Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-839-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-839-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?
Maurizio Mazzoleni
CORRESPONDING AUTHOR
UNESCO-IHE Institute for Water Education, Hydroinformatics Chair Group, Delft, the Netherlands
Martin Verlaan
Deltares, Delft, the Netherlands
Leonardo Alfonso
UNESCO-IHE Institute for Water Education, Hydroinformatics Chair Group, Delft, the Netherlands
Martina Monego
Alto Adriatico Water Authority, Venice, Italy
Daniele Norbiato
Alto Adriatico Water Authority, Venice, Italy
Miche Ferri
Alto Adriatico Water Authority, Venice, Italy
Dimitri P. Solomatine
UNESCO-IHE Institute for Water Education, Hydroinformatics Chair Group, Delft, the Netherlands
Delft University of Technology, Water Resources Section, Delft, the Netherlands
Related authors
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024, https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Short summary
Faced with the problem of uncertainty in the field of water resources management, this paper proposes the Copula Multi-objective Robust Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) approach to obtain robust water allocation schemes based on the uncertainty of drought and wet encounters and the uncertainty of inflow. We believe that this research article not only highlights the significance of the CM-ROPAR approach but also provides a new concept for uncertainty analysis.
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci., 23, 3863–3883, https://doi.org/10.5194/nhess-23-3863-2023, https://doi.org/10.5194/nhess-23-3863-2023, 2023
Short summary
Short summary
This study uses a machine learning technique, the multivariate regression tree approach, to assess the hydroclimatic characteristics that govern agricultural and hydrological drought severity. The results show that the employed technique successfully identified the primary drivers of droughts and their critical thresholds. In addition, it provides relevant information to identify the areas most vulnerable to droughts and design strategies and interventions for drought management.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-98, https://doi.org/10.5194/hess-2023-98, 2023
Revised manuscript not accepted
Short summary
Short summary
In this research, we explored the use of machine learning (ML) to improve the S2S ensemble precipitation forecast, different approaches were used as exploratory experiments to see which approach is better addressing the improvement of the ensemble probabilistic forecast, as a conclusion of our research, we found that the concept of committee model (CM) is a promising approach that can be further studied and evaluated using a different combination of the state of the art ML techniques.
Mohamed Elneel Elshaikh Eltayeb Elbasheer, Gerald Augusto Corzo, Dimitri Solomatine, and Emmanouil Varouchakis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-348, https://doi.org/10.5194/hess-2022-348, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this research, we explored the use of machine learning (ML) to improve the ECMWF S2S ensemble precipitation forecast, different approaches were used as exploratory experiments to see which approach is better addressing the improvement of the ensemble probabilistic forecast, as a conclusion of our research, we found that the concept of committee model (CM) is a promising approach that can be further studied and evaluated using a different combination of the state of the art ML techniques.
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-252, https://doi.org/10.5194/hess-2022-252, 2022
Preprint withdrawn
Short summary
Short summary
Drought impacts on crops can be assessed in terms of crop yield (CY) variation. The hypothesis is that the spatiotemporal change of drought area is a good input to predict CY. A step-by-step approach for predicting CY is built based on two types of machine learning models. Drought area was found suitable for predicting CY. Since it is currently possible to calculate drought areas within drought monitoring systems, the prediction of drought impacts can be integrated directly into them.
Xiaohui Wang, Martin Verlaan, Jelmer Veenstra, and Hai Xiang Lin
Ocean Sci., 18, 881–904, https://doi.org/10.5194/os-18-881-2022, https://doi.org/10.5194/os-18-881-2022, 2022
Short summary
Short summary
The accuracy of the Global Tide and Surge Model is significantly affected by some parameters. We correct the bathymetry and bottom friction coefficient with mathematical methods to improve model accuracy. The lack of tide gauge data in many coastal areas affects the correction process. We propose using observations from altimetry tidal products like FES2014 that have higher accuracy than our model to offset the data lack. Model accuracy is greatly improved, especially in the European shelf.
Vitali Diaz, Ahmed A. A. Osman, Gerald A. Corzo Perez, Henny A. J. Van Lanen, Shreedhar Maskey, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-600, https://doi.org/10.5194/hess-2021-600, 2021
Preprint withdrawn
Short summary
Short summary
Drought effects on crops are usually evaluated through crop yield (CY). The hypothesis is that the drought spatial extent is a good input to predict CY. A machine learning approach to predict crop yield is introduced. The use of drought area was found suitable. Since it is currently possible to calculate drought areas within drought monitoring systems, the direct application to predict drought effects can be integrated into them by following approaches such as the one presented or similar.
Shaokun He, Shenglian Guo, Chong-Yu Xu, Kebing Chen, Zhen Liao, Lele Deng, Huanhuan Ba, and Dimitri Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-586, https://doi.org/10.5194/hess-2019-586, 2020
Manuscript not accepted for further review
Short summary
Short summary
Aiming at cascade impoundment operation, we develop a classification-aggregation-decomposition method to overcome the
curse of dimensionalityand inflow stochasticity problem. It is tested with a mixed 30-reservoir system in China. The results show that our method can provide lots of schemes to refer to different flood event scenarios. The best scheme outperforms the conventional operating rule, as it increases impoundment efficiency and hydropower generation while flood control risk is less.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
David R. Casson, Micha Werner, Albrecht Weerts, and Dimitri Solomatine
Hydrol. Earth Syst. Sci., 22, 4685–4697, https://doi.org/10.5194/hess-22-4685-2018, https://doi.org/10.5194/hess-22-4685-2018, 2018
Short summary
Short summary
In high-latitude (> 60° N) watersheds, measuring the snowpack and predicting of snowmelt runoff are uncertain due to the lack of data and complex physical processes. This provides challenges for hydrological assessment and operational water management. Global re-analysis datasets have great potential to aid in snowpack representation and snowmelt prediction when combined with a distributed hydrological model, though they still have clear limitations in remote boreal forest and tundra environments.
