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Abstract. Understanding the projection performance of hy-
drological models under contrasting climatic conditions sup-
ports robust decision making, which highlights the need
to adopt time-varying parameters in hydrological modeling
to reduce performance degradation. Many existing studies
model the time-varying parameters as functions of physically
based covariates; however, a major challenge remains in find-
ing effective information to control the large uncertainties
that are linked to the additional parameters within the func-
tions. This paper formulated the time-varying parameters for
a lumped hydrological model as explicit functions of tempo-
ral covariates and used a hierarchical Bayesian (HB) frame-
work to incorporate the spatial coherence of adjacent catch-
ments to improve the robustness of the projection perfor-
mance. Four modeling scenarios with different spatial coher-
ence schemes and one scenario with a stationary scheme for
model parameters were used to explore the transferability of
hydrological models under contrasting climatic conditions.
Three spatially adjacent catchments in southeast Australia
were selected as case studies to examine the validity of the
proposed method. Results showed that (1) the time-varying
function improved the model performance but also amplified
the projection uncertainty compared with the stationary set-
ting of model parameters, (2) the proposed HB method suc-
cessfully reduced the projection uncertainty and improved
the robustness of model performance, and (3) model parame-
ters calibrated over dry years were not suitable for predicting
runoff over wet years because of a large degradation in pro-
jection performance. This study improves our understanding

of the spatial coherence of time-varying parameters, which
will help improve the projection performance under differ-
ing climatic conditions.

1 Introduction

Long-term streamflow projection is an important part of ef-
fective water resources planning because it can predict fu-
ture scarcity in water supply and help prevent floods. Stream-
flow projections typically involve the following: (i) calibrat-
ing hydrological model parameters with partial historical ob-
servations (e.g., precipitation, evaporation, and streamflow);
(ii) projecting streamflow under periods that are outside of
those for model calibration; and (iii) evaluating the model
projection performance with certain criteria. One of the most
basic assumptions of this process – that the calibrated model
parameters are stationary and can be applied to predict catch-
ment behaviors in the near future, has been widely ques-
tioned (Brigode et al., 2013; Broderick et al., 2016; Chiew
et al., 2009, 2014; Ciais et al., 2005; Clarke, 2007; Cook et
al., 2004; Coron et al., 2012; Deng et al., 2016; Merz et al.,
2011; Moore and Wondzell, 2005; Moradkhani et al., 2005,
2012; Pathiraja et al., 2016, 2018; Patil and Stieglitz, 2015;
Westra et al., 2014; Xiong et al., 2019; Zhang et al., 2018).

Many previous studies have explored the transferability of
stationary parameters to periods with different climatic con-
ditions. They have concluded that hydrological model pa-
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rameters are sensitive to the climatic conditions of the cal-
ibration period (Chiew et al., 2009, 2014; Coron et al., 2012;
Merz et al., 2011; Renard et al., 2011; Seiller et al., 2012;
Vaze et al., 2010). For instance, Merz et al. (2011) cali-
brated model parameters using six consecutive 5-year peri-
ods between 1976 and 2006 for 273 catchments in Austria
and found that the calibrated parameters representing snow
and soil moisture processes showed a significant trend in
the study area. Other studies have found that degradation in
model performance was directly related to the difference in
precipitation between the calibration and verification periods
(Coron et al., 2012; Vaze et al., 2010). One proposal for man-
aging this problem is to calibrate model parameters in peri-
ods with similar climatic conditions to the near future, but fu-
ture streamflow observations are unavailable. Thus, it is still
necessary to reduce the magnitude of performance loss and
improve the robustness of the projection performance using
calibrated parameters based on the historical records, even
though the climatic conditions in the future may be dissimi-
lar to those used for model calibration.

Several recent studies have found that hydrological mod-
els with time-varying parameters exhibited a significant im-
provement in their projection performance compared with
those using the stationary parameters (Deng et al., 2016,
2018; Westra et al., 2014). The functional method is one of
the most promising ways to model time-varying parameters
and shows its excellence in improving the model projection
performance (Guo et al., 2017; Westra et al., 2014; Wright
et al., 2015). This method models the time-varying parame-
ter(s) as the function(s) of physically based covariates (e.g.,
temporal covariate and Normalized Difference Vegetation In-
dex). Generally, the hydrological model is run with various
assumed functions, and the best functional forms of time-
varying parameters can be obtained by comparing the evalu-
ation criteria. However, a major challenge for the application
of the functional method remains in finding effective infor-
mation to control the large uncertainties that are linked to the
additional parameters describing these regression functions.

The similarity of adjacent catchments has been verified,
along with the validity of controlling the estimation uncer-
tainty of model parameters (Bracken et al., 2018; Cha et
al., 2016; Cooley et al., 2007; Lima and Lall, 2009; Najafi
and Moradkhani, 2014; Sun and Lall, 2015; Sun et al., 2015;
Yan and Moradkhani, 2015). The level of similarity of differ-
ent catchments is known as spatial coherence. For instance,
Sun and Lall (2015) used the spatial coherence of trends
in annual maximum precipitation in the United States and
successfully reduced the parameter estimation uncertainty in
their on-site frequency analysis. In general, there are three
methods to consider the spatial coherence between different
catchments in parameter estimation. The first one is no pool-
ing, which means every catchment is modeled independently,
and all parameters are catchment-specific. The second one
is complete pooling, which means all parameters are con-
sidered to be common across all catchments. The third and

last one is the hierarchical Bayesian (HB) framework, also
known as partial pooling, which means some parameters are
allowed to vary by catchments and some parameters are as-
sumed to drown from a common hyper-distribution across
the region that consists of different catchments. In these three
approaches, the HB framework has been proven to be the
most efficient method to incorporate the spatial coherence to
reduce the estimation uncertainty because it has the advan-
tage of shrinking the local parameter toward the common
regional mean and including an estimation of its variance
or covariance across the catchments (Bracken et al., 2018;
Sun and Lall, 2015; Sun et al., 2015). In the field of hy-
drological modeling, most preceding studies were focused
on no-pooling models that neglect the spatial coherence be-
tween catchments (Heuvelmans et al., 2006; Lebecherel et
al., 2016; Merz and Bloschl, 2004; Oudin et al., 2008; Singh
et al., 2012; Tegegne and Kim, 2018; Xu et al., 2018); little
attention has been paid to the HB framework. Thus, we want
to fill this gap and explore the applicability of the spatial co-
herence through the HB framework in hydrological modeling
with the time-varying parameters.

