Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1649-2019
https://doi.org/10.5194/hess-23-1649-2019
Research article
 | 
21 Mar 2019
Research article |  | 21 Mar 2019

Precipitation projections using a spatiotemporally distributed method: a case study in the Poyang Lake watershed based on the MRI-CGCM3

Ling Zhang, Xiaoling Chen, Jianzhong Lu, Xiaokang Fu, Yufang Zhang, Dong Liang, and Qiangqiang Xu

Related authors

Stream flow simulation and verification in ungauged zones by coupling hydrological and hydrodynamic models: a case study of the Poyang Lake ungauged zone
Ling Zhang, Jianzhong Lu, Xiaoling Chen, Dong Liang, Xiaokang Fu, Sabine Sauvage, and José-Miguel Sanchez Perez
Hydrol. Earth Syst. Sci., 21, 5847–5861, https://doi.org/10.5194/hess-21-5847-2017,https://doi.org/10.5194/hess-21-5847-2017, 2017
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary

Cited articles

Alexander, L. V., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M. R., Collins, W. D., and Trewin, B.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006. 
Baigorria, G. A. and Jones, J. W.: GiST: A Stochastic Model for Generating Spatially and Temporally Correlated Daily Rainfall Data, J. Climate, 23, 5990–6008, https://doi.org/10.1175/2010jcli3537.1, 2010. 
Ben Alaya, M. A., Ouarda, T. B. M. J., and Chebana, F.: Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework, Clim. Dynam., 50, 1–15, https://doi.org/10.1007/s00382-017-3578-0, 2018. 
Beven, K.: A discussion of distributed hydrological modelling, in: Distributed Hydrological Modelling, edited by: Abbott, M. B. and Refgaard, J. C., Kluwer Academic, the Netherlands, 255–278, 1996. 
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007. 
Download
Short summary
To bridge the gap between the global climate model (GCM) and local climate variables, a spatiotemporally distributed downscaling model was developed. The method was applied to the Poyang Lake watershed to analyze the precipitation changes in the 21th century. The results showed increasing heterogeneities in temporal and spatial distribution under future climate warming. Analyses with temperature increases showed that precipitation changes appeared significantly correlated to climate warming.
Share