence of steps illustrated in Fig. 4. The overall aim is to
estimate rainfall exceedance probabilities and correspond-
ing flow estimates that account for dependence across mul-
tiple catchments. The generalized Pareto distribution (GPD)
is used as the marginal distribution to fit to observed rainfall
above some large threshold for all durations at each loca-
tion (Sect. 4.1). An extremal dependence model is required
to evaluate conditional and joint probabilities. Here, an in-
verted max-stable process is used with dependence not only
in space but also in duration (Sect. 4.2). The fitted model
is evaluated in a range of contexts, including the construc-
tion of joint and conditional return level maps. The deriva-
tion of areal reduction factors and joint rainfall estimates are
made with the assistance of simulations based on the fitted
model (Sect. 4.3). An event-based rainfall-runoff model is
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Figure 2. Illustration of the map of the return level and how to use it in estimating flood flow using a conventional flood risk estimates
approach.

Figure 3. Map of the case study in New South Wales, Australia.
The black dots indicate the rainfall gauges (G. 1 to G. 7); the red
line indicates the Pacific Highway upgrade project; and the blue
lines indicate the main river network. The numbers from one to five
indicate the locations of the main river crossings.

employed in Sect. 4.4 to transform extremal design rainfalls
to corresponding flows.

4.1 Marginal model for rainfall

This study defines extremes as those greater than some
threshold u. For a large u, the distribution of Y conditional on
Y > u may be approximated by the generalized Pareto dis-
tribution (GPD) (Pickands, 1975; Davison and Smith, 1990;
Thibaud et al., 2013).

G(y)= 1−
{

1+
ξ(y− u)

σu

}−1/ξ

,y > u, (1)

defined on {y : 1+ ξ(y− u)/σu > 0}, where σu > 0 and
−∞< ξ <+∞ are scale and shape parameters, respec-
tively. The probability that a level y is exceeded is 8u{1−
G(y)}, where 8u = Pr(Y > u).

The selection of the appropriate threshold u involves a
trade-off between bias and variance. A threshold that is too
low leads to bias because the GPD approximation is poor. A
threshold that is too high leads to high variance because of
a small number of excesses. Two diagnostic tests are used to
determine the appropriate threshold u: the mean residual life
plot and the parameter estimate plot (Coles, 2001; Davison
and Smith, 1990). These methods use the stability property
of a GPD so that if a GPD is valid for all excesses above u,
then excesses of a threshold greater than u should also fol-
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Figure 4. The flow chart for the overall methodology.

low a GPD (Coles, 2001). To construct IDF maps across the
region, the parameters of the GPD are interpolated across the
region using a thin plate spline with covariates of longitude
and latitude. Though more detailed modeling of covariates
could be used to improve estimates (Le et al., 2018b), the in-
terpolation used here is sufficient for demonstrating the over-
all method.

4.2 Dependence model for spatial rainfall

Consider rainfall as a stationary stochastic process, Zi , asso-
ciated with a location, xi , and a specific duration (the nota-
tion is simplified from Z(xi) to Zi). An important property
of dependence in the extremes is whether or not two vari-
ables are likely or unlikely to co-occur as the extremes be-
come rarer, as this can significantly influence the estimated
frequency of flood events of a large magnitude. This is re-
ferred to as asymptotic dependence or independence, respec-
tively. For the case of asymptotic independence, the depen-
dence structure becomes weaker as the extremal threshold
increases, which is defined as P {Z1 > z|Z2 > z} = 0 for all
x1 6= x2. The spatial extent of a rainfall event with asymp-
totically independent extremes will diminish as its rarity
increases. This study uses an asymptotically independent
model, of which multiple types are valid including the Gaus-
sian copula (Davison et al., 2012) and inverted max-stable
processes (Wadsworth and Tawn, 2012). The inverted max-
stable model was ultimately selected in this study to provide
consistency with earlier research (Le et al., 2018a), in which
it was demonstrated to preserve the spatial properties of ex-
treme rainfall in an Australian context, including the property
of asymptotic independence. Thibaud et al. (2013) also com-
pared the inverted max-stable model with a Gaussian copula
in a case study in Switzerland, and they identified that the
inverted max-stable model was appropriate.