The objectives of this paper were to (1) verify the effect
of the time-varying model parameter scheme on model pro-
jection performance and uncertainty analysis compared with
stationary model parameters, (2) verify the projection per-
formance of a scheme that considers the spatial coherence of
adjacent catchments through the HB framework compared
with spatial incoherence, and (3) compare the model projec-
tion performance for different climatic transfer schemes.

The rest of the paper is organized as follows. Section 2
outlines the methodology employed in this study including
differential split-sample test (DSST) for segmenting the his-
torical series, the hydrological model, and the two-level HB
framework for incorporating spatial coherence from adjacent
catchments. Section 3 presents the information on the study
area and data. The results and discussion are described in
Sect. 4. Section 5 summarizes the main conclusions of the
study.

2 Methodology

The methodology is outlined by a flowchart in Fig. 1, and is
summarized as follows:

1. A temporal parameter transfer scheme is implemented
(described in Sect. 2.1) using a classic DSST procedure
in which the available data are divided into wet and dry
years.

2. A daily conceptual rainfall–runoff model is used (out-
lined in Sect. 2.2).

3. A two-level HB framework is used to incorporate spa-
tial coherence in hydrological modeling (described in
Sect. 2.3). The process layer (first level) of the frame-
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work models the temporal variation in the model pa-
rameters using a time-varying function, while the prior
layer (second level) models the spatial coherence of
the regression parameters in the time-varying function.
Four modeling scenarios with different spatial coher-
ence schemes and one scenario with a stationary scheme
for the model parameters are used to evaluate the trans-
ferability of hydrological models under contrasting cli-
matic conditions.

4. Likelihood function and parameter estimation methods
are applied (outlined in Sect. 2.4).

5. The criteria are used to evaluate the model performance
for various model scenarios (described in Sect. 2.5).

2.1 Differential split sampling test

To verify the projection performance of the rainfall–runoff
model under contrasting climatic conditions (wet and dry
years), a classic DSST using annual rainfall records was
adopted.

Two separate tasks were needed to develop the DSST
method into a working system. The first step was to define
“dry years”. The method to define the dry years is adopted
from Saft et al. (2015), which is a rigorous identification
method that treats autocorrelation in the regression residu-
als, undertakes global significance testing, and defines the
start and end of the droughts individually for each catchment.
Saft et al. (2015) tested several algorithms for dry-year delin-
eation, which considered different combinations of dry run
length, dry run anomaly, and various boundary criteria and
found that the identification results of dry years by one of the
algorithms showed marginal dependence on the algorithm
and the main results were robust to different algorithms. The
detailed processes could be found on Saft et al. (2015) and
are also generalized as follows.

First, the annual rainfall data were calculated relative to
the annual mean, and the anomaly series was divided by
the mean annual rainfall and smoothed with a 3-year mov-
ing window. Second, the first year of the drought remained
the start of the first 3 years of the negative anomaly period.
Third, the exact end date of the dry years was determined
through analysis of the unsmoothed anomaly data from the
last negative 3-year anomaly. The end year was identified
as the last year of this 3 year period unless (i) there was a
year with a positive anomaly>15 % of the mean, in which
case the end year is set to the year prior to that year, (ii) the
last 2 years have slightly positive anomalies (but each<15 %
of the mean), in which case the end year is set to the first
year of positive anomaly, or (iii) to ensure that the dry years
are sufficiently long and severe, in the subsequent analysis,
the authors use dry years with the following characteristics:
length≥ 7 years; mean dry years anomaly<− 5 %.

In the second step, the wet years were defined as the com-
plement of the dry years in the historical records. A similar

approach to define the dry and wet years was used by Fowler
et al. (2016).

In the DSST method, the model parameters calibrated in
the wet years were evaluated in the dry years, and vice versa.
In addition, criteria (i.e, NSEsqrt, BIAS, DIC, MaxF, and
MinF, illustrated in Sect. 2.5) were used to evaluate the per-
formance of the calibrated parameters for different transfer
schemes.

2.2 The rainfall–runoff model

The hydrological model used in this study is the GR4J (mod-
èle du Génie Rural à 4 paramètres Journalier), which is
a lumped conceptual rainfall–runoff model (Perrin et al.,
2003). The original version of the GR4J model (Fig. 2)
comprised four parameters (Perrin et al., 2003): production
store capacity (θ1 mm), groundwater exchange coefficient
(θ2 mm), 1-day-ahead maximum capacity of the routing store
(θ3 mm), and the time base of the unit hydrograph (θ4 d).
More details on the GR4J model can be found in Perrin et
al. (2003).

The GR4J model is a parsimonious but efficient model.
The model has been used successfully across a wide range
of hydro-climatic conditions across the world, including
the crash testing of model performance under contrasting
climatic conditions (Coron et al., 2012), and the simula-
tion of runoff for revisiting the deficiency in insufficient
model calibration (Fowler et al., 2016). For example, Fowler
et al. (2016) verified that conceptual rainfall–runoff mod-
els were more capable under changing climatic conditions
than previously thought. These characteristics make the
GR4J particularly suitable as a starting point for implement-
ing modifications and/or improving predictive ability under
changing climatic conditions.

2.3 The HB framework for the time-varying model
parameter

In this study, various versions were constructed for evaluat-
ing the projection capabilities of models for contrasting cli-
matic conditions (wet and dry years), and for considering the
temporal variation and spatial coherence of parameter θ1.

