Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5953-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-21-5953-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer
Charlotte P. Iverach
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052,
Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney,
NSW 2052, Australia
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW 2234, Australia
Dioni I. Cendón
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052,
Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney,
NSW 2052, Australia
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW 2234, Australia
Karina T. Meredith
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW 2234, Australia
Klaus M. Wilcken
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW 2234, Australia
Stuart I. Hankin
Australian Nuclear Science and Technology Organisation, New Illawarra
Rd, Lucas Heights, NSW 2234, Australia
Martin S. Andersen
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052,
Australia
School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW
2052, Australia
Bryce F. J. Kelly
CORRESPONDING AUTHOR
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052,
Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney,
NSW 2052, Australia
Related authors
Charlotte P. Iverach, Sabrina Beckmann, Dioni I. Cendón, Mike Manefield, and Bryce F. J. Kelly
Biogeosciences, 14, 215–228, https://doi.org/10.5194/bg-14-215-2017, https://doi.org/10.5194/bg-14-215-2017, 2017
Short summary
Short summary
This research characterised the biogeochemical constraints on the origin of methane in an alluvial aquifer, concluding that the most likely source was the upward migration from a directly underlying coal seam. This research was undertaken due to concerns about the effect of coal seam gas production on groundwater quality in the study area. The implications include the fact that no methane is being produced in the aquifer (in situ) and that there is local natural connectivity in the study area.
Jonathan R. Adams, Dylan H. Rood, Klaus Wilcken, Stephen J. Roberts, and Joanne S. Johnson
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-34, https://doi.org/10.5194/gchron-2024-34, 2024
Preprint under review for GChron
Short summary
Short summary
Ice sheet mass loss is adding to sea-level rise, and is expected to increase, but by how much and how fast remains uncertain. Isotopes produced in rock at the Earth’s surface provide records of past ice sheet thinning which help predict future change but are more effective if they are precise enough to determine past changes to the nearest thousand years. The precision of carbon-14, an isotope which is guaranteed to record past change since the last ice age, can be improved.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Jennifer R. Shadrick, Dylan H. Rood, Martin D. Hurst, Matthew D. Piggott, Klaus M. Wilcken, and Alexander J. Seal
Earth Surf. Dynam., 11, 429–450, https://doi.org/10.5194/esurf-11-429-2023, https://doi.org/10.5194/esurf-11-429-2023, 2023
Short summary
Short summary
This study uses a coastal evolution model to interpret cosmogenic beryllium-10 concentrations and topographic data and, in turn, quantify long-term cliff retreat rates for four chalk sites on the south coast of England. By using a process-based model, clear distinctions between intertidal weathering rates have been recognised between chalk and sandstone rock coast sites, advocating the use of process-based models to interpret the long-term behaviour of rock coasts.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Jonathan R. Adams, Joanne S. Johnson, Stephen J. Roberts, Philippa J. Mason, Keir A. Nichols, Ryan A. Venturelli, Klaus Wilcken, Greg Balco, Brent Goehring, Brenda Hall, John Woodward, and Dylan H. Rood
The Cryosphere, 16, 4887–4905, https://doi.org/10.5194/tc-16-4887-2022, https://doi.org/10.5194/tc-16-4887-2022, 2022
Short summary
Short summary
Glaciers in West Antarctica are experiencing significant ice loss. Geological data provide historical context for ongoing ice loss in West Antarctica, including constraints on likely future ice sheet behaviour in response to climatic warming. We present evidence from rare isotopes measured in rocks collected from an outcrop next to Pope Glacier. These data suggest that Pope Glacier thinned faster and sooner after the last ice age than previously thought.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Harald Hofmann, Dean Newborn, Ian Cartwright, Dioni I. Cendón, and Matthias Raiber
Hydrol. Earth Syst. Sci., 24, 1293–1318, https://doi.org/10.5194/hess-24-1293-2020, https://doi.org/10.5194/hess-24-1293-2020, 2020
Short summary
Short summary
Fresh groundwater (GW) on barrier islands is affected by GW use and precipitation variability. Mean residence times (MRTs) of GW on a sand barrier island were determined. They ranged from 37 years to more than 150 years for tritium and had a much larger range (modern to 5000 years) for carbon-14. Perched aquifer systems in the unsaturated zone and peat formations around wetlands are the most likely cause of longer MRTs, as they have a significant impact on regional recharge and flow diversion.
Charlotte P. Iverach, Sabrina Beckmann, Dioni I. Cendón, Mike Manefield, and Bryce F. J. Kelly
Biogeosciences, 14, 215–228, https://doi.org/10.5194/bg-14-215-2017, https://doi.org/10.5194/bg-14-215-2017, 2017
Short summary
Short summary
This research characterised the biogeochemical constraints on the origin of methane in an alluvial aquifer, concluding that the most likely source was the upward migration from a directly underlying coal seam. This research was undertaken due to concerns about the effect of coal seam gas production on groundwater quality in the study area. The implications include the fact that no methane is being produced in the aquifer (in situ) and that there is local natural connectivity in the study area.