The dependence structure of the inverted max-stable pro-
cess is represented by the pairwise residual tail dependence
coefficient (Ledford and Tawn, 1996). For a generic contin-
uous process, Zi , for a given duration and associated with a
specific location, xi , the empirical pairwise residual tail de-
pendence coefficient η for each pair of locations (x1, x2) is

η(x1,x2)=
logP {Z2 > z}

logP {Z1 > z,Z2 > z}
. (2)

The value of η ∈ (0, 1] indicates the level of extremal de-
pendence between Z1 and Z2 (Coles et al., 1999), with lower
values indicating lower dependence. An example of how to
calculate the residual tail dependence coefficient is provided
in Appendix A for a sample dataset. To estimate the depen-
dence structure of an inverted max-stable model, the theoret-
ical residual tail dependence coefficient function is fitted to
its empirical counterpart. Here the residual tail dependence
coefficient function is assumed to only depend on the Eu-
clidean distance between two locations, h= |x1− x2‖. The
theoretical residual tail dependence coefficient function for
the Brown–Resnick model is given as

η(h)=
1

28
{√

γ (h)
2

} , (3)

where8 is the standard normal cumulative distribution func-
tion, h is the distance between two locations, and γ (h) be-
longs to the class of variograms γ (h)= |h|β/q for q > 0 and
β ∈ (0, 2). The model is fitted to the empirical residual tail
dependence coefficient by modifying parameters q and β un-
til the sum of squared errors is minimized.

When the extreme rainfall at location x1 and x2 are of dif-
ferent durations, the dependence is less than when the ex-
tremes are of the same duration. For example, at a single lo-
cation (h= 0), when the duration is the same, the rainfall
values are identical and have perfect dependence, but when
the duration of extremes are different, the values are not iden-
tical, and the dependence is less. An adjustment needs to be
made to the theoretical pairwise residual tail dependence co-
efficient function when extreme rainfalls have different dura-
tions.

Following Le et al. (2018b), an adjusted approach is used
by adding a nugget to the variogram as

γad.(h)= h
β/q + c(D− d)/d, (4)

where h, β, and q are the same as those in Eq. (3), d is the
duration (in h), 0< d ≤D, where D is the maximum dura-
tion of interest (e.g.,D = 36 h for the case study described in
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this paper), and c is a parameter to adjust dependence accord-
ing to duration. This adjustment is intended to condition the
behavior of shorter duration extremes on a D hour extreme
of specified magnitude. It is constructed to reflect the fact
that when compared to a D hour extreme, a shorter duration
results in less extremal dependence. Cases involving condi-
tioning of longer periods on shorter periods (such as a 36 h
extreme given a 9 h extreme has occurred) can also use the
relationship in Eq. (4), but these are with different parameter
values.

To fit the inverted max-stable process for all pairs of du-
rations at locations x1 and x2 (i.e., 36 and 12 h, 36 and 9 h,
36 and 6 h, 36 and 2 h, and 36 and 1 h), the theoretical pair-
wise residual tail dependence coefficient function in Eq. (3)
is used with the adjusted variogram from Eq. (4), where the
parameters β and q are first obtained from the fitted results
of the case of identical 36 h durations at locations x1 and x2.
The parameter c is obtained by a least-square fit of the resid-
ual tail dependence coefficient across all durations.