2.3.1 Process layer: temporal variation of the model
parameter

As described in the literature (Pan et al., 2019; Perrin et al.,
2003; Renard et al., 2011; Westra et al., 2014), parameter θ1,
which represents the primary storage of water in the catch-
ment, is the most sensitive parameter in the GR4J model
structure, and the stochastic variations of this parameter have
the largest impact on model projection performance (Renard
et al., 2011; Westra et al., 2014). In addition, the temporal
variation in the catchment storage capacity was physically in-
terpretable. Periodic variations in the production store capac-
ity θ1 can be induced by the periodicity in precipitation (Pan
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Figure 1. Flow chart of the methodology for integrating inputs from spatially coherent catchments and temporal variation of model parame-
ters into a hydrological model under contrasting climatic conditions (wet and dry years).

et al., 2018) and in seasonal vegetation growth and senes-
cence. In the present study, θ1 was constructed to account
for the periodical variation that had a significant impact on
the extensionality of the model. The periodical variation in
catchment storage capacity θ1 is described by a sine func-
tion, using amplitude and frequency.

Thus, for any catchment c, the full temporal regression
function for θ1 at the process layer is as follows:

Process layer: θ1(c, t)= α(c)+β(c)sin[ω(c)t] , (1)

where α, β, ω are regression parameters for the specific
DSST method; α signifies the intercept; {β, ω} represents the
amplitude and frequency of the sine function, respectively;
and t is the time step. According to the definition of the GR4J
model (Perrin et al., 2003), the value of θ1 must be a posi-
tive value. If model parameter θ1 is constant then β = 0 and
α > 0 suffice in Eq. (1). Meanwhile, the value of ω becomes
irrelevant. Thus, the resulting model simplifies to a stationary
hydrological model.
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Figure 2. Schematic diagram of the GR4J rainfall–runoff model
adopted by Perrin et al. (2003). In the figure, P and E refer to pre-
cipitation and evapotranspiration, respectively; En and Pn denote
net precipitation and net evapotranspiration, respectively; Ps refers
to the part of precipitation that fills the production store (i.e., S). The
production store is determined as a function of the water level S in
the production store. θ1, θ2, θ3, and θ4 denote model parameters.
The Perc refers to the percolation leakage that is a function of pro-
duction store S and parameter θ1. The Pr refers to the total quantity
of water that reaches the routing functions. UH1 and UH2 denote
two-unit hydrographs. Q1 and Q9 refer the corresponding output
of the unit hydrographs, respectively; F indicates the groundwater
exchange term; R is the level in the routing store. Qr refers to the
outflow of the routing store, Qd is a function of water exchange,
and Q refers to the total streamflow.

2.3.2 Prior layer: spatial coherence of regression
parameters

For a heterogeneous region that is distinctly nonuniform in
climatic and geologic conditions, different catchments within
the region typically have different catchment storage capaci-
ties and different values of production store capacity θ1. For
a homogeneous region prescribed by similar climatic and ge-
ologic conditions in each part, the production store capacity
(in Eq. 1) is expected to be the same among different catch-
ments of the region. The model could be improved by con-
sidering spatial input, i.e., the spatial coherence of parame-
ters across adjacent catchments (Chen et al., 2014; Lima et
al., 2016; Merz and Bloschl, 2004; Oudin et al., 2008; Patil
and Stieglitz, 2015; Renard et al., 2011; Sun et al., 2014).

In this study, independent Gaussian prior distributions
were used for the amplitude β and frequency ω at the prior

layer to include the potential spatial coherence. Their equa-
tions are as follows:

Prior layer:
β(c)=N

(
µ2, σ

2
2
)
,

ω(c)=N
(
µ3, σ

2
3
)
,

(2)

whereµ2,µ3, σ2, and σ3 are hyper-parameters, andN (.) rep-
resents the hyper-distribution, i.e., a Gaussian distribution.
Independent Gaussian distributions were assumed for the
amplitude β and frequency ω that were used to model spa-
tial coherence based on practical considerations. The prior
layer of the HB framework aims to describe the variation of
{β, ω} in space by means of a Gaussian spatial process in
which the mean value depends on covariates describing re-
gional characteristics. Amplitude β and frequency ω are the
most important parameters in the regression function and can
reflect the spatial connection of the variation and cyclicity
of catchment production storage capacity among catchments.
The Gaussian distribution is one of the widely used distribu-
tions for describing the prior layer within the HB framework
and has been applied in many previous studies, such as Sun et
al. (2015) and Chen et al. (2014). In addition, the Gaussian
distributions were introduced to describe the spatial coher-
ence of β and ω because there are still uncountable factors
that may have impacts on the spatial coherence between ad-
jacent catchments, which might make the coherence tend to
converge a central value (but with finite variance) and obey
the central limit theorem.

2.3.3 Modeling scenarios

Five modeling scenarios (Table 1) were carried out to as-
sess the effect of the spatial coherence on the time-varying
function. Different levels of spatial coherence of {β,ω} were
assumed in scenarios 1 to 4, while in scenario 5 parameter
θ1 was set to be constant to provide a comparison. It should
be noted that the estimates for spatially coherent regression
parameters would be shared by different catchments while
other quantities would be regarded as catchment-specific
variables. For example, amplitude β is spatially linked in sce-
nario 1, i.e., β (c)=N

(
µ2, σ

2
2
)
, which means that the esti-

mates of β are shared by all catchments. Meanwhile, regres-
sion parameters ω1−1, ω1−2, and ω1−3 are used as indepen-
dent variables to represent the frequency of model parameter
θ1 in different catchments. The number of unknown quan-
tities in different scenarios are as follows: 15 in scenarios
1 and 2, 13 in scenario 3, and 18 in scenario 4. The prior
ranges of all unknown quantities (including model parame-
ters θ2, θ3, and θ4; regression parameters α, β, and ω; and
hyper-parameters µ2, σ2, µ3, and σ3) in different scenarios
and both DSST schemes could be found in Table S1 in the
Supplement. It should be noted that in a specific scenario,
some unknown quantities might not exist. For example, µ3
and σ3 did not exist in scenario 1 while µ2 and σ2 did not
exist in scenario 2.
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Table 1. Different spatial coherence scenarios for amplitude β and frequency ω in the time-varying functional form of model parameter θ1.
To explore the performance of spatial coherence within the time-varying function, different levels of spatial coherence for amplitude β and
frequency ω were assumed for the first three scenarios; in contrast, no spatial coherence is assumed in scenario 4, and a temporally stable θ1
is assumed in scenario 5.