Giulia Zazzeri, Dave Lowry, Rebecca E. Fisher, James L. France, Mathias Lanoisellé, Bryce F. J. Kelly, Jaroslaw M. Necki, Charlotte P. Iverach, Elisa Ginty, Miroslaw Zimnoch, Alina Jasek, and Euan G. Nisbet
Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, https://doi.org/10.5194/acp-16-13669-2016, 2016
Short summary
Short summary
Methane emissions estimates from the coal sector are highly uncertain. Precise δ13C isotopic signatures of methane sources can be used in atmospheric models for a methane budget assessment. Emissions from both underground and opencast coal mines in the UK, Australia and Poland were sampled and isotopically characterised using high-precision measurements of δ13C values. Representative isotopic signatures were provided, taking into account specific ranks of coal and mine type.
C. Duvert, M. K. Stewart, D. I. Cendón, and M. Raiber
Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016, https://doi.org/10.5194/hess-20-257-2016, 2016
Short summary
Short summary
The transit time of water is a key indicator of hydrological processes at the catchment scale. Our results suggest that the use of tritium time series in streamwater can be highly valuable for assessing the temporal variations in the transit time of older groundwater contributions to streamflow. We also show that, shortly after high flow events, the transit time of the old water fraction increases and tends to approach the groundwater residence time.
S. Jasechko, A. Lechler, F. S. R. Pausata, P. J. Fawcett, T. Gleeson, D. I. Cendón, J. Galewsky, A. N. LeGrande, C. Risi, Z. D. Sharp, J. M. Welker, M. Werner, and K. Yoshimura
Clim. Past, 11, 1375–1393, https://doi.org/10.5194/cp-11-1375-2015, https://doi.org/10.5194/cp-11-1375-2015, 2015
Short summary
Short summary
In this study we compile global isotope proxy records of climate changes from the last ice age to the late-Holocene preserved in cave calcite, glacial ice and groundwater aquifers. We show that global patterns of late-Pleistocene to late-Holocene precipitation isotope shifts are consistent with stronger-than-modern isotopic distillation of air masses during the last ice age, likely impacted by larger global temperature differences between the tropics and the poles.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Instruments and observation techniques
Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes
Technical note: Effects of iron(II) on fluorescence properties of dissolved organic matter at circumneutral pH
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Using multiple methods to investigate the effects of land-use changes on groundwater recharge in a semi-arid area
Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach
Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer
Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer
Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons
Groundwater–glacier meltwater interaction in proglacial aquifers
A review of methods for measuring groundwater–surface water exchange in braided rivers
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
The effect of sediment thermal conductivity on vertical groundwater flux estimates
Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics
Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes
Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system
Comment on “Origin of water in the Badain Jaran Desert, China: new insight from isotopes” by Wu et al. (2017)
Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence
Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses
Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania
Halon-1301 – further evidence of its performance as an age tracer in New Zealand groundwater
Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange
Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA
Quantifying the influence of surface water–groundwater interaction on nutrient flux in a lowland karst catchment
Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4
Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale
Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method
Assessment of Halon-1301 as a groundwater age tracer
Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia
Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater
Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France)
A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses
Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China
Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China
Using hydrologic measurements to investigate free-phase gas ebullition in a Maine peatland, USA
Spatially resolved information on karst conduit flow from in-cave dye tracing
The usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data
Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach
Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy
Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns
Adi Biran, Tomer Sapar, Ludmila Abezgauz, and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 4755–4770, https://doi.org/10.5194/hess-28-4755-2024, https://doi.org/10.5194/hess-28-4755-2024, 2024
Short summary
Short summary
In Earth sciences, pH-driven reactions in porous environments impact natural processes like mineral dissolution and groundwater remediation. Traditional models struggle due to pore-scale complexities. This study explores how porous structure and flow rate affect mixing and chemical reactions. Surprisingly, pH-driven reactions occur faster than predicted, emphasizing water’s unique pH behavior in porous media.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023, https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
Short summary
In this paper, we use a novel surface nuclear magnetic resonance (SNMR) method for rapid high-quality data acquisition. The SNMR results from more than 100 soundings in three different case studies were used to map groundwater. The soundings successfully track the water table through the three areas and are compared to boreholes and other geophysical measurements. The study highlights the use of SNMR in hydrological surveys and as a tool for regional mapping of the water table.
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023, https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022, https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
Odiney Alvarez-Campos, Elizabeth J. Olson, Lisa R. Welp, Marty D. Frisbee, Sebastián A. Zuñiga Medina, José Díaz Rodríguez, Wendy R. Roque Quispe, Carol I. Salazar Mamani, Midhuar R. Arenas Carrión, Juan Manuel Jara, Alexander Ccanccapa-Cartagena, and Chad T. Jafvert
Hydrol. Earth Syst. Sci., 26, 483–503, https://doi.org/10.5194/hess-26-483-2022, https://doi.org/10.5194/hess-26-483-2022, 2022
Short summary
Short summary
We present results of a hydrologic study of groundwater recharge near the city of Arequipa, Peru. There are a number of springs below a high-elevation salar that show some chemical evidence of connectivity to the salar basin, possibly facilitated by faults in region. These results suggest that this salar basin is not a strictly terminal lake but that some interbasin groundwater flow exists. In addition, a high-elevation forest ecosystem seems important for groundwater recharge as well.