4.3 Simulation-based estimation of areal and joint
rainfall

The dependence model specification in the previous section
enables the calculation of joint and conditional probabilities
(Appendix B). Therefore, in addition to traditional IDF return
level maps that are based on independence between locations
and durations, it is possible to account for the coincidence of
rainfall within the region. Current design procedures using
IDF estimates are event-based and rely on ancillary steps to
reconstruct elements of the design storm that were broken
during the estimation procedure. One critical element is the
areal reduction factor, which can also be estimated by using
the dependence model. ARFs are used to adjust rainfall at
a point (such as the centroid of a catchment) to an effective
mean rainfall over the catchment with an equivalent probabil-
ity of exceedance (Ball et al., 2016; Le et al., 2018a). ARFs
can be estimated from observed rainfall data, but it is difficult
to extrapolate them for long return periods from observations
with just 35 years of record for this study. To deal with this
difficulty and to analyze the asymptotic behavior of ARFs,
Le et al. (2018a) proposed a framework to simulate ARFs
using the same inverted max-stable-process model adopted
here. The simulation procedure from Le et al. (2018a) is sum-
marized according to two steps. In the first step, the theoreti-
cal residual tail dependence coefficient function in Eq. (3) is
fitted to observed rainfall for the duration of interest to ob-
tain the variogram parameters q > 0 and β ∈ (0, 2). The in-
verted Brown–Resnick process is obtained from a simulation
of the Brown–Resnick process using the algorithm of Dom-
bry et al. (2016) over a spatial domain. In the second step, the
simulation in step 1 is transformed from unit Fréchet mar-
gins to the rainfall-scaled margins (inverse transformation of
Eq. B1). For rainfall magnitudes above the threshold the gen-
eralized Pareto distribution in Eq. (1) is used, and below the

threshold the empirical distribution is used. The empirical
distributions at ungauged sites are derived from the nearest
gauged sites and use the interpolated response surface of the
GPD threshold parameter.

An advantage of the simulation approach is that it can
reflect the proportion of dry days in the empirical distribu-
tion by making the simulated rainfall contain zero values
(Thibaud et al., 2013). Another advantage is that the use
of empirical distributions guarantees that the marginal dis-
tributions of simulated rainfall below the threshold match
the observed marginal distributions. There may be a draw-
back by forcing the simulated rainfall to have the same ex-
tremal dependence structure for both parts below and above
the threshold, which may not be true for non-extreme rain-
fall. However, the dependence structure of non-extreme rain-
fall contributes insignificantly to extreme events (Thibaud et
al., 2013) and is unlikely to affect the results.

For calculating ARFs, the simulation is implemented sep-
arately for spatial rainfall with a 36 and 9 h duration. ARFs
are calculated for each duration and different return periods,
which can be found in the Supplement (Figs. S1 and S2). Fig-
ures S1 and S2 provide relationships between ARFs and area
(in km2) for different return periods for the case study catch-
ments simulated using the inverted Brown–Resnick process
over equally sized grid points. The relationships are interpo-
lated to obtain the ARFs for each subcatchment.

The recommended approach for estimating the overall fail-
ure probability of a system is demonstrated by considering a
hypothetical traffic system with multiple river crossings at
different locations. If there is a one-to-one correspondence
between extreme rainfall intensity over a catchment and flood
magnitude, the overall failure probability will be approxi-
mately equal to the probability that there is at least one river
crossing whose contributing catchment has rainfall extremes
exceeding the design level. This can be estimated using simu-
lations of the spatial rainfall model. Given the different times
of concentration in each catchment, the simulation must ac-
count for extremes of different durations. Specifically, the
covariance matrix of the simulation procedure provided by
Dombry et al. (2016) is calculated from the variogram in
Eq. (3). The covariance element for a pair of locations with
the same duration (e.g., 36 and 36 h) is calculated from the
variogram of identical durations for 36 and 36 h. The covari-
ance element for a pair of locations with different durations,
for example, 36 and 9 h, is calculated from the variogram
across durations for 36 and 9 h. A set of 10 000 years of sim-
ulated rainfall is generated from the fitted model to calculate
the overall failure probability of a highway section (Eq. B5).
The process is repeated 100 times to estimate the average
failure probability, under the assumption that all river cross-
ings of the highway are designed to the same individual fail-
ure probability.
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4.4 Transforming rainfall extremes to flood flow

To estimate flood flow from rainfall extremes, the Watershed
Bounded Network Model (WBNM) (Boyd et al., 1996) is
employed. The WBNM calculates flood runoff from rain-
fall hyetographs that represent the relationship between the
rainfall intensity and time (Chow et al., 1988). It divides the
catchment into subcatchments, allowing hydrographs to be
calculated at various points within the catchment and the spa-
tial variability of rainfall and rainfall losses to be modeled. It
separates overland flow routing from channel routing, allow-
ing changes to either or both of these processes, for example,
in urbanized catchments. The rainfall extremes are estimated
at the centroid of the catchment, and they are converted to av-
erage spatial rainfall using the simulated ARFs described in
Sect. 4.3. Design rainfall hyetographs are used to convert the
rainfall magnitude to absolute values through the duration of
a storm following standard design guidance in Australia (Ball
et al., 2016).