Alexander Gelfan, Vsevolod Moreydo, Yury Motovilov, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 2073–2089, https://doi.org/10.5194/hess-22-2073-2018, https://doi.org/10.5194/hess-22-2073-2018, 2018
Short summary
Short summary
We describe a forecasting procedure that is based on a semi-distributed hydrological model using two types of weather ensembles for the lead time period: observed weather data, constructed on the basis of the ESP methodology, and synthetic weather data, simulated by a weather generator. We compare the described methodology with the regression-based operational forecasts that are currently in practice and show the increased informational content of the ensemble-based forecasts.
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
Anqi Wang and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-78, https://doi.org/10.5194/hess-2018-78, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper presents a brief review and classification of sensitivity analysis (SA) methods. Six different global SA methods: Sobol, FAST, Morris, LH-OAT, RSA and PAWN are tested on the three conceptual rainfall-runoff models with varying complexity: (GR4J, Hymod and HBV), with respect to effectiveness, efficiency and convergence. Practical framework of selecting and using the SA methods is presented, which may be of assistance for practitioners assessing reliability of their models.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Omar Wani, Joost V. L. Beckers, Albrecht H. Weerts, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 4021–4036, https://doi.org/10.5194/hess-21-4021-2017, https://doi.org/10.5194/hess-21-4021-2017, 2017
Short summary
Short summary
We generate uncertainty intervals for hydrologic model predictions using a simple instance-based learning scheme. Errors made by the model in some specific hydrometeorological conditions in the past are used to predict the probability distribution of its errors during forecasting. We test it for two different case studies in England. We find that this technique, even though conceptually simple and easy to implement, performs as well as some other sophisticated uncertainty estimation methods.
Juan C. Chacon-Hurtado, Leonardo Alfonso, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 3071–3091, https://doi.org/10.5194/hess-21-3071-2017, https://doi.org/10.5194/hess-21-3071-2017, 2017
Short summary
Short summary
This paper compiles most of the studies (as far as the authors are aware) on the design of sensor networks for measurement of precipitation and streamflow. The literature shows that there is no overall consensus on the methods for the evaluation of sensor networks, as different design criteria often lead to different solutions. This paper proposes a methodology for the classification of methods, and a general framework for the design of sensor networks.
Victor H. Garzón, Ricardo Garzón, Pedro M. Avellaneda, Erasmo A. Rodríguez, and Leonardo Alfonso
Proc. IAHS, 374, 105–112, https://doi.org/10.5194/piahs-374-105-2016, https://doi.org/10.5194/piahs-374-105-2016, 2016
Short summary
Short summary
HidroCHEP is a toolbox which supports the formulation and hydrologic characterization of Colombian basins. In this paper, we report the design, architecture, implementation and use of the toolbox, to understand the climatic variability of the country and to improve predictions in ungauged basins. It is demonstrated that the toolbox has the potential to support the formulation of basin management plans in the country and to contribute to integrated national water resources management.
N. Dogulu, P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha
Hydrol. Earth Syst. Sci., 19, 3181–3201, https://doi.org/10.5194/hess-19-3181-2015, https://doi.org/10.5194/hess-19-3181-2015, 2015
A. Md Ali, D. P. Solomatine, and G. Di Baldassarre
Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015, https://doi.org/10.5194/hess-19-631-2015, 2015
P. López López, J. S. Verkade, A. H. Weerts, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, https://doi.org/10.5194/hess-18-3411-2014, 2014
N. Kayastha, J. Ye, F. Fenicia, V. Kuzmin, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 17, 4441–4451, https://doi.org/10.5194/hess-17-4441-2013, https://doi.org/10.5194/hess-17-4441-2013, 2013
M. B. Mabrouk, A. Jonoski, D. Solomatine, and S. Uhlenbrook
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10873-2013, https://doi.org/10.5194/hessd-10-10873-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Inferring heavy tails of flood distributions through hydrograph recession analysis
Landscape structures regulate the contrasting response of recession along rainfall amounts
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Regional significance of historical trends and step changes in Australian streamflow
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Changes in nonlinearity and stability of streamflow recession characteristics under climate warming in a large glaciated basin of the Tibetan Plateau
A data-driven method for estimating the composition of end-members from stream water chemistry time series
Evaporation loss estimation of the river-lake continuum of arid inland river: Evidence from stable isotopes
Technical note: PMR – a proxy metric to assess hydrological model robustness in a changing climate
Causal effects of dams and land cover changes on flood changes in mainland China
Can the two-parameter recursive digital filter baseflow separation method really be calibrated by the conductivity mass balance method?
Simultaneously determining global sensitivities of model parameters and model structure
Technical note: Calculation scripts for ensemble hydrograph separation
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios
A line-integral-based method to partition climate and catchment effects on runoff
Technical note: A two-sided affine power scaling relationship to represent the concentration–discharge relationship
On the flood peak distributions over China
New water fractions and transit time distributions at Plynlimon, Wales, estimated from stable water isotopes in precipitation and streamflow
Does the weighting of climate simulations result in a better quantification of hydrological impacts?