Kun Jia, Cara C. M. Manning, Ashlee Jollymore, and Roger D. Beckie
Hydrol. Earth Syst. Sci., 25, 4983–4993, https://doi.org/10.5194/hess-25-4983-2021, https://doi.org/10.5194/hess-25-4983-2021, 2021
Short summary
Short summary
The effect of soluble reduced iron, Fe(II), on fluorescence data (excitation–emission matrix spectra parsed using parallel factor analysis) is difficult to quantitatively assign. We added varying quantities of Fe(II) into groundwater from an anaerobic aquifer. We showed that the overall fluorescence intensity decreased nonlinearly as Fe(II) increased from 1 to 306 mg L-1 but that the parallel factor analysis component distribution was relatively insensitive to Fe(II) concentration.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabian Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martínez, Laura del Val, David Bosch, and Jesús Carrera
Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, https://doi.org/10.5194/hess-24-2121-2020, 2020
Short summary
Short summary
Coastal areas are highly populated and seawater intrusion endangers the already scarce freshwater resources. We use, for the first time, a geophysical experiment called cross-hole electrical resistivity tomography to monitor seawater intrusion dynamics. The technique relies on readings of rock and water electrical conductivity to detect salt in the aquifer. Two years of experiment allowed us to reveal variations in aquifer salinity due to natural seasonality, heavy-rain events and droughts.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Brighid É. Ó Dochartaigh, Alan M. MacDonald, Andrew R. Black, Jez Everest, Paul Wilson, W. George Darling, Lee Jones, and Mike Raines
Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, https://doi.org/10.5194/hess-23-4527-2019, 2019
Short summary
Short summary
We provide evidence of high groundwater storage and flow in catchments with active glaciers. Groundwater is found within gravels at the front of glaciers and replenished by both ice melt and precipitation. We studied a glacier in Iceland for 3 years, characterising the aquifer properties and measuring groundwater, river flow and precipitation. The results are important for accurately measuring meltwater and show that groundwater can provide strategic water supplies in de-glaciating catchments.
Katie Coluccio and Leanne Kaye Morgan
Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, https://doi.org/10.5194/hess-23-4397-2019, 2019
Short summary
Short summary
Braided rivers are uncommon internationally but are important freshwater resources. However, there is limited understanding of how characteristics unique to braided rivers affect groundwater–surface water flow paths. This article reviews prior studies that have investigated groundwater–surface water interactions in these rivers and their associated aquifers to provide guidance on methodologies most suitable for future work in braided rivers and highlight gaps in current knowledge.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019, https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Short summary
Exchange fluxes between groundwater and surface waters can be quantified using temperature measurements from the upper sediment layers of streams and lakes assuming the thermal properties of sediments. This study quantified the natural variabiilty in sediment thermal conductivity in the vertical direction at the bed of surface waters and showed that fluxes can change by up to +/-75 % depending on using standard literature values or in situ measurements for sediment thermal conductivity.
Benoit Vittecoq, Pierre-Alexandre Reninger, Frédéric Lacquement, Guillaume Martelet, and Sophie Violette
Hydrol. Earth Syst. Sci., 23, 2321–2338, https://doi.org/10.5194/hess-23-2321-2019, https://doi.org/10.5194/hess-23-2321-2019, 2019
Short summary
Short summary
Water resource management on volcanic islands is challenging and faces several issues. Taking advantage of new heliborne geophysical technology, correlated with borehole and spring data, we develop a watershed-scale conceptual model and demonstrate that permeability increases with age for the studied formations. Moreover, complex geological structures lead to preferential flow circulations and to discrepancy between topographical and hydrogeological watersheds, influencing river flow rates.
Carme Barba, Albert Folch, Núria Gaju, Xavier Sanchez-Vila, Marc Carrasquilla, Alba Grau-Martínez, and Maira Martínez-Alonso
Hydrol. Earth Syst. Sci., 23, 139–154, https://doi.org/10.5194/hess-23-139-2019, https://doi.org/10.5194/hess-23-139-2019, 2019
Short summary
Short summary
Managed aquifer recharge allows increasing water resources and can be used to improve water quality. We assess the degradative capabilities of infiltrating pollutants by mapping the composition of microbial communities linked to periods of infiltration/drought. From samples of soil, surface and groundwater, we found some microbial species involved in the nitrogen and carbon cycles. Furthermore, we found that, during infiltration, microbial abundance rises, increasing degradative capabilities.
Katarina David, Wendy Timms, Catherine E. Hughes, Jagoda Crawford, and Dayna McGeeney
Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, https://doi.org/10.5194/hess-22-6023-2018, 2018
Short summary
Short summary
We investigated the wetland system classified as a threatened ecological community and found that organic-rich soil close to surfaces retains significant moisture necessary for ecosystems. At the base of the swamp an identified sand layer allows relatively rapid drainage and lateral groundwater interaction. Evaporation estimated from stable water isotopes from sediments indicated that groundwater contribution to the swamp is significant in dry periods, supporting ecosystems when water is scarce.