Category Scenario β ω Constraints

Time-varying

1 Parameter β is region-related Parameter ω is catchment-specific
θ1 = α(c)+β(c)sin[ω(c)t],
while β(c)=N(µ2, σ

2
2 )

Spatial
2 Parameter β is catchment-specific Parameter ω is region-related

θ1 = α(c)+β(c)sin[ω(c)t],
coherence while ω(c)=N(µ3, σ 2

3 )

θ1 = α(c)+β(c)sin[ω(c)t],
3 Parameter β is region-related Parameter ω is region-related while β(c)=N(µ2, σ 2

2 )

and ω(c)=N(µ3, σ 2
3 )

No spatial 4 Parameter β is catchment-specific Parameter ω is catchment-specific θ1 = α(c)+β(c)sin[ω(c)t]

Time-invariant coherence 5 No parameters β or ω θ1 is stationary
NB: θ1 represents the production storage capacity of the catchment; β is the slope describing long-term change during the modeling period, and ω is the amplitude of the sine function
describing its seasonal variation during the modeling period; µ2, σ2, µ3, and σ3 are hyper-parameters.

2.4 Estimation and projection

The objective function and parameter inference methods
were used to derive the posterior distribution of all unknown
quantities, as illustrated below.

2.4.1 Objective function

For a specific catchment, the model parameters were cali-
brated to minimize the following objective function, which
was adopted from Coron et al. (2012):

εc [θ1, θ2, θ3, θ4]=−RMSE
[√
Q
]
(1+ |1+BIAS|) , (3)

where

RMSE
[√
Q
]
=

√√√√ 1
T

T∑
t=1

[Qsim (t)−Qobs (t)]2 (4)

and RMSE
[√
Q
]

refers to the root-mean-square error, in
which Qsim is derived by the adopted hydrological model.
T represents the number of the time series while t is the time
step.

Coron et al. (2012) showed that this objective func-
tion performed well. In this function, the combination of
RMSE

[√
Q
]

and BIAS (Eq. 7) gives weight to dynamic rep-
resentation as well as the water balance. Using square-root-
transformed flows to compute the RMSE reduces the influ-
ence of high flows during the calibration period and provides
a good compromise between alternative criteria.

In the case of multiple catchments, the objective function
of the HB framework was the product of Eq. (3) and the con-
ditional probability of spatial coherence of regression param-

eters fN . It was written as follows:

Scenario 1:3=
C∏
c=1

εc [θ1(t, c), θ2(c), θ3(c), θ4(c)|α(c),

β, ω(c)] · fN (β|µ2, σ2);

Scenario 2:3=
C∏
c=1

εc [θ1 (t, c) , θ2 (c) , θ3 (c) , θ4 (c) |α (c),

β (c) , ω] · fN (ω|µ3, σ3) ;

Scenario 3:3=
C∏
c=1

εc [θ1 (t, c) , θ2 (c) , θ3 (c) , θ4 (c) |α (c),

β, ω] ·
2∏
n=1

fN (β, ω|µ2, σ2, µ3, σ3) ;

Scenario 4:3=
C∏
c=1

εc [θ1 (t, c) , θ2 (c) , θ3 (c) , θ4 (c)] ;

Scenario 5:3=
C∏
c=1

εc [θ1 (c) , θ2 (c) , θ3 (c) , θ4 (c)] .

(5)

Here, the number of catchments in the region is represented
by C, and the Gaussian spatial function between regression
parameters β and ω and hyper-parameters µ2, µ3, σ2, and
σ3 are denoted by fN ().N refers to the Gaussian distribution
and n represents the number of regression parameters that are
spatially coherent.

2.4.2 Inference

The uniform distribution is used as the prior distribution for
hyper-parameters and spatially irrelevant parameters. Mean-
while, spatially relevant parameters are sampled from the
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Gaussian distributions. Because the prior distribution has no
impact on the final evaluation of different scenarios, the prior
distributions are not presented in Eq. (5). The likelihood
functions defined in Eqs. (3) and (5) pose a computational
challenge because their dimensionality grows (primarily re-
lated to the number of catchment-specific parameters) with
the number of catchments considered. The unknown quan-
tities, including model parameters (θ2, θ3, and θ4), regres-
sion parameters α, β, and ω, and hyper-parameters µ2, σ2,
µ3, and σ3 (if present), are sampled and estimated simul-
taneously using the Shuffled Complex Evolution Metropo-
lis (SCEM-UA) sampling method (Ajami et al., 2007; Vrugt
et al., 2003, 2009). The SCEM-UA sampling method is a
widely used Markov Chain–Monte Carlo algorithm for sim-
ulating the posterior probability distribution of parameters
that are conditional on the current choice of parameters and
data. When compared with traditional Metropolis–Hasting
samplers, the SCEM-UA algorithm more efficiently reduces
the number of model simulations needed to infer the poste-
rior distribution of parameters (Ajami et al., 2007; Duan et
al., 2007; Liu et al., 2014; Liu and Gupta, 2007; Vrugt et
al., 2003). Convergence is assessed by evolving three paral-
lel chains with 30 000 random samples, the posterior distri-
butions of parameters are evaluated by the Gelman–Rubin
convergence value, and it is confirmed that the convergence
value is smaller than the threshold 1.2 (Gelman et al., 2013).

2.5 Model performance criteria

Five criteria were used to assess the projection performance
during the verification periods.

1. The first criterion was NSEsqrt, known as the arithmetic
square root of the Nash–Sutcliffe efficiency (Coron et
al., 2012; Moriasi et al., 2007; Nash and Sutcliffe,
1970). When compared with the classic NSE, NSEsqrt
gives an intermediate, more balanced picture of the
overall hydrograph fit because it can reduce the influ-
ence of high flow. It is expressed as follows:

NSEsqrt = 1−

T∑
t=1

[√
Qobs (t)−

√
Qsim (t)

]2
T∑
t=1

[
√
Qobs (t)−

√
Qobs

]2 , (6)

where Qsim (t) and Qobs (t) represent the simulated and
observed daily streamflow values for the t th day, respec-
tively, Qobs is the mean of the observed daily stream-
flow for the calculation interval, and T refers to the
length of the calculation period.