A 50-year analysis of hydrological trends and processes in a Mediterranean catchment
Technical Note: On the puzzling similarity of two water balance formulas – Turc–Mezentsev vs. Tixeront–Fu
Climate or land cover variations: what is driving observed changes in river peak flows? A data-based attribution study
Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark tests
Land cover effects on hydrologic services under a precipitation gradient
Technical note: Long-term persistence loss of urban streams as a metric for catchment classification
Responses of runoff to historical and future climate variability over China
Characterization and evaluation of controls on post-fire streamflow response across western US watersheds
Analysis and modelling of a 9.3 kyr palaeoflood record: correlations, clustering, and cycles
Climate change impacts on Yangtze River discharge at the Three Gorges Dam
Delineation of homogenous regions using hydrological variables predicted by projection pursuit regression
Multivariate hydrological data assimilation of soil moisture and groundwater head
On the propagation of diel signals in river networks using analytic solutions of flow equations
Dominant climatic factors driving annual runoff changes at the catchment scale across China
Data assimilation in integrated hydrological modelling in the presence of observation bias
Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010)
Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis
Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal
Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance
Attribution of high resolution streamflow trends in Western Austria – an approach based on climate and discharge station data
A constraint-based search algorithm for parameter identification of environmental models
Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA
Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
Streamflow input to Lake Athabasca, Canada
Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin
Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Short summary
We developed hybrid schemes to enhance national-scale streamflow predictions, combining long short-term memory (LSTM) with a physically based hydrological model (PBM). A comprehensive evaluation of hybrid setups across Denmark indicates that LSTM models forced by climate data and catchment attributes perform well in many regions but face challenges in groundwater-dependent basins. The hybrid schemes supported by PBMs perform better in reproducing long-term streamflow behavior and extreme events.
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023, https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Short summary
Accurately assessing heavy-tailed flood behavior with limited data records is challenging and can lead to inaccurate hazard estimates. Our research introduces a new index that uses hydrograph recession to identify heavy-tailed flood behavior, compare severity, and produce reliable results with short data records. This index overcomes the limitations of current metrics, which lack physical meaning and require long records. It thus provides valuable insight into the flood hazard of river basins.
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023, https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Short summary
Streamflow recession, shaped by landscape and rainfall, is not well understood. This study examines their combined impact using data from 19 mountainous rivers. Longer, gentler hillslopes promote flow and reduce nonlinearity, while larger catchments with more rainfall show increased landscape heterogeneity. In small catchments, the exponent decreases with rainfall, indicating less landscape and runoff variation. Further research is needed to validate these findings across diverse regions.
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023, https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and assessment. We provide a new way of measuring this similarity for streamflow time series. It is derived from the concept of the amount of
workrequired to rearrange one mass distribution into the other. We also use similar mathematical techniques for defining a type of
averagebetween water distributions.
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023, https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Short summary
Reservoir regulation affects various streamflow characteristics. Still, information on when water is stored in and released from reservoirs is hardly available. We develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series. By applying this approach to 74 catchments in the Alps, we find that reservoir management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation catchments.
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023, https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary
Short summary
We used statistical tests to detect annual and seasonal streamflow trends and step changes across Australia. The Murray–Darling Basin and other rivers in the southern and north-eastern areas showed decreasing trends. Only rivers in the Timor Sea region in northern Australia showed significant increasing trends. Our results assist with infrastructure planning and management of water resources. This study was undertaken by the Bureau of Meteorology with its responsibility under the Water Act 2007.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Jiarong Wang, Xi Chen, Man Gao, Qi Hu, and Jintao Liu
Hydrol. Earth Syst. Sci., 26, 3901–3920, https://doi.org/10.5194/hess-26-3901-2022, https://doi.org/10.5194/hess-26-3901-2022, 2022
Short summary
Short summary
The accelerated climate warming in the Tibetan Plateau after 1997 has strong consequences for hydrology, geography, and social wellbeing. In hydrology, the change in streamflow as a result of changes in dynamic water storage originating from glacier melt and permafrost thawing in a warming climate directly affects the available water resources for societies of some of the most populated nations in the world.
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022, https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Short summary
Water in streams is a mixture of water from many sources. It is sometimes possible to identify the chemical fingerprint of each source and track the time-varying contribution of that source to the total flow rate. But what if you do not know the chemical fingerprint of each source? Can you simultaneously identify the sources (called end-members), and separate the water into contributions from each, using only samples of water from the stream? Here we suggest a method for doing just that.
Guofeng Zhu, Zhigang Sun, Yuanxiao Xu, Yuwei Liu, Zhuanxia Zhang, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-75, https://doi.org/10.5194/hess-2022-75, 2022
Revised manuscript not accepted
Short summary
Short summary
We analyzed the stable isotopic composition of surface water and estimated its evaporative loss in the Shiyang River Basin. The characteristics of stable isotopes in surface water show a gradual enrichment from mountainous areas to deserts, and the evaporation loss of surface water also shows a gradually increasing trend from upstream to downstream. The study of evaporative losses in the river-lake continuum contributes to the sustainable use of water resources.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Weifei Yang, Changlai Xiao, Zhihao Zhang, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 25, 1747–1760, https://doi.org/10.5194/hess-25-1747-2021, https://doi.org/10.5194/hess-25-1747-2021, 2021
Short summary
Short summary
This study analyzed the effectiveness of the conductivity mass balance (CMB) method for correcting the Eckhardt method. The results showed that the approach of calibrating the Eckhardt method against the CMB method provides a
falsecalibration of total baseflow by offsetting the inherent biases in the baseflow sequences generated by the two methods. The reason for this phenomenon is the baseflow series generated by the two methods containing different transient water sources.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
James W. Kirchner and Julia L. A. Knapp
Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, https://doi.org/10.5194/hess-24-5539-2020, 2020
Short summary
Short summary
Ensemble hydrograph separation is a powerful new tool for measuring the age distribution of streamwater. However, the calculations are complex and may be difficult for researchers to implement on their own. Here we present scripts that perform these calculations in either MATLAB or R so that researchers do not need to write their own codes. We explain how these scripts work and how to use them. We demonstrate several potential applications using a synthetic catchment data set.
Antoine Allam, Roger Moussa, Wajdi Najem, and Claude Bocquillon
Hydrol. Earth Syst. Sci., 24, 4503–4521, https://doi.org/10.5194/hess-24-4503-2020, https://doi.org/10.5194/hess-24-4503-2020, 2020
Short summary
Short summary
With serious concerns about global change rising in the Mediterranean, we established a new climatic classification to follow hydrological and ecohydrological activities. The classification coincided with a geographical distribution ranging from the most seasonal and driest class in the south to the least seasonal and most humid in the north. RCM scenarios showed that northern classes evolve to southern ones with shorter humid seasons and earlier snowmelt which might affect hydrologic regimes.
