Articles | Volume 23, issue 8
Hydrol. Earth Syst. Sci., 23, 3405–3421, 2019
https://doi.org/10.5194/hess-23-3405-2019
Hydrol. Earth Syst. Sci., 23, 3405–3421, 2019
https://doi.org/10.5194/hess-23-3405-2019

Research article 19 Aug 2019

Research article | 19 Aug 2019

Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework

Zhengke Pan et al.

Related authors

The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020,https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Bending of the concentration discharge relationship can inform about in-stream nitrate removal
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021,https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021,https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Identification of the contributing area to river discharge during low-flow periods
Maxime Gillet, Corinne Le Gal La Salle, Pierre Alain Ayral, Somar Khaska, Philippe Martin, and Patrick Verdoux
Hydrol. Earth Syst. Sci., 25, 6261–6281, https://doi.org/10.5194/hess-25-6261-2021,https://doi.org/10.5194/hess-25-6261-2021, 2021
Short summary
Simulating sediment discharge at water treatment plants under different land use scenarios using cascade modelling with an expert-based erosion-runoff model and a deep neural network
Edouard Patault, Valentin Landemaine, Jérôme Ledun, Arnaud Soulignac, Matthieu Fournier, Jean-François Ouvry, Olivier Cerdan, and Benoit Laignel
Hydrol. Earth Syst. Sci., 25, 6223–6238, https://doi.org/10.5194/hess-25-6223-2021,https://doi.org/10.5194/hess-25-6223-2021, 2021
Short summary
In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021,https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary

Cited articles

Ajami, N. K., Duan, Q. Y., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005wr004745, 2007. 
Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H.: A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis, Water Resour. Res., 54, 243–255, https://doi.org/10.1002/2017wr020403, 2018. 
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?, J. Hydrol., 476, 410–425, https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013. 
Broderick, C., Matthews, T., Wilby, R. L., Bastola, S., and Murphy, C.: Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods, Water Resour. Res., 52, 8343–8373, https://doi.org/10.1002/2016wr018850, 2016. 
Cha, Y., Park, S. S., Lee, H. W., and Stow, C. A.: A Bayesian hierarchical approach to model seasonal algal variability along an upstream to downstream river gradient, Water Resour. Res., 52, 348–357, https://doi.org/10.1002/2015wr017327, 2016. 
Download
Short summary
Understanding the projection performance of hydrological models under contrasting climatic conditions supports robust decision making, which highlights the need to adopt time-varying parameters in hydrological modeling to reduce performance degradation. This study improves our understanding of the spatial coherence of time-varying parameters, which will help improve the projection performance under differing climatic conditions.