2. The second criterion is the BIAS, one of the most pop-
ular indexes to reflect the deviation degree between the
modeled runoff and observations, and this is also a part

of the objective function Eq. (3).

BIAS=

T∑
t=1

[Qsim (t)−Qobs (t)]

T∑
t=1

[Qobs (t)]
(7)

3. The third criterion is the deviance information criterion
(DIC), which was defined by Spiegelhalter et al. (2002).
It is a widely used and popular measure designed for
Bayesian model comparison and is a Bayesian alterna-
tive to the standard Akaike information criterion. The
DIC value for a Bayesian scenario is obtained as fol-
lows:

DIC=−2log
(
p
(
q| θ̂Bayes, ξ

))
+ 2pDIC, (8)

where pDIC is the effective number of parameters, de-
fined as

pDIC = 2

(
log

(
p
(
q| θ̂Bayes, ξ

))
−

1
S

S∑
s=1

log
(
p
(
q|θ s , ξ

)))
,

(9)

where p refers to probability, q represents the obser-
vations of streamflow, and ξ denotes the time series
of model input, e.g., rainfall and potential evapotran-
spiration. Posterior mean θ̂Bayes = Expect(θ |q, ξ), and
s = 1, . . . , S means the sequence number of the simu-
lated parameter set θ s by the adopted SCEM-UA algo-
rithm. According to Spiegelhalter et al. (2002), scenar-
ios with smaller DIC would be preferred to scenarios
with larger DIC.

4. The fourth and fifth criteria are the mean annual maxi-
mum flow (MaxF, mm d−1) and mean annual minimum
flow (MinF, mm d−1), which are used to qualify the per-
formance of the high flows and low flows. These criteria
are self-explanatory and have been used in many studies
to assess the magnitude of maximum and minimum lev-
els of flows (Ekstrom et al., 2018). The scenarios with
the least absolute variation between the modeled values
and the observed values are recognized as the best sce-
narios.

3 Study area and data

To evaluate the model performance, we used daily pre-
cipitation (mm d−1), potential evapotranspiration (mm d−1),
and streamflow (mm d−1) time series records for three un-
regulated and unimpaired catchments in southeastern Aus-
tralia, taken from the national dataset of Australia (Zhang et
al., 2013), covering 1976–2011. The streams were unregu-
lated: they were not subject to dam or reservoir regulations,
which can reduce the impact of human activity. The observed
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streamflow record contained at least 11 835 daily observa-
tions (equivalent to record integrity of greater than 90 %) for
1976–2011, with acceptable data quality. The first complete
year of data was used for model warm-up to reduce the im-
pact of the initial soil moisture conditions during the calibra-
tion period.

The attributes of the southeastern Australian catchments
are shown in Table 2 and Fig. 3. The IDs of these catchments
are 225219 (Glencairn station on the Macalister River: mean
annual rainfall, potential evapotranspiration, and runoff are
1106, 1184, and 368 mm, respectively), 405219 (Dohertys
station on the Goulburn River: mean annual rainfall, potential
evapotranspiration, and runoff are 1171, 1196, and 420 mm,
respectively), and 405264 (D/S of Frenchman Ck Jun station
on the Big River: mean annual rainfall, potential evapotran-
spiration, and runoff are 1408, 1160, and 465 mm, respec-
tively). As shown in Fig. 3, these catchments are adjacent
to each other. All catchments experienced a severe multiyear
drought around the end of the millennium. Saft et al. (2015)
identified that the rainfall–runoff relationship in these catch-
ments was altered during the long-term drought.

4 Results and discussion

Results from the DSST were used to assess the model pro-
jection performance for five scenarios under contrasting cli-
matic conditions. First, a DSST was conducted in each catch-
ment to divide original records into wet and dry years. Then,
the projection performance for the five scenarios and associ-
ated parameter uncertainties were evaluated using the criteria
described above.

4.1 Dry years identification

As illustrated in Table 3 and Fig. 4, the drought defini-
tion method identified that the three catchments had sim-
ilar dry-year characteristics, with the same drought start
(1997) and end (2009) points. The length of dry years for
the studied catchments is the same, 13 years. The mean dry
years’ anomaly was more severe in the Macalister catchment
(225219), with an 11.70 % reduction in the mean dry years’
anomaly while the other two catchments experienced reduc-
tions of 11.16 % (405219) and 11.14 % (405264).

In terms of changes in rainfall, on average catchments had
an 11 % reduction from the wet years to the dry years (Ta-
ble 3). Meanwhile, these catchments experienced a 26.3 %
decrease in runoff during the dry years, which is much more
severe than the reduction in rainfall. The similar findings can
be derived out from the comparison of runoff coefficients of
different periods; that is, all catchments experienced a de-
crease in its runoff coefficients during the dry years.

4.2 Model performance in five scenarios

As shown in Figs. 5a, 6a, and 7, the calibrated model param-
eters yielded a good simulation performance over the cali-
brated periods for all criteria. For example, the mean NSEsqrt
score during the calibration period across these catchments
remained close to about 0.7 or slightly higher, regardless of
which scenario was chosen. However, when the same param-
eter sets were verified by simulating streamflow over drier
or wetter years, the model performance was degraded, in-
cluding both the robustness and accuracy of projection per-
formance. Furthermore, the magnitude of performance loss
increases along with the variation in rainfall between the cal-
ibration and verification periods.