Mingguo Zheng
Hydrol. Earth Syst. Sci., 24, 2365–2378, https://doi.org/10.5194/hess-24-2365-2020, https://doi.org/10.5194/hess-24-2365-2020, 2020
Short summary
Short summary
This paper developed a mathematically precise method to partition climate and catchment effects on streamflow. The method reveals that both the change magnitude and pathway (timing of change), not the magnitude alone, dictate the partition unless for a linear system. The method has wide relevance. For example, it suggests that the global warming effect of carbon emission is path dependent, and an optimal pathway would facilitate a higher global budget of carbon emission.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020, https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
Short summary
This paper deals with the mathematical representation of concentration–discharge relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to the classic one-sided power scaling relationship (commonly known as
power law). We also discuss the identification of the parameters of the proposed relationship, using an appropriate numerical criterion, based on high-frequency chemical time series of the Orgeval-ORACLE observatory.
Long Yang, Lachun Wang, Xiang Li, and Jie Gao
Hydrol. Earth Syst. Sci., 23, 5133–5149, https://doi.org/10.5194/hess-23-5133-2019, https://doi.org/10.5194/hess-23-5133-2019, 2019
Julia L. A. Knapp, Colin Neal, Alessandro Schlumpf, Margaret Neal, and James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 4367–4388, https://doi.org/10.5194/hess-23-4367-2019, https://doi.org/10.5194/hess-23-4367-2019, 2019
Short summary
Short summary
We describe, present, and make publicly available two extensive data sets of stable water isotopes in streamwater and precipitation at Plynlimon, Wales, consisting of measurements at 7-hourly intervals for 17 months and at weekly intervals for 4.25 years. We use these data to calculate new water fractions and transit time distributions for different discharge rates and seasons, thus quantifying the contribution of recent precipitation to streamflow under different conditions.
Hui-Min Wang, Jie Chen, Chong-Yu Xu, Hua Chen, Shenglian Guo, Ping Xie, and Xiangquan Li
Hydrol. Earth Syst. Sci., 23, 4033–4050, https://doi.org/10.5194/hess-23-4033-2019, https://doi.org/10.5194/hess-23-4033-2019, 2019
Short summary
Short summary
When using large ensembles of global climate models in hydrological impact studies, there are pragmatic questions on whether it is necessary to weight climate models and how to weight them. We use eight methods to weight climate models straightforwardly, based on their performances in hydrological simulations, and investigate the influences of the assigned weights. This study concludes that using bias correction and equal weighting is likely viable and sufficient for hydrological impact studies.
Nathalie Folton, Eric Martin, Patrick Arnaud, Pierre L'Hermite, and Mathieu Tolsa
Hydrol. Earth Syst. Sci., 23, 2699–2714, https://doi.org/10.5194/hess-23-2699-2019, https://doi.org/10.5194/hess-23-2699-2019, 2019
Short summary
Short summary
The long-term study of precipitation, flows, flood or drought mechanisms, in the Réal Collobrier research Watershed, located in South-East France, in the Mediterranean forest, improves knowledge of the water cycle and is unique tool for understanding of how catchments function. This study shows a small decrease in rainfall and a marked tendency towards a decrease in the water resources of the catchment in response to climate trends, with a consistent increase in drought severity and duration.
Vazken Andréassian and Tewfik Sari
Hydrol. Earth Syst. Sci., 23, 2339–2350, https://doi.org/10.5194/hess-23-2339-2019, https://doi.org/10.5194/hess-23-2339-2019, 2019
Short summary
Short summary
In this Technical Note, we present two water balance formulas: the Turc–Mezentsev and Tixeront–Fu formulas. These formulas have a puzzling numerical similarity, which we discuss in detail and try to interpret mathematically and hydrologically.
Jan De Niel and Patrick Willems
Hydrol. Earth Syst. Sci., 23, 871–882, https://doi.org/10.5194/hess-23-871-2019, https://doi.org/10.5194/hess-23-871-2019, 2019
James W. Kirchner
Hydrol. Earth Syst. Sci., 23, 303–349, https://doi.org/10.5194/hess-23-303-2019, https://doi.org/10.5194/hess-23-303-2019, 2019
Short summary
Short summary
How long does it take for raindrops to become streamflow? Here I propose a new approach to this old problem. I show how we can use time series of isotope data to measure the average fraction of same-day rainfall appearing in streamflow, even if this fraction varies greatly from rainstorm to rainstorm. I show that we can quantify how this fraction changes from small rainstorms to big ones, and from high flows to low flows, and how it changes with the lag time between rainfall and streamflow.
Ane Zabaleta, Eneko Garmendia, Petr Mariel, Ibon Tamayo, and Iñaki Antigüedad
Hydrol. Earth Syst. Sci., 22, 5227–5241, https://doi.org/10.5194/hess-22-5227-2018, https://doi.org/10.5194/hess-22-5227-2018, 2018
Short summary
Short summary
This study establishes relationships between land cover and river discharge. Using discharge data from 20 catchments of the Bay of Biscay findings showed the influence of land cover on discharge changes with the amount of precipitation, with lower annual water resources associated with the greater presence of forests. Results obtained illustrate the relevance of land planning to the management of water resources and the opportunity to consider it in future climate-change adaptation strategies.