Lucheng Zhan, Jiansheng Chen, Ling Li, and David A. Barry
Hydrol. Earth Syst. Sci., 22, 4449–4454, https://doi.org/10.5194/hess-22-4449-2018, https://doi.org/10.5194/hess-22-4449-2018, 2018
Short summary
Short summary
Using the arithmetic averages of precipitation isotope values, Wu et al. (2017) concluded that the Badain Jaran Desert (BJD) groundwater is recharged by modern local meteoric water. However, based on weighted mean precipitation isotope values, our further analysis shows that modern precipitation on the Qilian Mountains is more likely to be the main source of the groundwater and lake water in the BJD, as found. We believe this comment provides an important improvement for their study.
Dongmei Han and Matthew J. Currell
Hydrol. Earth Syst. Sci., 22, 3473–3491, https://doi.org/10.5194/hess-22-3473-2018, https://doi.org/10.5194/hess-22-3473-2018, 2018
Short summary
Short summary
Based on hydrochemical and isotopic analysis, we investigated the potential hydrogeological processes responsible for the increasing groundwater salinity in the coastal aquifer of Yang–Dai River coastal plain, northern China. Seawater intrusion is the major aspect and can be caused by vertical infiltration along the riverbed at the downstream areas, and lateral inflow into fresh aquifer. Geothermal water also makes a significant contribution to increasing the groundwater salinity.
Stephan Costabel, Christoph Weidner, Mike Müller-Petke, and Georg Houben
Hydrol. Earth Syst. Sci., 22, 1713–1729, https://doi.org/10.5194/hess-22-1713-2018, https://doi.org/10.5194/hess-22-1713-2018, 2018
Short summary
Short summary
Laboratory experiments using water-filled sand and gravel samples with significant contents of iron oxide coatings were performed to identify the relationship between effective hydraulic radius and nuclear magnetic resonance (NMR) response. Our interpretation approach for the NMR data leads to reliable estimates of hydraulic conductivity without calibration, but is limited to coarse material for physical reasons. An NMR-based observation system for iron clogging in boreholes is planned.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Virgil Drăguşin, Sorin Balan, Dominique Blamart, Ferenc Lázár Forray, Constantin Marin, Ionuţ Mirea, Viorica Nagavciuc, Iancu Orăşeanu, Aurel Perşoiu, Laura Tîrlă, Alin Tudorache, and Marius Vlaicu
Hydrol. Earth Syst. Sci., 21, 5357–5373, https://doi.org/10.5194/hess-21-5357-2017, https://doi.org/10.5194/hess-21-5357-2017, 2017
Monique Beyer, Uwe Morgenstern, Rob van der Raaij, and Heather Martindale
Hydrol. Earth Syst. Sci., 21, 4213–4231, https://doi.org/10.5194/hess-21-4213-2017, https://doi.org/10.5194/hess-21-4213-2017, 2017
Short summary
Short summary
The determination of groundwater age can aid characterization of aquifers, providing information on groundwater mixing, flow, volume, and recharge rates. Here we assess a recently discovered groundwater age tracer, Halon-1301. Its performance as an age tracer is assessed against six other well-established, widely used age tracers in 302 groundwater samples. We show Halon-1301 reliably inferred age, thus potentially becoming a useful groundwater age tracer where other tracers are compromised.
Colby M. Steelman, Celia S. Kennedy, Donovan C. Capes, and Beth L. Parker
Hydrol. Earth Syst. Sci., 21, 3105–3123, https://doi.org/10.5194/hess-21-3105-2017, https://doi.org/10.5194/hess-21-3105-2017, 2017
Short summary
Short summary
The Eramosa River flows along a fractured sedimentary bedrock aquifer with large subsurface channel features. This study examines the potential for groundwater–surface water exchange beneath the fractured bedrock riverbed and the impacts of seasonal and intraseasonal flow system transience on the geoelectrical properties of the rock. Our results will have implications to the conceptual understanding of groundwater–surface water interaction within fractured bedrock river environments.
Linsong Wang, Chao Chen, Jinsong Du, and Tongqing Wang
Hydrol. Earth Syst. Sci., 21, 2905–2922, https://doi.org/10.5194/hess-21-2905-2017, https://doi.org/10.5194/hess-21-2905-2017, 2017
Short summary
Short summary
The North China Plain (NCP), as the interest region in this study, is one of the most uniformly and extensively altered areas due to overexploitation of groundwater by humans. Here, we use GRACE and GPS to study the seasonal and long-term mass change and its resulting vertical displacement. We also removed the vertical rates, which are induced by terrestrial water storage (TWS) from GPS-derived data to obtain the corrected vertical velocities caused by tectonic movement and human activities.
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
Donald O. Rosenberry, Martin A. Briggs, Emily B. Voytek, and John W. Lane
Hydrol. Earth Syst. Sci., 20, 4323–4339, https://doi.org/10.5194/hess-20-4323-2016, https://doi.org/10.5194/hess-20-4323-2016, 2016
Short summary
Short summary
The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were thought to be located in areas of substantial groundwater discharge to the river. Physical, thermal, and geophysical methods applied at several spatial scales indicate that DWM are located within or directly downstream of areas of substantial groundwater discharge to the river. DWM may depend on groundwater discharge for their survival.