Figure 5 shows the NSEsqrt performance for calibration
in wet years and verification in the dry years for each sce-
nario in all catchments. All scenarios performed well in all
catchments with the mean NSEsqrt reaching 0.81 during the
wet calibration period, and then all scenarios experienced a
slight decrease in performance (NSEsqrt = 0.75) during the
dry verification period. Scenario 4 (time-varying parameters
without spatial inputs) or scenario 5 (temporally stable pa-
rameters) generally performed better during the calibration
period than the scenarios that considered different levels of
spatial coherence for the regression parameters. During the
verification period, the NSEsqrt rank order changed (Fig. 5b).
Scenario 4 had a higher median NSEsqrt performance than
scenario 5 in catchments 225219 and 405264. Although the
median estimate in scenario 4 was slightly inferior to the lat-
ter in catchment 405219, its distribution of the NSEsqrt per-
formance was much more positively biased from the median
estimates than scenario 5. Furthermore, the former reaches a
higher NSEsqrt performance than the latter when comparing
the top NSEsqrt performance of these two scenarios. Thus,
it indicates the validity of the time-varying scheme for im-
proving model performance. However, the introduction of
additional regression parameters (α, β, and ω) at the same
time amplified the model projection uncertainty in two of
three catchments (405219 and 405264) when comparing re-
sults from scenarios 4 and 5. Fortunately, the appropriate
adoption of spatial coherence alleviates this problem. In the
DSST scheme of calibrating in the wet years and verifying
in the dry years, scenario 2 exhibited the smallest fluctuation
range of NSEsqrt estimate in catchments 405219 and 405264
and was the second-best scenario in catchment 225219. Con-
versely, scenario 3 exhibited the smallest fluctuation range of
NSEsqrt estimate in catchment 225219, and was the second-
best scenario in catchments 405219 and 405264. As for the
median NSEsqrt estimate, scenario 2 is the best scenario
(which showed the best performance in catchment 225219
and 405219 but was the fourth in catchment 405264), fol-
lowed by scenario 3 (which was the second-best scenario in
catchments 405219 and 405264 and was the third in catch-
ment 225219). In addition, the highest median NSEsqrt per-
formance in scenarios 4 and 5 during the calibration period
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Table 2. Comparison of catchments attributes in terms of mean annual rainfall (mm), mean annual evaporation (mm), and mean annual
runoff (mm) for 1976–2011.

Catchments River Observations Observations Mean Mean annual Mean
ID name start end annual potential evapo- annual

rainfall transpiration runoff

225219 Macalister 1 January 1976 30 December 2011 1106 1184 368
405219 Goulburn 1 January 1976 30 December 2011 1171 1196 420
405264 Big 1 January 1976 30 December 2011 1408 1160 465

Figure 3. Locations of study catchments in Victoria, Australia. The catchment IDs are 225219 (Macalister River catchment), 405219 (Goul-
burn River catchment), and 405264 (Big River catchment).

did not guarantee the same superior performance during the
verification period. This illustrates the deficiency of time-
varying and stationary schemes of model parameters when
spatial inputs from adjacent catchments are not considered.

Similarly, Fig. 6 illustrates the NSEsqrt performance for
each scenario in all catchments for calibration in the dry
years and verification in the wet years. All scenarios per-
formed well for all catchments with the mean NSEsqrt reach-
ing 0.75 in the dry calibration period and 0.79 in the wet
verification period. As shown in Fig. 6, models experienced a
slight improvement in NSEsqrt performance when transferred
from the dry years to the wet years. However, the projection
performance calibrated using a contrasting climatic condi-
tion was inferior to the simulation performance that was di-
rectly calibrated from the climatic condition, compared with
Figs. 5a and 6b, or 6a and 5b. For example, the NSEsqrt per-
formance in Fig. 6b is inferior to that in Fig. 5a. By com-
paring scenarios in the calibration period, it was found that

scenarios 4 and 5 exhibited the highest performance in two
of three catchments (405219 and 405264), followed succes-
sively by scenario 3, scenario 2, and scenario 1. During the
verification period, the median NSEsqrt performance in sce-
nario 4 was 0.80 % higher than scenario 5; however, the vari-
ation range in scenario 4 was 53 % wider than the latter.
These results demonstrate that the time-varying scheme (sce-
nario 4) for model parameters improved the median NSEsqrt
performance but also amplified the projection uncertainty
compared with the results from the stationary scheme (sce-
nario 5) for model parameters. In the DSST scheme of cali-
brating in the dry years and verifying in the wet years, sce-
nario 3, which considered both spatial coherence of β and ω
between different catchments, exhibited the highest median
NSEsqrt for all catchments, had the smallest fluctuation range
in two catchments (225219 and 405264), and had the second
least variation in catchment 40519 during the verification pe-
riod. Conversely, scenario 2, the scenario with the best me-
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Table 3. Drought identification results for the catchments.

Catchments Drought Drought Length Mean dry- % R1 R2 Change in Change in
ID start end year anomaly Complete runoff (%) rainfall ( %)

225219 1997 2009 13 −11.70 % 91.5 % 0.34 0.28 −27.21 −11.27
405219 1997 2009 13 −11.16 % 99.9 % 0.38 0.31 −26.04 −10.97
405264 1997 2009 13 −11.14 % 98.5 % 0.35 0.29 −25.63 −10.51

NB: R1 and R2 refer to the runoff coefficient during the wet and dry years, respectively.

Figure 4. The identified dry years in all catchments. The annual anomaly is defined as a percentage of the mean annual rainfall.
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Figure 5. NSEsqrt for each of the five scenarios for each catchment during (a) the calibration period (wet years) and (b) the verification
period (dry years). The white dots represent the median estimates of the results.

Figure 6. NSEsqrt for each of the five scenarios for each catchment during (a) the calibration period (dry years) and (b) the verification
period (wet years). The white dots represent the median estimates of the results.

dian estimate performance during the verification period in
Fig. 5, is just the fourth in all five scenarios in this DSST
scheme. Compared with other model scenarios, the incorpo-
ration of spatial coherence of both regression parameters in
scenario 3 reduced the projection uncertainty and improved
the robustness of the model performance, with the smallest
fluctuation ranges in most options under the contrasting cli-
matic conditions. It indicates that the spatial setting of model
parameters between different catchments provided a clear in-
put for reducing the uncertainty of the model projection per-
formance during the verification period. In addition, it also
should be noted that model parameters calibrated over dry
years, contrastively, were not suitable for predicting runoff
over wet years because of a larger degradation in projection
performance than the scheme with the adverse calibration–
verification direction.

Comparing the DIC results for both DSST schemes in Ta-
bles 4 and 5, the best DIC value is achieved by scenario 3,
which incorporates the spatial coherence of both regression

parameters and is the most complex scenario in the compar-
ison. This finding is consistent with the results obtained by
using the NSEsqrt criterion and showed the validity of the
spatial coherence of both regression parameters in ensuring
the robustness of the hydrological projection performance. In
addition, when comparing the DIC results of scenarios 4 and
5, the setting of time-varying functions improved the DIC
performance in both DSST schemes. This finding also agreed
with the results obtained by using the NSEsqrt criterion and
indicated the positive implications of the time-varying model
parameters on the projection performance.