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Chuanhao Wu, Bill X. Hu, Guoru Huang, Peng Wang, and Kai Xu
Hydrol. Earth Syst. Sci., 22, 1971–1991, https://doi.org/10.5194/hess-22-1971-2018, https://doi.org/10.5194/hess-22-1971-2018, 2018
Short summary
Short summary
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal–spatial patterns of water resources. In this paper, the Budyko-based elasticity method was used to investigate the responses of runoff to historical and future climate variability over China at both grid and catchment scales. The results help to better understand the hydrological effects of climate change and adapt to a changing environment.
Samuel Saxe, Terri S. Hogue, and Lauren Hay
Hydrol. Earth Syst. Sci., 22, 1221–1237, https://doi.org/10.5194/hess-22-1221-2018, https://doi.org/10.5194/hess-22-1221-2018, 2018
Short summary
Short summary
We investigate the impact of wildfire on watershed flow regimes, examining responses across the western United States. On a national scale, our results confirm the work of prior studies: that low, high, and peak flows typically increase following a wildfire. Regionally, results are more variable and sometimes contradictory. Our results may be significant in justifying the calibration of watershed models and in contributing to the overall observational analysis of post-fire streamflow response.
Annette Witt, Bruce D. Malamud, Clara Mangili, and Achim Brauer
Hydrol. Earth Syst. Sci., 21, 5547–5581, https://doi.org/10.5194/hess-21-5547-2017, https://doi.org/10.5194/hess-21-5547-2017, 2017
Short summary
Short summary
Here we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period of 10 000 years in the Piànico–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime between 400 000 and 800 000 years ago). We analyse the palaeoflood series correlation, clustering, and cyclicity properties, finding a long-range cyclicity with a period of about 2030 years superimposed onto a fractional noise.
Steve J. Birkinshaw, Selma B. Guerreiro, Alex Nicholson, Qiuhua Liang, Paul Quinn, Lili Zhang, Bin He, Junxian Yin, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 21, 1911–1927, https://doi.org/10.5194/hess-21-1911-2017, https://doi.org/10.5194/hess-21-1911-2017, 2017
Short summary
Short summary
The Yangtze River basin in China is home to more than 400 million people and susceptible to major floods. We used projections of future precipitation and temperature from 35 of the most recent global climate models and applied this to a hydrological model of the Yangtze. Changes in the annual discharge varied between a 29.8 % decrease and a 16.0 % increase. The main reason for the difference between the models was the predicted expansion of the summer monsoon north and and west into the basin.
Martin Durocher, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 20, 4717–4729, https://doi.org/10.5194/hess-20-4717-2016, https://doi.org/10.5194/hess-20-4717-2016, 2016
Short summary
Short summary
For regional flood frequency, it is challenging to identify regions with similar hydrological properties. Therefore, previous works have mainly proposed to use regions with similar physiographical properties. This research proposes instead to nonlinearly predict the desired hydrological properties before using them for delineation. The presented method is applied to a case study in Québec, Canada, and leads to hydrologically relevant regions, while enhancing predictions made inside them.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Morgan Fonley, Ricardo Mantilla, Scott J. Small, and Rodica Curtu
Hydrol. Earth Syst. Sci., 20, 2899–2912, https://doi.org/10.5194/hess-20-2899-2016, https://doi.org/10.5194/hess-20-2899-2016, 2016
Short summary
Short summary
We design and implement a theoretical experiment to show that, under low-flow conditions, observed streamflow discrepancies between early and late summer can be attributed to different flow velocities in the river network. By developing an analytic solution to represent flow along a given river network, we emphasize the dependence of streamflow amplitude and time delay on the geomorphology of the network. We also simulate using a realistic river network to highlight the effects of scale.
Zhongwei Huang, Hanbo Yang, and Dawen Yang
Hydrol. Earth Syst. Sci., 20, 2573–2587, https://doi.org/10.5194/hess-20-2573-2016, https://doi.org/10.5194/hess-20-2573-2016, 2016
Short summary
Short summary
The hydrologic processes have been influenced by different climatic factors. However, the dominant climatic factor driving annual runoff change is still unknown in many catchments in China. By using the climate elasticity method proposed by Yang and Yang (2011), the elasticity of runoff to climatic factors was estimated, and the dominant climatic factors driving annual runoff change were detected at catchment scale over China.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Mohammed Achite and Sylvain Ouillon
Hydrol. Earth Syst. Sci., 20, 1355–1372, https://doi.org/10.5194/hess-20-1355-2016, https://doi.org/10.5194/hess-20-1355-2016, 2016
Short summary
Short summary
Changes of T, P, Q and sediment fluxes in a semi-arid basin little affected by human activities are analyzed from 40 years of measurements. T increased, P decreased, an earlier onset of first summer rains occurred. The flow regime shifted from perennial to intermittent. Sediment flux almost doubled every decade. The sediment regime shifted from two equivalent seasons of sediment delivery to a single major season regime. The C–Q rating curve ability declined due to enhanced hysteresis effects.
C. E. M. Lloyd, J. E. Freer, P. J. Johnes, and A. L. Collins
Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, https://doi.org/10.5194/hess-20-625-2016, 2016
Short summary
Short summary
This paper examines the current methodologies for quantifying storm behaviour through hysteresis analysis, and explores a new method. Each method is systematically tested and the impact on the results is examined. Recommendations are made regarding the most effective method of calculating a hysteresis index. This new method allows storm hysteresis behaviour to be directly compared between storms, parameters, and catchments, meaning it has wide application potential in water quality research.
W. Hu and B. C. Si
Hydrol. Earth Syst. Sci., 20, 571–587, https://doi.org/10.5194/hess-20-571-2016, https://doi.org/10.5194/hess-20-571-2016, 2016
Short summary
Short summary
Spatiotemporal SWC was decomposed into into three terms (spatial forcing, temporal forcing, and interactions between spatial and temporal forcing) for near surface and root zone; Empirical orthogonal function indicated that underlying patterns exist in the interaction term at small watershed scales; Estimation of spatially distributed SWC benefits from decomposition of the interaction term; The suggested decomposition of SWC with time stability analysis has potential in SWC downscaling.