T. McCormack, O. Naughton, P. M. Johnston, and L. W. Gill
Hydrol. Earth Syst. Sci., 20, 2119–2133, https://doi.org/10.5194/hess-20-2119-2016, https://doi.org/10.5194/hess-20-2119-2016, 2016
Short summary
Short summary
In this study, the influence of surface water–groundwater interaction on the nutrient flux in a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Results indicated that denitrification within a number of ephemeral lakes is the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition.
Dongmei Han, Xianfang Song, and Matthew J. Currell
Hydrol. Earth Syst. Sci., 20, 1983–1999, https://doi.org/10.5194/hess-20-1983-2016, https://doi.org/10.5194/hess-20-1983-2016, 2016
Short summary
Short summary
We report new data for carbon and sulfur isotopes of the groundwater flow system in a coastal carbonate aquifer of northeast China. It shows how these can be used to determine the major processes controlling sulfate cycling and transport. Hopefully the study will be of broad international interest, and is expected to improve the understanding of techniques to determine impacts on groundwater quality and flow, leading to improved groundwater protection and monitoring strategies.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, and R. I. Acworth
Hydrol. Earth Syst. Sci., 20, 39–54, https://doi.org/10.5194/hess-20-39-2016, https://doi.org/10.5194/hess-20-39-2016, 2016
Short summary
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
M. J. Hendry, E. Schmeling, L. I. Wassenaar, S. L. Barbour, and D. Pratt
Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, https://doi.org/10.5194/hess-19-4427-2015, 2015
Short summary
Short summary
Improvements and limitations to the measurement δ2H and δ18O of pore waters in geologic core samples using laser spectrometry are presented. These included the use of a δ2H spike to assess the extent of drill fluid contamination and the effect of storage time and type of sample bag on pore water values.
M. Beyer, R. van der Raaij, U. Morgenstern, and B. Jackson
Hydrol. Earth Syst. Sci., 19, 2775–2789, https://doi.org/10.5194/hess-19-2775-2015, https://doi.org/10.5194/hess-19-2775-2015, 2015
Short summary
Short summary
We assess the potential of Halon-1301 as a new groundwater age tracer, which had not been assessed in detail. We determine Halon-1301 and infer age in 17 New Zealand groundwater samples and various modern waters. Halon-1301 reliably inferred age in 71% of the sites within 1 SD of the ages inferred from tritium and SF6. The remaining (anoxic) waters show reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
A. Armandine Les Landes, L. Aquilina, P. Davy, V. Vergnaud-Ayraud, and C. Le Carlier
Hydrol. Earth Syst. Sci., 19, 1413–1426, https://doi.org/10.5194/hess-19-1413-2015, https://doi.org/10.5194/hess-19-1413-2015, 2015
Short summary
Short summary
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin of the saline component in the fluids on the regional scale. High chloride concentrations are attributed to three past marine transgressions. The relationship between chloride concentration and transgression age provides constraints for the timescales of fluid circulation. This time frame is useful information for developing conceptual models of the paleo-functioning of Armorican aquifers.
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Hydrol. Earth Syst. Sci., 19, 1107–1123, https://doi.org/10.5194/hess-19-1107-2015, https://doi.org/10.5194/hess-19-1107-2015, 2015
Short summary
Short summary
This paper examines modern and historical groundwater recharge rates to determine the impacts of reforestation in south-eastern Australia. This study shows that over both the long and short term, groundwater recharge in the study area occurs predominantly in the lower catchment areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations, especially when looking to conserve water for downstream users in low rainfall regions.
F. Liu, X. Song, L. Yang, Y. Zhang, D. Han, Y. Ma, and H. Bu
Hydrol. Earth Syst. Sci., 19, 551–565, https://doi.org/10.5194/hess-19-551-2015, https://doi.org/10.5194/hess-19-551-2015, 2015
Short summary
Short summary
Due to intensive groundwater exploitation in energy base, significant changes in groundwater system will take place. This research identified the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activity, enhancing the knowledge of lake basins in groundwater discharge area and providing valuable groundwater information for decision makers to formulate sustainable groundwater management strategies for other similar lake basins in arid regions.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
C. E. Bon, A. S. Reeve, L. Slater, and X. Comas
Hydrol. Earth Syst. Sci., 18, 953–965, https://doi.org/10.5194/hess-18-953-2014, https://doi.org/10.5194/hess-18-953-2014, 2014
U. Lauber, W. Ufrecht, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 435–445, https://doi.org/10.5194/hess-18-435-2014, https://doi.org/10.5194/hess-18-435-2014, 2014
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi
Hydrol. Earth Syst. Sci., 17, 2917–2928, https://doi.org/10.5194/hess-17-2917-2013, https://doi.org/10.5194/hess-17-2917-2013, 2013
X. Chen, W. Dong, G. Ou, Z. Wang, and C. Liu
Hydrol. Earth Syst. Sci., 17, 2569–2579, https://doi.org/10.5194/hess-17-2569-2013, https://doi.org/10.5194/hess-17-2569-2013, 2013
Cited articles
Acworth, R. I., Timms, W. A., Kelly, B. F. J., McGeeney, D. E., Ralph, T. J., Larkin, Z. T., and Rau, G. C.: Late Cenozoic paleovalley fill sequence from the Southern Liverpool Plains, New South Wales – implications for groundwater resource evaluation, Aus. J. Earth. Sci., 62, 657–680, 2015.
