Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3405-2019
https://doi.org/10.5194/hess-23-3405-2019
Research article
 | 
19 Aug 2019
Research article |  | 19 Aug 2019

Improving hydrological projection performance under contrasting climatic conditions using spatial coherence through a hierarchical Bayesian regression framework

Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng

Viewed

Total article views: 3,100 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,760 1,271 69 3,100 196 93 85
  • HTML: 1,760
  • PDF: 1,271
  • XML: 69
  • Total: 3,100
  • Supplement: 196
  • BibTeX: 93
  • EndNote: 85
Views and downloads (calculated since 04 Feb 2019)
Cumulative views and downloads (calculated since 04 Feb 2019)

Viewed (geographical distribution)

Total article views: 3,100 (including HTML, PDF, and XML) Thereof 2,565 with geography defined and 535 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 22 Nov 2024
Download
Short summary
Understanding the projection performance of hydrological models under contrasting climatic conditions supports robust decision making, which highlights the need to adopt time-varying parameters in hydrological modeling to reduce performance degradation. This study improves our understanding of the spatial coherence of time-varying parameters, which will help improve the projection performance under differing climatic conditions.