Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3405-2019
https://doi.org/10.5194/hess-23-3405-2019
Research article
 | 
19 Aug 2019
Research article |  | 19 Aug 2019

Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework

Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng

Viewed

Total article views: 3,060 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,737 1,255 68 3,060 193 92 84
  • HTML: 1,737
  • PDF: 1,255
  • XML: 68
  • Total: 3,060
  • Supplement: 193
  • BibTeX: 92
  • EndNote: 84
Views and downloads (calculated since 04 Feb 2019)
Cumulative views and downloads (calculated since 04 Feb 2019)

Viewed (geographical distribution)

Total article views: 3,060 (including HTML, PDF, and XML) Thereof 2,526 with geography defined and 534 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 10 Oct 2024
Download
Short summary
Understanding the projection performance of hydrological models under contrasting climatic conditions supports robust decision making, which highlights the need to adopt time-varying parameters in hydrological modeling to reduce performance degradation. This study improves our understanding of the spatial coherence of time-varying parameters, which will help improve the projection performance under differing climatic conditions.