Tables 6 and 7 illustrate the performance of high and low
flows during the verification period in terms of MaxF and
MinF estimates for the median projected streamflows in both
DSST schemes. As shown in Table 7, for the projection of
the high-flow part, scenario 3 exhibits the best performance
in all catchments among five scenarios under the scheme of
calibrating in the dry years and verifying in the wet years.
For the projection performance in the other DSST scheme
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Figure 7. Long-term simulation BIAS of Qmedian for five scenarios in all catchments. Simulation BIAS is plotted as a 10-year moving
average, and 10-year moving average streamflows are plotted for reference. The three left-hand graphs are calibrated in the wet years and
then verified in the dry years, while the opposite sequence applies to the right-hand graphs.

Table 4. Comparison of five scenarios in terms of the deviance in-
formation criterion (DIC) when model parameters were calibrated
in the wet years and verified in the dry years.

Category Scenario DIC

Time-varying

1 4961.7
Spatial coherence 2 1202.3

3 −1254.4

No spatial coherence
4 5052.8

Time-invariant 5 5827.3

(Table 6), scenario 3 has the best projection performance in
the high-flow part in catchment 225219 and is the second-
best scenario in the other two catchments. It indicates that
the incorporation of spatial coherence of both amplitude β
and frequency ω successfully improves the projection per-
formance in the high-flow part. As for the projection of the
low-flow part, the discrepancy between the results of differ-
ent scenarios and the observed low flows is not obvious (the
absolute differences between the observed values and mod-
eled values are very small). Furthermore, scenario 3 shows

Table 5. Comparison of five scenarios in terms of the deviance in-
formation criterion (DIC) when model parameters were calibrated
in the dry years and verified in the wet years.

Category Scenario DIC

Time-varying

1 −6167.0
Spatial coherence 2 −5743.6

3 −10574.0

No spatial coherence
4 −8710.0

Time-invariant 5 −7460.8

the best-projected performance in two catchments (405219
and 405264) in the scheme of calibrating in dry years and
verifying in wet years, and it is the best scenario in catch-
ment 405264 in the scheme of calibrating in wet years and
verifying in dry years. In addition, scenario 3 is the second-
best option in catchments 225219 and 405219 under the
scheme of calibrating in wet years and verifying in dry years.
Combined with the projection performance of both high and
low flows, scenario 3 achieves its superior projection perfor-
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Figure 8. Posterior distributions of the regression parameters (β and
ω) for the production storage capacity (θ1) for the four model sce-
narios in each catchment when calibrated in the wet years and ver-
ified in the dry years. The solid horizontal lines within the violin
plots denote the 25th and 75th percentiles of the posterior distribu-
tion, while the white dots denote median estimates.

mance mainly by the improvement in the prediction of high-
flow parts.

Figure 7 shows the BIAS estimates for the median of the
posterior distribution of model parameters for all modeling
scenarios across all catchments when transferability between
the wet and dry years was examined. Although BIAS was
a component of the objective function (Eq. 3), the 10-year
rolling average BIAS still deviated considerably from a value
of 1 for all the scenarios in the two DSST schemes. The
median estimates of the posterior distribution in both sce-
narios performed well in the NSEsqrt criterion for both peri-
ods. However, the median estimates did not ensure unbiased
simulations over the modeling period; one scenario with a
higher NSEsqrt criterion may have an altered BIAS during
the modeling period. The BIAS results in catchments 225219
and 405219 showed some similarity: all scenarios tended to
underestimate streamflow along the time sequence in both
DSST schemes. Conversely, all scenarios tended to overesti-
mate the streamflow in catchment 405264 in both schemes.
By comparing the BIAS performance for the five scenarios,
it was observed that the spatial setting of modeling scenarios
generally tended to enlarge the BIAS in all catchments, while
the difference between scenarios 4 and 5 was very small.

4.3 Parameter uncertainty analysis

The uncertainty of the parameters was characterized by the
posterior distribution of the regression parameters and was
derived by the MCMC iteration. As mentioned in Sect. 2.3.2,
amplitude β and frequency ω were assumed to have different
levels of spatial coherence in each modeling scenario (Ta-
ble 1); these scenarios in each DSST regime are compared
in Figs. 8 and 9. It should be mentioned that there was no

Figure 9. Posterior distributions of the regression parameters (β and
ω) for the production storage capacity (θ1) for the four model sce-
narios in each catchment when calibrated in the dry years and ver-
ified in the wet years. The solid horizontal lines within the violin
plots denote the 25th and 75th percentiles of the posterior distribu-
tion, while the white dots denote median estimates.

regression parameter in scenario 5. Solid lines in the violin
plots represent the 25th and 75th percentiles of the poste-
rior distribution. The white dots in the violin plot denote the
median estimate of the posterior distribution. In the upper
plots in Figs. 8 and 9, it can be clearly seen that the first
three scenarios had a much smaller variation interval than
scenario 4 in terms of amplitude β, which denotes the am-
plitude of the sine function. The catchment averages of both
schemes of the median estimates of β in the first three sce-
narios are 2.78, −4.91, and 9.26 respectively, while that in
the fourth scenario is much larger, reaching −39.20. Sce-
nario 3, which considered both spatial coherence of ampli-
tude β and frequencyω, has the narrowest interval of β for all
catchments, followed successively by scenario 1 (only con-
sidered the spatial coherence of the amplitude β), scenario
2 (only frequency ω was spatially coherent), and scenario 4
(no regression parameter was spatially coherent). With re-
gard to the regression parameter ω, which denotes the fre-
quency of the sine function (in the lower figures of Figs. 8
and 9), its median estimates in both groups of four scenarios
differ slightly. As shown in Fig. 8, the catchment averages
of frequency ω for different scenarios are 0.24, 0.14, 0.15,
and 0.18, while those in Fig. 9 are 0.15, 0.26, 0.23, and 0.17
respectively. The period T of the sine term could be derived
based on the estimates of ω by equation T = 2π/ω. Thus, the
mean periods T of model parameter θ1 for different scenar-
ios are 26.2, 46.3, 41.9, and 35.2 in Fig. 8, respectively. Sim-
ilarly, the mean periods T are 42.9, 24.1, 27.4, and 38.0 in
Fig. 9, respectively. In addition, we used the Hilbert–Huang
transform method (Huang et al., 1998) to identify the po-
tential periods of the series of several climate variables (in-
cluding the daily rainfall, daily potential evapotranspiration,
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Table 6. Comparison of the projection performance of median flows during the verification period associated with the mean annual maximum
flow (MaxF, mm d−1) and mean annual minimum flow (MinF, mm d−1) when model parameters were calibrated in the wet years and verified
in the dry years. The percentage represents the percentage variation between the modeled value and the observed value.