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016, https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary
Short summary
Parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. A method for parameter optimization with particle swam optimization (PSO) algorithm has been proposed for physically based distributed hydrological model in catchment flood forecasting and validated in southern China. It has found that the appropriate particle number and maximum evolution number of PSO algorithm are 20 and 30 respectively.
D. Hawtree, J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A.-K. Boulet, F. Tavares-Wahren, and K.-H. Feger
Hydrol. Earth Syst. Sci., 19, 3033–3045, https://doi.org/10.5194/hess-19-3033-2015, https://doi.org/10.5194/hess-19-3033-2015, 2015
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
C. Kormann, T. Francke, M. Renner, and A. Bronstert
Hydrol. Earth Syst. Sci., 19, 1225–1245, https://doi.org/10.5194/hess-19-1225-2015, https://doi.org/10.5194/hess-19-1225-2015, 2015
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
S. G. Leibowitz, R. L. Comeleo, P. J. Wigington Jr., C. P. Weaver, P. E. Morefield, E. A. Sproles, and J. L. Ebersole
Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014, https://doi.org/10.5194/hess-18-3367-2014, 2014
J. Niu, J. Chen, and B. Sivakumar
Hydrol. Earth Syst. Sci., 18, 1475–1492, https://doi.org/10.5194/hess-18-1475-2014, https://doi.org/10.5194/hess-18-1475-2014, 2014
S. Galelli and A. Castelletti
Hydrol. Earth Syst. Sci., 17, 2669–2684, https://doi.org/10.5194/hess-17-2669-2013, https://doi.org/10.5194/hess-17-2669-2013, 2013
K. Rasouli, M. A. Hernández-Henríquez, and S. J. Déry
Hydrol. Earth Syst. Sci., 17, 1681–1691, https://doi.org/10.5194/hess-17-1681-2013, https://doi.org/10.5194/hess-17-1681-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
B. Gräler, M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 17, 1281–1296, https://doi.org/10.5194/hess-17-1281-2013, https://doi.org/10.5194/hess-17-1281-2013, 2013
Cited articles
ABC: ABC's crowdsourced flood-mapping initiative, ABCs Crowdsourced Flood-Mapp, Initiat, available from: http://www.abc.net.au/technology/articles/2011/01/13/3112261.htm (last access: 20 January 2016), 2011.
Alfonso, L.: Use of hydroinformatics technologies for real time water quality management and operation of distribution networks. Case study of Villavicencio, Colombia, MS Thesis, UNESCO-IHE, Institute for Water Education, Delft, the Netherlands, 2006.
Alfonso, L., He, L., Lobbrecht, A., and Price, R.: Information theory applied to evaluate the discharge monitoring network of the Magdalena River, J. Hydroinform., 15, 211–228, https://doi.org/10.2166/hydro.2012.066, 2013.
Alfonso, L., Chacon, J., and Pena-Castellanos. G.: Allowing Citizens to Effortlessly Become Rainfall Sensors, in 36th IAHR World Congress edited, The Hague, the Netherlands, 2015.
Arnold, C. P. and Dey, C. H.: Observing-Systems Simulation Experiments: Past, Present, and Future, B. Am. Meteorol. Soc., 67, 687–695, https://doi.org/10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2, 1986.
Au, J., Bagchi, P., Chen, B., Martinez, R., Dudley, S. A., and Sorger, G. J.: Methodology for public monitoring of total coliforms, Escherichia coli and toxicity in waterways by Canadian high school students, J. Environ. Manage., 58, 213–230, https://doi.org/10.1006/jema.2000.0323, 2000.
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model, J. Hydrol., 280, 145–161, https://doi.org/10.1016/S0022-1694(03)00229-4, 2003.
Bergström, S.: Principles and confidence in hydrological modelling, Hydrol. Res., 22, 123–136, 1991.
Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon, S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N., and Frusher, S.: Statistical solutions for error and bias in global citizen science datasets, Biol. Conserv., 173, 144–154, https://doi.org/10.1016/j.biocon.2013.07.037, 2014.
Bordogna, G., Carrara, P., Criscuolo, L., Pepe, M., and Rampini, A.: A linguistic decision making approach to assess the quality of volunteer geographic information for citizen science, Inf. Sci., 258, 312–327, https://doi.org/10.1016/j.ins.2013.07.013, 2014.
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De Bièvre, B., Bhusal, J., Clark, J., Dewulf, A., Foggin, M., Hannah, D. M., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., Tilahun, S., Van Hecken, G., and Zhumanova, M.: Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development, Front. Earth Sci., 2, 1–21, https://doi.org/10.3389/feart.2014.00026, 2014.
Canizares, R., Heemink, A. W., and Vested, H. J.: Application of advanced data assimilation methods for the initialisation of storm surge models, J. Hydraul. Res., 36, 655–674, https://doi.org/10.1080/00221689809498614, 1998.
Célleri, R., Buytaert, W., De Bièvre, B., Tobón, C., Crespo, P., Molina, J., and Feyen, J.: Understanding the hydrology of tropical Andean ecosystems through an Andean Network of Basins, available from: http://dspace.ucuenca.edu.ec/handle/123456789/22089 (last access: 19 February 2016), 2009.
Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A., Gimmestad, C., and Depue, T.: The Community Collaborative Rain, Hail, and Snow Network: Informal Education for Scientists and Citizens, B. Am. Meteorol. Soc., 86, 1069–1077, 2005.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.
Cortes Arevalo, V. J., Charrière, M., Bossi, G., Frigerio, S., Schenato, L., Bogaard, T., Bianchizza, C., Pasuto, A., and Sterlacchini, S.: Evaluating data quality collected by volunteers for first-level inspection of hydraulic structures in mountain catchments, Nat. Hazards Earth Syst. Sci., 14, 2681–2698, https://doi.org/10.5194/nhess-14-2681-2014, 2014.