Hydrological models (WBNM) for the case study area
were developed and calibrated in previous studies (WMAWa-
ter, 2011). Hydrological model layouts for the Bellinger,
Kalang River, Nambucca, Warrell, and Deep Creek catch-
ments can be found in the Supplement (Figs. S3 to S5).

5 Results

5.1 Model evaluation for the space-duration rainfall
process

A GPD with an appropriate threshold was fitted to the ob-
served rainfall data for 36 and 9 h durations, and the Brown–
Resnick inverted max-stable-process model was calibrated to
determine the spatial dependence.

Analysis of the rainfall records led to the selection of a
threshold of 0.98 for all records as was reasonable across
the spatial domain, and the GPD was fitted to data above
the selected threshold. Figure 5 shows Q–Q plots of the
marginal estimates for a representative station for two du-
rations (36 and 9 h). Overall the quality of fitted distributions
is good, and plots for all other stations can be found in the
Supplement (Figs. S6 and S7).

The inverted max-stable process across different durations
was calibrated to determine dependence parameters. The the-
oretical pairwise residual tail dependence coefficient func-
tion between two locations (x1 and x2) was calculated based
on Eqs. (3) and (4), and the observed pairwise residual tail
dependence coefficient η was calculated using Eq. (2). Fig-
ure 6 shows the pairwise residual tail dependence coefficients
for the Brown–Resnick inverted max-stable process vs. dis-
tance. The black points are the observed pairwise residual
tail dependence coefficients, while the red lines are the fit-
ted pairwise residual tail dependence coefficient functions.
A coefficient equal to 1 indicates complete spatial depen-

Figure 5. Q–Q plots for the fitted GPD at one representative station.
Dotted lines are the 95 % confidence bounds, and the solid diagonal
line indicates a perfect fit.

dence, and a value of 0.5 indicates complete spatial inde-
pendence. Figure 6a shows the dependence between 36 h ex-
tremes across space, with the distance h= 0 corresponding
to “complete dependence”. It also shows the dependence de-
creasing with an increasing distance. Figure 6 indicates that
the model has a reasonable fit to the observed data given
the small number of dependence parameters. Although the
theoretical coefficient (red line) does not perfectly match at
long distances, the main interest for this case study is in short
distances, including at h= 0 for the case of dependence be-
tween two different durations at the same location.

Figure 6b–d show the dependence of 36 vs. 9 h extremes,
36 vs. 6 h extremes, and 36 vs. 3 h extremes, with the lat-
ter two duration combinations not being used directly in the
study but nonetheless showing the model performance across
several durations. As expected, the dependence levels are
weaker compared with 36 vs. 36 h extremes at the same dis-
tance, especially at a distance of zero. This is expected, as
extremes of different durations are more likely to arise from
different storm events compared to storms of the same dura-
tion.

5.2 Estimating conditional rainfall return levels and
corresponding conditional flows for evacuation
route design

The recommended approach for estimating conditional rain-
fall extremes is demonstrated by considering a hypothetical
evacuation route across location x2, given a flood occurs at
location x1, evaluated using Eq. (B4). This approach is ap-
plied to a case study of the Pacific Highway upgrade project
that contains five main river crossings (from Fig. 3). For
evacuation purposes, we need to know what the probabil-
ity that a bridge fails only once on average every M times
is (e.g., M = 10 for a one in 10 chance conditional event)
when a neighboring bridge is flooded. This section provides
the conditional estimates for two pairs of neighboring bridges
in the case study that have the shortest Euclidean distances,
i.e., pairs (x1, x2) and (x2, x3). The comparisons of uncondi-
tional and conditional maps are given in Figs. 7 and 8, and the
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Figure 6. Plots of the pairwise residual tail dependence coefficient (TDC) against distance for 36 h extremes and 36 h extremes (a), for 36 h
extremes and 9 h extremes (b), for 36 h extremes and 6 h extremes (c), and for 36 h extremes and 3 h extremes (d). The black points are the
estimated residual tail dependence coefficients for pairs of sub-daily stations, and the red lines are the theoretical residual tail dependence
coefficient function.

corresponding unconditional and conditional flows are given
in Fig. 9.