Mean annual maximum flow Mean annual minimum flow

225219 405219 405264 225219 405219 405264

Observed 10.58 11.98 9.23 0.050 0.093 0.17
Scenario 1 +25.7 % −52.9 % −27.7 % +0.6 % −51.3% −25.6%
Scenario 2 −14.6 % −14.6 % −20.9 % +7.1 % −35.0% −18.3%
Scenario 3 +3.1 % −36.1 % +5.6 % −17.9 % −1.1 % −6.4 %
Scenario 4 −44.2 % −54.7 % +3.3 % +76.6 % −4.4 % −14.4 %
Scenario 5 −52.1 % −49.7 % −13.6 % +72.0 % −6.9 % −29.1 %

Note: (1) the data in 1976 have been used for model warm-up to reduce the impact of the initial soil moisture
conditions during the calibration period, and is not counted in the table; (2) the scenarios with bold values are
labeled as the best scenario for projecting the streamflow during the verification periods, and the values from
these scenarios have the least absolute percentage difference with the observed values.

Table 7. Comparison of the projection performance of median flows during the verification period associated with the mean annual maximum
flow (MaxF, mm d−1) and mean annual maximum flow (MinF, mm d−1) when model parameters were calibrated in the dry years and verified
in the wet years. The percentage represents the percentage of variation between the modeled value and the observed value.

Mean annual maximum flow Mean annual minimum flow

225219 405219 405264 225219 405219 405264

Observed 10.73 12.06 8.94 0.03 0.09 0.19
Scenario 1 +15.5 % −43.1 % +44.3 % −26.5 % −51.1 % −52.4 %
Scenario 2 +15.7 % −54.2 % +15.3 % −35.7 % −29.8 % −55.0 %
Scenario 3 +2.0 % −11.5 % −6.4 % −20.7 % −41.4 % −50.0 %
Scenario 4 +11.7 % −18.3 % +38.1 % −26.3 % −43.7 % −49.5 %
Scenario 5 +32.2 % −21.6 % +34.0 % −42.8 % −45.1 % −50.0 %

Note: (1) The data in 1997 have been used for model warm-up to reduce the impact of the initial soil moisture
conditions during the calibration period, and is not counted in the table; (2) The scenarios with bold values are
labeled as the best scenario for projecting the streamflow during the verification periods, and the values from
these scenarios have the least absolute percentage difference with the observed values.

daily maximum temperature, and daily minimum tempera-
ture in the studied catchments). It was found that these daily
series have periods of 22.2–49.1 d. Thus, we guess that the
potential periods of these climate variables may be the pos-
sible reasons for the periods of time-varying parameters. It
also should be mentioned that the adopted Hilbert spectrum
method is one of the most popular methods for analyzing
nonlinear and nonstationary data. Huang et al. (1999) indi-
cated that this method is better than the Fourier transform
method and wavelet transform method in processing nonlin-
ear and nonstationary data.

In summary, by combining the results of parameter uncer-
tainty estimation and model projection performance evalua-
tion, the incorporation of spatial coherence successfully im-
proved the robustness of the projection performance in both
DSST schemes by controlling the estimation uncertainty of
amplitude β.

5 Conclusions

In this study, a two-level HB framework was used to incorpo-
rate the spatial coherence of adjacent catchments to improve
the hydrological projection performance of sensitive time-
varying parameters for a lumped conceptual rainfall–runoff
model (GR4J) under contrasting climatic conditions. First, a
temporal parameter transfer scheme was implemented, using
a DSST procedure in which the available data were divided
into wet and dry years. Then, the model was calibrated in
the wet years and evaluated in the dry years, and vice versa.
In the first level of the proposed HB framework, the most
sensitive parameter in the GR4J model, i.e., the production
storage capacity (θ1), was allowed to vary with time to ac-
count for the periodic variation that had significant impacts
on the extensionality of the model. The periodic variation in
catchment storage capacity was represented by a sine func-
tion for θ1 (parameterized by amplitude and frequency). In
the second level, four modeling scenarios with different spa-
tial coherence schemes and one scenario with a stationary
scheme of catchment storage capacity were used to evaluate
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the transferability of hydrological models under contrasting
climatic conditions. Finally, the proposed method was ap-
plied to three spatially adjacent, unregulated, and unimpaired
catchments in southeast Australia. The study concludes that
(1) the time-varying setting was valid in improving the model
performance but also extended the projection uncertainty in
contrast to the stationary setting, (2) the inclusion of spatial
coherence successfully reduced the projection uncertainty
and improved the robustness of model performance, and (3) a
large performance degradation has been found in the DSST
scheme with its model parameters calibrated over dry years
and verified in the wet years. This study improves our un-
derstanding of the spatial coherence of time-varying parame-
ters, which will help improve the projection performance un-
der differing climatic conditions. However, there are several
unsolved problems that need to be addressed. First, the spa-
tial setting of regression parameters may expand the BIAS
between the simulation and streamflow observation with a
single objective function; the potential physical mechanism
behind this result should be explored further. Second, this
study was confined to spatially coherent catchments that are
similar in climatic and hydrogeological conditions; further
research is needed to determine which factors have the most
significant impacts on model projection performance when
considering obvious inputs from other catchments.

Data availability. The precipitation, potential evapotranspi-
ration, and streamflow data of the studied catchments in
south-eastern Australia are taken from publicly available data
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