Danish Hydraulic Institute: MIKE FLOOD 1D-2D modelling, User manual, DHI, 2007.
Degrossi, L. C., Do Amaral, G. G., da Vasconcelos, E. S. M., Albuquerque, J. P., and Ueyama, J.: Using Wireless Sensor Networks in the Sensor Web for Flood Monitoring in Brazil, in Proceedings of the 10th International ISCRAM Conference, Baden-Baden, Germany, available from: http://humanitariancomp.referata.com/wiki/Using_Wireless_Sensor_Networks_in_the_Sensor_Web_for_Flood_Monitoring_in_Brazil (last access: 10 February 2016), 2013.
Derber, J. and Rosati, A.: A Global Oceanic Data Assimilation System, J. Phys. Oceanogr., 19, 1333–1347, https://doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2, 1989.
Drecourt, J.-P.: Data assimilation in hydrological modelling, Environment & Resources DTU, Technical University of Denmark, 2004.
Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Engel, S. R. and Voshell Jr., J. R.: Volunteer biological monitoring: can it accurately assess the ecological condition of streams?, Am. Entomol., 48, 164–177, 2002.
Errico, R. M., Yang, R., Privé, N. C., Tai, K.-S., Todling, R., Sienkiewicz, M. E., and Guo, J.: Development and validation of observing-system simulation experiments at NASA's Global Modeling and Assimilation Office, Q. J. R. Meteorol. Soc., 139, 1162–1178, https://doi.org/10.1002/qj.2027, 2013.
Errico, R. M. and Privé, N. C.: An estimate of some analysis-error statistics using the Global Modeling and Assimilation Office observing-system simulation framework, Q. J. Roy. Meteor. Soc., 140, 1005–1012, https://doi.org/10.1002/qj.2180, 2014.
Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd Edn., Springer, 2006.
Fenicia, F., Solomatine, D. P., Savenije, H. H. G., and Matgen, P.: Soft combination of local models in a multi-objective framework, Hydrol. Earth Syst. Sci., 11, 1797–1809, https://doi.org/10.5194/hess-11-1797-2007, 2007.
Ferri, M., Monego, M., Norbiato, D., Baruffi, F., Toffolon, C., and Casarin, R.: La piattaforma previsionale per i bacini idrografici del Nord Est Adriatico (I), in: Proc. XXXIII Conference of Hydraulics and Hydraulic Engineering, Brescia, p. 10, 2012.
Giandotti, M.: Previsione delle piene e delle magre dei corsi d'acqua, Servizio Idrografico Italiano, Rome, 1933.
Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapotranspiration, J. Irrig. Drain. Div., 108, 225–230, 1982.
Huang, B., Kinter, J. L., and Schopf, P. S.: Ocean data assimilation using intermittent analyses and continuous model error correction, Adv. Atmos. Sci., 19, 965–992, https://doi.org/10.1007/s00376-002-0059-z, 2002.
Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J., Sauer, T., Szunyogh, I., Yorke, J. A., and Zimin, A. V.: Four-dimensional Ensemble Kalman Filtering, Tellus A, 56, 273–277, https://doi.org/10.1111/j.1600-0870.2004.00066.x, 2004.
Huwald, H., Barrenetxea, G., de Jong, S., Ferri, M., Carvalho, R., Lanfranchi, V., McCarthy, S., Glorioso, G., Prior, S., Solà, E., Gil-Roldàn, E., Alfonso, L., Wehn de Montalvo, U., Onencan, A., Solomatine, D., and Lobbrecht, A.: D1.11 Sensor technology requirement analysis, Confidential Deliverable, The WeSenseIt Project (FP7/2007-2013 grant agreement no. 308429), 2013.
Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.: Unifed notation for data assimilation: operational, sequential and variational, J. Meteorol. Soc. Jpn., 75, 181–189, 1997.
ISPUW: iSPUW: Integrated Sensing and Prediction of Urban Water for Sustainable Cities, available from: http://ispuw.uta.edu/nsf/ (last access: 19 February 2016), 2015.
Kalman, R. E.: A new approach to linear filtering and prediction problems, J. Basic Eng.-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552, 1960.
Krstanovic, P. F. and Singh, V. P.: Evaluation of rainfall networks using entropy: II. Application, Water Resour. Manag., 6, 295–314, https://doi.org/10.1007/BF00872282, 1992.
Kumar, R., Chatterjee, C., Lohani, A. K., Kumar, S., and Singh, R. D.: Sensitivity Analysis of the GIUH based Clark Model for a Catchment, Water Resour. Manag., 16, 263–278, https://doi.org/10.1023/A:1021920717410, 2002.
Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707–723, https://doi.org/10.1016/S0309-1708(01)00005-7, 2001.
Li, Z. and Navon, I. M.: Optimality of variational data assimilation and its relationship with the Kalman filter and smoother, Q. J. Roy. Meteor. Soc., 127, 661–683, https://doi.org/10.1002/qj.49712757220, 2001.
Lowry, C. S. and Fienen, M. N.: CrowdHydrology: Crowdsourcing hydrologic data and engaging citizen scientists, GroundWater, 51, 151–156, https://doi.org/10.1111/j.1745-6584.2012.00956.x, 2013.
Macpherson, B.: Dynamic initialization by repeated insertion of data, Q. J. Roy. Meteor. Soc., 117, 965–991, https://doi.org/10.1002/qj.49711750105, 1991.
Madsen, H. and Cañizares, R.: Comparison of extended and ensemble Kalman filters for data assimilation in coastal area modelling, Int. J. Numer. Meth. Fl., 31, 961–981, https://doi.org/10.1002/(SICI)1097-0363(19991130)31:6<961::AID-FLD907>3.0.CO;2-0, 1999.