Figure 7a provides the pointwise 10-year unconditional re-
turn level map over the case study area for 36 h rainfall ex-
tremes. The value at the location of interest – the blue star
(the centroid of the Bellinger catchment) – is around 260 mm.
Figure 7b indicates that when accounting for the effect of a
20-year event for 36 h rainfall extremes happening at the lo-
cation of the red star (the centroid of the Kalang River catch-
ment), the pointwise 1-in-10 chance conditional return level
at the blue star rises to around 453 mm (i.e., 1.74 times the
unconditional value).

Figure 8 provides similar plots to Fig. 7 for another pair
of locations having different durations of rainfall extremes
due to different times of concentration in each catchment.
Here, the location of interest is the centroid of the Deep
Creek catchment (the blue star in Fig. 8), and the condi-
tional point is the centroid of the Kalang River catchment
(the red star in Fig. 8). The pointwise 10-year unconditional
and 1-in-10 chance conditional return levels at the location of
the blue star are 134 and 194 mm, respectively. The relative
difference between the conditional and unconditional return
levels is only 1.45 times, compared with 1.74 times for the
case in Fig. 7. This is because the pair of locations in Fig. 8
has a longer distance than those in Fig. 7 so that the depen-
dence level is weaker. Moreover, the location pair in Fig. 8
was analyzed for different durations (between 36 and 9 h ex-
tremes), which has a weaker dependence than the case of the
equivalent durations in Fig. 7 (between 36 and 36 h), based
on Fig. 6.

The unconditional and conditional return levels were ex-
tracted at the centroid of each main catchment, and they were
converted to the absolute values of rainfall using a corre-
sponding ARF and design storm hyetograph. The uncondi-
tional and conditional flood flows at the river crossing in the
Bellinger catchment (corresponding to the unconditional and
conditional rainfall extremes in Fig. 7) are given in Fig. 9
(Fig. 9a). Similar plots for the river crossing in the Deep
Creek catchment (corresponding to the unconditional and
conditional rainfall extremes in Fig. 8) are given in Fig. 9
(Fig. 9b).

Figure 9 presents peak flow for the Bellinger (Fig. 9a)
and Deep Creek (Fig. 9b) catchments, indicating that the
peak conditional flow at the river crossings is almost 2.0 and
1.7 times higher than the unconditional flow for the two
catchments, respectively. This difference is a direct result of
the conditional event having a higher rainfall magnitude than
the unconditional event: given that there is an extreme event
nearby, it is more likely for an extreme event to occur at a
nearby location. If a bridge design were to take into account
this extra criterion for the purposes of evacuation planning, it
would require the design to be at a higher level.

5.3 Estimating the failure probability of the highway
section based on the joint probability of rainfall
extremes

Figure 10 is a plot of the overall failure probability of the
highway as a function of the failure probability of each in-
dividual river crossing (black). Similar relationships for the
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Figure 7. Pointwise 10-year unconditional return level map (mm) for 36 h extremes (a), and pointwise 1-in-10 chance conditional return
level map (mm) for 36 h extremes given a 20-year event for 36 h extremes happens at the location of the red star representing the centroid of
the Kalang River catchment (b). The color scales are the same for comparison.

Figure 8. Pointwise 10-year unconditional return level map (mm) for 9 h extremes (a), and pointwise 1-in-10 chance conditional return level
map (mm) for 9 h extremes, given a 20-year event for 36 h extremes happens at location of the red star representing the centroid of the Kalang
River catchment (b). The color scales are the same for comparison.

cases of complete dependence (blue) and independence (red)
are also provided for comparison. For the case of complete
dependence, when the whole region is extreme at the same
time, the overall failure probability of the highway is equal
to the individual river crossing failure probability. This rep-
resents the lowest overall failure probability. The worst case
is complete independence where extremes do not happen to-
gether unless by random chance; this means that the failure
probability of the highway is much higher than that for in-
dividual river crossings. Taking into account the real depen-
dence, there are some extremes that align, and it seems from
Fig. 10 that this is a relatively weak effect. As an example
from Fig. 10, to design the highway with a failure probabil-
ity of 1 % annual exceedance probability (AEP), we would
have to design each individual river crossing to a much rarer
AEP of 0.25 % (see green lines in Fig. 10).