Airey, P. L., Calf, G. E., Campbell, B. L., Hartley, P. E., Roman, D., and Habermehl, M. A.: Aspects of the isotope hydrology of the Great Artesian Basin, Australia, International Symposium on Isotope Hydrology, Germany, 1978.
Amiri, V., Nakhaei, M., Lak, R., and Kholghi, M.: Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran, Environ. Sci. Poll. Res., 23, 16738–16760, 2016.
Anderson, M. P. and Woessner, W. W.: Applied Groundwater Modelling: Simulation of Flow and Advective Transport, Academic Press, ISBN-10: 0-12-059485-4, London, 1992.
Andrews, J. N. and Fontes, J.-C.: Comment on “Chlorine 36 dating of very old groundwater, 3, Further results on the Great Artesian Basin, Australia” by T. Torgersen et al., Water Resour. Res., 296, 1871–1874, 1993.
Appelo, C. J. and Postma, D. (Eds.): Geochemistry, Groundwater and Pollution, 2nd Edition, Balkema, Rotterdam, https://doi.org/10.1201/9781439833544, 2005.
Ball, J. W. and Nordstrom, D. K.: User's manual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters, USGS Numbered Series Report, 91–183, 1991.
Barrett, C.: Upper Namoi groundwater source – status report 2011, NSW Department of Primary Industries, Office of Water, Sydney, 2012.
Barnett, B., Townley, L. R., Post, V., Evans, R. E., Hunt, R. J., Peeters, L., Richardson, S., Werner, A. D., Knapton, A., and Boronkay, A.: Australian groundwater modelling guidelines, Waterlines report, National Water Commission, Canberra, 2012.
Bentley, H. W., Phillips, F. M., Davis, S. N., Habermehl, M. A., Airey, P. L., Calf, G. E., Elmore, D., Gove, H. E., and Torgersen, T.: Chlorine 36 dating of very old groundwater. 1. The Great Artesian Basin, Australia, Water Resour. Res. 22, 1991–2001, 1986.
Beven, K.: Environmental Modelling: An Uncertain Future?, Routledge, ISBN-13: 978-0415457590, ISBN-10: 0415457599, Oxon, 2009.
Calf, G. E.: An investigation of recharge to the Namoi Valley aquifers using environmental isotopes, Aust. J. Soil Res., 16, 197–207, 1978.
Cartwright, I., Weaver, T., Cendón, D. I., and Swane, I.: Environmental isotopes as indicators of inter-aquifer mixing, Wimmera region, Murray Basin, Southeast Australia, Chem. Geol., 277, 214–226, 2010.
Cartwright, I., Fifield, L. K., and Morgenstern, U.: Using 3H and 14C to constrain the degree of closed-system dissolution of calcite in groundwater, Appl. Geochem., 32, 118–128, 2013.
Cendón, D. I., Larsen, J. R., Jones, B. G., Nanson, G. C., Rickleman, D., Hankin, S. I., Pyeyo, J. J., and Maroulis, J.: Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia, J. Hydrol., 392, 150–163, 2010.
Cendón, D. I., Hankin, S. I., Williams, J. P., van der Ley, M., Peterson, M., Hughes, C. E., Meredith, K., Graham, I. T., Hollins, S. E., Levchenko, V., and Chisan, R.: Groundwater residence time in a dissected and weathered sandstone plateau: Kulnura-Mangrove Mountain aquifer, NSW, Australia, Aus. J. Earth Sci., 61, 475–499, 2014.
Chen, Z., Nie, Z., Zhang, G., Wan, L., and Shen, J.: Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China, Hydrogeol. J., 14, 1635–1651, 2006.
Clark, I. D. and Fritz, P. (Eds.): Age Dating Old Groundwater, Environmental Isotopes in Hydrogeology, CRC Press, USA, 1997.
Costelloe, J. F., Irvine, E. C., Weestern, A. W., and Tyler, M.: Identifying fluvial recharge and artesian upwards leakage contributions to arid zone shallow, unconfined groundwater, Chem. Geol., 326–327, 189–200, 2012.
CSIRO: Water availability in the Namoi, A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project, CSIRO, Australia, 154 pp., 2007.
Currell, M. J., Werner, A. D., McGrath, C., Webb, J. A., and Berkman, M.: Problems with the application of hydrogeological science to regulation of Australian mining projects: Carmichael Mine and Doongmabulla Springs, J. Hydrol., 548, 674–682, 2017.
Dawes, W. R., Gilfedder, M., Walker, G. R., and Evans, W. R.: Biophysical modelling of catchment-scale surface water and groundwater response to land-use change, Math. Comp. Sim., 64, 3–12, 2004.
DPI Water: (Department of Primary Industries (DPI) Water): NSW Government, Namoi Alluvium Water Resource Plan (GW14), Status and Issues Paper, available at: http://www.water.nsw.gov.au/__data/assets/pdf_file/0020/701732/Status-and-Issues-Paper-Namoi-GW-WRP.pdf, last access: 6 June 2017.
Duvert, C., Stewart, M. K., Cendón, D. I., and Raiber, M.: Time series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream, Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016, 2016.