Massart, S., Pajot, B., Piacentini, A., and Pannekoucke, O.: On the merits of using a 3D-FGAT assimilation scheme with an outer loop for atmospheric situations governed by transport, Mon. Weather Rev., 138, 4509–4522, 2010.
Matheron, G.: Principles of geostatistics, Econ. Geol., 58, 1246–1266, 1963.
Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., and Solomatine, D.: Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models, Adv. Water Resour., 83, 323–339, 2015.
Mazzoleni, M., Alfonso, L., and Solomatine, D.: Influence of spatial distribution of sensors and observation accuracy on the assimilation of distributed streamflow data in hydrological modelling, Hydrolog. Sci. J., https://doi.org/10.1080/02626667.2016.1247211, 2016.
McDonnell, J. J. and Beven, K.: Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014.
Moore, R. J., Jones, D. A., Cox, D. R., and Isham, V. S.: Design of the HYREX raingauge network, Hydrol. Earth Syst. Sci., 4, 521–530, https://doi.org/10.5194/hess-4-521-2000, 2000.
Ragnoli, E., Zhuk, S., Donncha, F. O., Suits, F., and Hartnett, M.: An optimal interpolation scheme for assimilation of HF radar current data into a numerical ocean model, Oceans, 2012, 1–5, 2012.
Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci., 16, 3435–3449, https://doi.org/10.5194/hess-16-3435-2012, 2012.
Rakovec, O., Weerts, A. H., Sumihar, J., and Uijlenhoet, R.: Operational aspects of asynchronous filtering for flood forecasting, Hydrol. Earth Syst. Sci., 19, 2911–2924, https://doi.org/10.5194/hess-19-2911-2015, 2015.
Refsgaard, J. C.: Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting, Nord. Hydrol., 28, 65–84, 1997.
Ridolfi, E., Alfonso, L., Baldassarre, G. D., Dottori, F., Russo, F., and Napolitano, F.: An entropy approach for the optimization of cross-section spacing for river modelling, Hydrolog. Sci. J., 59, 126–137, https://doi.org/10.1080/02626667.2013.822640, 2014.
Rinaldo, A. and Rodriguez-Iturbe, I.: Geomorphological Theory of the Hydrological Response, Hydrol. Process., 10, 803–829, https://doi.org/10.1002/(SICI)1099-1085(199606)10:6<803::AID-HYP373>3.0.CO;2-N, 1996.
Rodríguez-Iturbe, I., González-Sanabria, M., and Bras, R. L.: A geomorphoclimatic theory of the instantaneous unit hydrograph, Water Resour. Res., 18, 877–886, https://doi.org/10.1029/WR018i004p00877, 1982.
Roy, H. E., Pocock, M. J. O., Preston, C. D., Roy, D. B., and Savage, J.: Understanding Citizen Science and Environmental Monitoring, Final Report of UK Environmental Observation Framework, 2012.
Sakov, P., Evensen, G., and Bertino, L.: Asynchronous data assimilation with the EnKF, Tellus A, 62, 24–29, https://doi.org/10.1111/j.1600-0870.2009.00417.x, 2010.
Seo, D.-J., Kerke, B., Zink, M., Fang, N., Gao, J., and Yu, X.: iSPUW: A Vision for Integrated Sensing and Prediction of Urban Water for Sustainable Cities, 2014.
Solomatine, D. P. and Dulal, K. N.: Model trees as an alternative to neural networks in rainfall–runoff modelling, Hydrolog. Sci. J., 48, 399–411, https://doi.org/10.1623/hysj.48.3.399.45291, 2003.
Szilagyi, J. and Szollosi-Nagy, A.: Recursive Streamflow Forecasting: A State Space Approach, CRC Press Book, 2010.
Todini, E.: A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach, Hydrol. Earth Syst. Sci., 11, 1645–1659, https://doi.org/10.5194/hess-11-1645-2007, 2007.
Todini, E., Alberoni, P., Butts, M., Collier, C., Khatibi, R., Samuels, P., and Weerts, A.: ACTIF best practice paper-understanding and reducing uncertainty in flood forecasting, in: International conference on innovation, advances and implementation of flood forecasting technology, edited by: Balabanis, P., Lumbroso, D., and Samuels, P., Tromsø, Norway, 2005.
Tulloch, A. I. T. and Szabo, J. K.: A behavioural ecology approach to understand volunteer surveying for citizen science datasets, Emu, 112, 313–325, https://doi.org/10.1071/MU12009, 2012.
Vandecasteele, A. and Devillers, R.: Improving volunteered geographic data quality using semantic similarity measurements, ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 1, 143–148, 2013.
Verlaan, M.: Efficient Kalman Filtering Algorithms for Hydrodynamic Models, PhD Thesis, Delft University of Technology, the Netherlands, 1998.
Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models, Water Resour. Res., 42, 1–17, https://doi.org/10.1029/2005WR004093, 2006.
Wehn, U., Rusca, M., Evers, J., and Lanfranchi, V.: Participation in flood risk management and the potential of citizen observatories: A governance analysis, Environ. Sci. Policy, 48, 225–236, 2015.
World Meteorological Organization (WMO): Simulated real-time intercomparison of hydrological models, WMO Oper. Hyrol. Rep. 38, WMO 779, Geneva, 1992.
Wood, S. J., Jones, D. A., and Moore, R. J.: Accuracy of rainfall measurement for scales of hydrological interest, Hydrol. Earth Syst. Sci., 4, 531–543, https://doi.org/10.5194/hess-4-531-2000, 2000.
Short summary
This study assesses the potential use of crowdsourced data in hydrological modeling, which are characterized by irregular availability and variable accuracy. We show that even data with these characteristics can improve flood prediction if properly integrated into hydrological models. This study provides technological support to citizen observatories of water, in which citizens can play an active role in capturing information, leading to improved model forecasts and better flood management.
This study assesses the potential use of crowdsourced data in hydrological modeling, which are...