6 Discussion and conclusions

Hydrological design that is based on IDF estimates has con-
ventionally focused on separate estimation at single loca-

tions. Such an approach can lead to the misspecification for a
wider system risk of flooding since weather systems exhibit
dependence in space and time and across storm durations,
which can lead to the coincidence of extremes. A number
of methods have been developed to address the problem of
antecedent moisture within a single catchment, by account-
ing for the temporal dependence of rainfall at locations of
interest through loss parameters or sampling rainfall patterns
(Rahman et al., 2002). However, there have been fewer meth-
ods that account for the spatial dependence of rainfall across
multiple catchments, due in part to the complexity of repre-
senting the effects of spatial dependence in risk calculations.
Different catchments can have different times of concentra-
tion, so spatial dependence may also imply the need to con-
sider dependence across different durations of extreme rain-
fall bursts.

Recent and ongoing advances in modeling spatial rainfall
extremes provide an opportunity to revisit the scope of hy-
drological design. Such models include a max-stable model
fitted using a Bayesian hierarchical approach (Stephenson et
al., 2016), max-stable and inverted max-stable models (Nico-
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Figure 9. Comparison between conditional flows (red line) and unconditional flows (black line). (a) At the river crossing in the Bellinger
catchment (number 1 in Fig. 3): conditional flow caused by a 1-in-10 chance conditional event for 36 h rainfall considering the effect of a
20-year event for 36 h rainfall occurring at the river crossing in the Kalang River catchment, and unconditional flow caused by a 10-year
unconditional event for 36 h. (b) At the river crossing in the Deep Creek catchment (number 3 in Fig. 3): conditional flow caused by a
1-in-10 chance conditional event for 9 h rainfall considering the effect of a 20-year event for 36 h rainfall occurring at the river crossing in
the Kalang River catchment, and unconditional flow caused by a 10-year unconditional event for 9 h rainfall.

Figure 10. Relationship between system failure probability and in-
dividual element failure probability in the percentage of annual ex-
ceedance probability (% AEP). Black is for the case study; red is
for the case of independence; and blue is for the case of complete
dependence. The green lines help to interpolate the individual ele-
ment failure probability from a given system failure probability of
1 %. Both the horizontal axis and vertical axis are constructed at a
double log scale for viewing purposes.

let et al., 2017; Padoan et al., 2010; Russell et al., 2016;
Thibaud et al., 2013; Westra and Sisson, 2011), and latent-
variable Gaussian models (Bennett et al., 2016b). The abil-
ity to simulate rainfall over a region means that hydrologi-
cal problems need not be confined to individual catchments,
but they may cover multiple catchments. Civil infrastructure
systems such as highways, railways, or levees are such ex-
amples, since the failure of any one element may lead to the
overall failure of the system. Alternatively, where there is a
network, the failure of one element may have implications
for the overall system to accommodate the loss, by consid-
ering alternative routes. With models of spatial dependence

and the duration dependence of extremes, there is a new and
improved ability to address these problems explicitly as part
of the design methodology.

This paper demonstrated an application for evaluating con-
ditional and joint probabilities of flooding at different loca-
tions. This was achieved with two examples: (i) the design of
a river crossing that will fail once on average every M times
given that its neighboring river crossing is flooded and (ii) the
estimation of the probability that a highway section, which
contains multiple river crossings, will fail based on the failure
probability of each individual river crossing. Due to the lack
of continuous streamflow data and sub-daily limitations of
rain-based continuous simulation, this study used an event-
based method of conditional and joint rainfall extremes to
estimate the corresponding conditional and joint flood flows.
The spatial rainfall was simulated using an asymptotically
independent model, which was then used to estimate con-
ditional and joint rainfall extremes. Although this study fo-
cused on the inverted max-stable model to simulate the ex-
treme rainfall process, other methods such as the Gaussian
copula may also be appropriate and should be considered in
future applications.