Edmunds, W. M.: Geochemistry's vital contribution to solving water resource problems, Appl. Geochem., 24, 1058–1073, 2009.
Fink, D., Hotchkis, M., Hua, Q., Jacobsen, G., Smith, A. M., Zoppi, U., Child, D., Mifsud, C., van der Gaast, H., Williams, A., and Williams, M.: The ANTARES AMS facility at ANSTO, Nucl. Instrum. Meth. B, 223–224, 109–115, 2004.
Gardner, W. P., Harrington, G. A., and Smerdon, B. D.: Using excess 4He to quantify variability in aquitard leakage, J. Hydrol., 468–469, 63–75, 2012.
Giambastiani, B. M. S., McCallum, A. M., Andersen, M. S., Kelly, B. F. J., and Acworth, R. I.: Understanding groundwater processes by representing aquifer heterogeneity in the Maules Creek Catchment, Namoi Valley (New South Wales, Australia), Hydrogeol. J., 20, 1027–1044, 2012.
Golder Associates Santos Gunnedah Basin CSG Project: Groundwater impact study – Kahlua pilot test, Report No. 107626100-005-Rev1, Golder Associates, Australia, 2010.
Herczeg, A. L., Torgersen, T., Chivas, A. R., and Havermehl, M. A.: Geochemistry of ground waters from the Great Artesian Basin, Australia, J. Hydrol., 126, 225–245, 1991.
Hocking, M. and Kelly, B. F. J.: Groundwater recharge and time lag measurement through Vertosols using impulse response functions, J. Hydrol., 535, 22–35, 2016.
Jasechko, S.: Partitioning young and old groundwater with geochemical tracers, Chem. Geol., 427, 35–42, 2016.
Kelly, B. F. J., Merrick, N., Dent, B., Milne-Home, W., and Yates, D.: Groundwater Knowledge and Gaps in the Namoi Catchment Management Area, Cotton Catchment Communities CRC, University of Technology, Sydney – National Centre for Groundwater Management Report, NCGM 2007/1, 70 pp., 2007.
Kelly, B. F. J., Timms, W., Ralph, T. J., Giambastiani, B. M. S., Communian, A., McCallum, A. M., Andersen, M. S., Blakers, R. S., Acworth, R. I., and Baker, A.: A reassessment of the Lower Namoi Catchment aquifer architecture and hydraulic connectivity with reference to climate drivers, Aus. J. Earth Sci., 61, 501–511, 2014.
Lower Namoi Groundwater: NSW Government Department of Water and Energy, DWE_08_011, available at: http://www.water.nsw.gov.au/water-management/water-sharing/plans_commenced/water-source/upper-lower-namoi-gw (last access: 20 September 2017), 2008.
Love, A. J., Herczeg, A. L., Sampson, L., Cresswell, R. G., and Fifield, L. K.: Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia, Water Resour. Res., 36, 1561–1574, 2000.
Mahara, Y., Habermehl, M. A., Miyakawa, K., Shimada, J., and Mizuochi, Y.: Can the 4He clock be calibrated by 36Cl for groundwater dating?, Nucl. Instrum. Meth. B, 259, 536–546, 2007.
Mahara, Y., Habermahl, M. A., Hasegawa, T., Nakata, K., Ransley, T. R., Hatano, T., Mizuochi, Y., Kobayashi, H., Nimomiya, A., Senior, B. R., Yasuda, H., and Obta, T.: Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia, Earth Planet. Sci. Lett., 287, 43–56, 2009.
Martinez, J. L., Raiber, M., and Cendón, D. I.: Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the upper Condamine River catchment, Queensland, Australia, Sci. Tot. Environ., 574, 1–18, 2017.
Mawhinney, W.: Namoi Water Quality Project 2002–2007 – Final report, NSW Office of Water, Sydney, 39 pp., available at: http://pandora.nla.gov.au/pan/126486/20110413-1101/namoiwater.pdf (last access: 20 September 2017), 2011.
McLean, W. A.: Hydrogeochemical evolution and variability in a stressed alluvial aquifer system: Lower Namoi River catchment, NSW, PhD thesis, University of New South Wales, Sydney (unpublished), 2003.
Merrick, N. P.: Optimisation Techniques for Groundwater Management, PhD Thesis, University of Technology, Sydney (unpublished), 551 pp., 2000.
Middlemis, H., Merrick, N. P., and Ross, J. B.: Groundwater Flow Modelling Guideline, Aquaterra Consulting Pty Ltd, Consultancy Report, Perth, November 2000.
Mook, W. G. and van der Plicht, J.: Reporting 14C activities and concentrations, Radiocarbon, 41, 227–239, 1999.
Moya, C. E., Raiber, M., Taulis, M., and Cox, M. E.: Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga Basins, Great Artesian Basin, Australia, J. Hydrol., 539, 304–318, 2016.
NSW Pinneena Groundwater Database: NSW Government DPI Water, available at: http://allwaterdata.water.nsw.gov.au/water.stm, last access: 19 May 2017.
Parkhurst, D. and Appelo, C.: User's guide to PHREEQC – a computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations, USGS Water Resources Investigations Report, No. 994259, 1999.
Parkhurst, D. L. and Charlton, S. R.: NetpathXL – An Excel interface to the program NETPATH, USGS Techniques and Methods, 6-A26, 2008.