An empirical method was obtained from the framework
of Le et al. (2018b) to make an asymptotically independent
model – the inverted max-stable process – able to capture the
spatial dependence of rainfall extremes across different dura-
tions. The fitted residual tail dependence coefficient function
showed that the model can capture the dependence for dif-
ferent pairs of durations. For our example, the highest ratio
of the 1-in-10 chance conditional event (in considering the
effect of a 20-year event rainfall occurring at the conditional
location) to the 10-year unconditional event was 1.74 for the
two catchments having the strongest dependence (Fig. 7).
The corresponding conditional flows were then estimated us-
ing a hydrological model, WBNM, and shown to be strongly
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related to the ratio of conditional and unconditional rainfall
extremes (Fig. 9).

The joint probability of rainfall extremes for all catch-
ments and for all possible pairs of catchments in the
case study area was estimated empirically from a set of
10 000 years of simulated rainfall extremes, repeated 100
times to estimate the average value. The results showed that
there were differences in the failure probability of the high-
way after taking into account the rainfall dependence, but
the effect was not as emphatic as with the case of condi-
tional probabilities. The difference in the failure probability
became weaker as the return period increased, which is con-
sistent with the characteristic of asymptotically independent
data (Ledford and Tawn, 1996; Wadsworth and Tawn, 2012).
A relationship was demonstrated (Fig. 10) to show how the
design of the overall system to a given failure probability re-
quires the design of each individual river crossing to a rarer
extremal level than when each crossing is considered in iso-
lation. For the case study example, it would be necessary to
design each of the five bridges to a 0.25 % AEP event in order
to obtain a system failure probability of 1 %.

There is a need to reimagine the role of intensity–
duration–frequency relationships. Conventionally they have
been developed as maps of the marginal rainfall in a point-
wise manner for all locations and for a range of frequencies
and durations. The increasing sophistication of mathemati-
cal models for extremes, computational power, and interac-
tive graphics abilities of online mapping platforms means
that analysis of hydrological extremes could significantly ex-
pand in scope. With an underlying model of spatial and du-
ration dependence between the extremes, it is not difficult
to conceive of digital maps that dynamically transform from
the marginal representation of extremes to the correspond-
ing representation conditional extremes after any number of
conditions are applied. This transformation is exemplified by
the differences between panels a and b in Figs. 7 and 8. En-
hanced IDF maps would enable a very different paradigm of
design flood risk estimation, breaking away from analyzing
individual system elements in isolation and instead empha-
sizing the behavior of the entire system.

Data availability. The extracted dataset used
for this study can be directly accessed at
https://doi.org/10.6084/m9.figshare.9917072.v1 (Le et al.,
2019).
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Table A1. Observed data, Z1 and Z2, and corresponding empirical
cumulative probabilities, P1 and P2.

Z1 Z2 P1 P2

5 10 0.455 0.909
9 1 0.818 0.091
1 7 0.091 0.636
2 6 0.182 0.545
10 4 0.909 0.364
3 3 0.273 0.273
8 9 0.727 0.818
6 2 0.545 0.182
4 8 0.364 0.727
7 5 0.636 0.455

Appendix A: Calculation of the empirical tail
dependence coefficient

To illustrate how Eq. (2) in the paper is calculated, consider a
set of n= 10 observed values at the two locations Z1 and Z2
(see Table A1). First, Z1 and Z2 are converted to empirical
cumulative probability estimates via the Weibull plotting po-
sition formula P = j/(n+1), where j is a ranked index of a
data point giving P1 and P2 (see Table A1).

Assume that interest is in values above a threshold u satis-
fying Pu = 0.5, in other words, P {Z2 > u} = P {P2 > Pu} =

0.5. In this case we have only one pair, at the index of 7, that
satisfies both P1 and P2 and is greater than Pu = 0.5, thus
P {Z1 > u, Z2 > u} = P {P1 > Pu, P2 > Pu} = 1/10= 0.1.
The calculation of the empirical tail dependence coefficient
is then

η(x1,x2)=
logP {Z2 > u}

logP {Z1 > u,Z2 > u}

=
logP {P2 > Pu}

logP {P1 > Pu,P2 > Pu}

=
log(0.5)
log(0.1)

= 0.301. (A1)

Appendix B: Estimate of conditional and joint
probabilities of rainfall extremes

The unit Fréchet transformation is given as

z=



(
log

{
1−8u

(
1+ (y−u)

σu

)−1/ξ
})−1

y > u,ξ 6= 0

−

(
log

{
1−8u exp

(
−
y−u
σu

)−1/ξ
})−1

y > u,ξ = 0

−{logF (yi)}−1 y ≤ u,

(B1)

where y is the original marginal value, z is the Fréchet trans-
formed value, and all other parameters correspond to the
GPD specified in Sect. 4.1. For values below the thresh-
old, F is the empirical distribution function of y, F(yi)=

i/(n+ 1), where i is the rank of yi and n is the total number
of data points.

The conditional probability P {Z2 > z2|Z1 > z1} is ob-
tained from the bivariate inverted max-stable-process cumu-
lative distribution function (CDF) in unit Fréchet margins
(Thibaud et al., 2013), which is given as

P {Z1 ≤ z1,Z2 ≤ z2}= 1− exp
{
−

1
g1

}
− exp

{
−

1
g2

}
+exp

[
−V {g1,g2}

]
, (B2)

where g1 =−1/ log{1− exp(−1/z1)}, g2 =−1/ log{1−
exp(−1/z2)}, and the exponent measure V (Padoan et al.,
2010) is defined as

V {g1,g2} = −
1
g1
8

{
a

2
+

1
a

log
g2

g1

}
−

1
g2
8

{
a

2
+

1
a

log
g1

g2

}
. (B3)

In Eq. (B3),8 is the standard normal cumulative distribution
function, a =

√
2γad.(h), and γad.(h) is the variogram that

was mentioned in the explanation of Eq. (3).
In unit Fréchet margins, the relationship between the re-

turn level z and the return period T (in number of observa-
tions) is given as z=−1/ log(1− 1/T ), and the conditional
probability for the max-stable process can then be estimated
using

P {Z2 > z2|Z1 > z1} = T1

[
1
T1
− exp

(
−

1
z2

)
+P {Z1 ≤ z1,Z2 ≤ z2}] , (B4)

where T1 is the return period (in number of observations for
36 h rainfall) corresponding to the return level z1. It is also
noted that in this paper Z1 and Z2 were taken as threshold
exceedances, so the return period T1 should be in the number
of observations, which is equivalent to a T1/243-year return
period because there are 243 observations for 36 h rainfalls
in a year.

The probability that there is at least one location that has
an extreme event exceeding a given threshold can be calcu-
lated based on the addition rule for the union of probabilities
as

P (Z1 > z1 or . . .or ZN > zN )=
N∑
i=1

P (Zi > zi)

−

∑
i<j

P
(
Zi > zi,Zj > zj

)
+ . . .

+ (−1)N−1P (Z1 > z1, |, . . . ,ZN > zN ) , (B5)

where N is the number of locations.
For the case of dependent variables, the joint probability

for only two locations, P {Z1 > z1,Z2 > z2}, can be easily
obtained from the bivariate CDF for the inverted max-stable
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process in Eq. (B2). However, for the case of multiple loca-
tions (five different locations for this paper), it is difficult to
derive the formula for this probability because there are de-
pendences between extreme events at all locations. So this
probability is empirically calculated from a large number of
simulations of the dependent model (see the description of
the simulation procedure for an inverted max-stable process
in Sect. 4.3).

For the case that all the events are independent, the joint
probability for independent variables is broken down as
the product of the marginals, and the conditional probabil-
ity is equivalent to the marginal probability. When apply-
ing Eq. (B5) for independent variables, the joint probabil-
ity is therefore calculated by P(Z1 > z1, . . . ,ZN > zN )=
P(Z1 > z1) . . . P(ZN > zN ).
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