Phillips, F. M.: Chlorine-36, in: Environmental Tracers in Subsurface Hydrology, edited by: Cook, P. and Herczeg, A. L., 299–348, 2000.
Plummer, L. N. and Glynn, P. D.: Radiocarbon dating in groundwater systems, in: Isotope methods for dating old groundwater, Vienna, International Atomic Energy Agency, 33–89, STI/PUB/1587, 2013.
Powell, J. and Scott, F.: A representative irrigation farming system in the Lower Namoi Valley of NSW: an economic analysis, Economic Research Report No. 46, Industry and Investment NSW, 63 pp., 2011.
Puls, R. W. and Barcelona, M. J.: Low-flow (minimal drawdown) groundwater sampling procedures, EPA/540/S-95/504, 10 pp., 1996.
Radke, B., Ferguson, J., Cresswell, R. G., Ransley, T. R., and Habermehl, M. A.: Hydrochemistry ad implied hydrodynamics of the Cadna-owie-Hooray Aquifer Great Artesian Basin, Bureau of Rural Sciences, Canberra, 2000.
Raiber, M., Webb, J. A., Cendón, D. I., White, P. A., and Jacobsen, G. E.: Environmental isotopes meet 3D geological modelling: Conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia, J. Hydrol., 527, 262–280, 2015.
Rawling, G. C. and Newton, B. T.: Quantity and location of groundwater recharge in the Sacramento Mountains, south-central New Mexico (USA), and their relation to the adjacent Roswell Artesian Basin, Hydrogeol. J., 24, 757–786, 2016.
Reilly, T. E. and Harbaugh, A. W.: Guidelines for Evaluating Ground-Water Flow Models, USGS Scientific Investigations Report 2004-5038, available at: https://pubs.usgs.gov/sir/2004/5038/PDF.htm (last access: 10 October 2017), 2004.
Robertson, W. D. and Cherry, J. A.: Tritium as an indicator of recharge and dispersion in a groundwater system in Central Ontario, Water Resour. Res., 25, 1097–1109, 1989.
Salameh, E. and Tarawneh, A.: Assessing the imapcts of uncontrolled artesian flows on the management of groundwater resources in the Jordan Valley, Environ. Earth Sci., 76, 291, https://doi.org/10/1007/s12665-017-6610-0, 2017.
Scanlon, B. R., Healy, R. W., and Cook, P. G.: Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10, 18–39, 2002.
Schilling, K. E., Jacobsen, P. J., Libra, R. D., Gannon, J. M., Langel, R. J., and Peate, D. W.: Estimating groundwater age in the Cambrian-Ordovician aquifer in Iowa: implications for biofuel production and other water uses, Environ. Earth Sci., 76, https://doi.org/10/1007/s12665-016-6321-y, 2017.
Sharma, P., Kuhik, P. W., Fehn, U., Gove, H. E., Nishiizumi, K., and Elmore, D.: Development of 36Cl standard for AMS, Nucl. Instr. Meth. B., 52, 410–415, 1990.
Short, M. A., de Caritat, P., and McPhail, D. C.: Continental-scale variation in chloride/bromide ratios of wet deposition, Sci. Tot. Environ., 574, 1533–1543, 2017.
Stone, J. O., Allan, G. L., Fifield, L. K., and Cresswell, R. G.: Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Ac., 60, 679–692, 1996.
Smithson, A.: Lower Namoi Groundwater Source: Groundwater Management Area 001, Groundwater Status Report 2008, NSW Department of Water and Energy, Sydney, 2009.
Tadros, N. Z.: The Gunnedah Basin, New South Wales, Vol. 12, Department of Mineral Resources, Coal and Petroleum Geology Branch, Sydney, 1993.
Tadros, C. V., Hughes, C. E., Crawford, J., Hollins, S. E., and Chisari, R.: Tritium in Australian precipitation: A 50 year record, J. Hydrol., 513, 262–273, 2014.
Tosaki, Y., Tase, N., Massmann, G., Nagashima, Y., Seki, R., Takahashi, T., Sasa, K., Sueki, K., Matsuhiro, T., Miura, T., and Bessho, K.: Application of 36Cl as a dating tool for modern groundwater, Nucl. Instrum. Meth. B, 259, 479–485, 2007.
Wilcken, K. M., Fink, D., Hotchkis, M. A. C., Garton, D., Button, D., Mann, M., Kitchen, R., Hauser, T., and O'Connor, A.: Accelerator Mass Spectrometry on SIRIUS: New 6 MV spectrometer at ANSTO, Nucl. Instrum. Meth. B, 406, 278–282, https://doi.org/10.1016/j.nimb.2017.01.003, 2017.
Williams, R. M., Merrick, N. P., and Ross, J. B.: Natural and induced recharge in the Lower Namoi Valley, New South Wales, in: Groundwater Recharge, edited by: Sharma, M. L., Proceedings of the Symposium on Groundwater Recharge, 239–253, 1989.
Zhang, L., Walker, G. R., and Dawes, W. R.: Water balance modelling: concepts and applications, in: Regional Water and Soil Assessment for Managing Sustainable Agriculture in China and Australia, edited by: McVicar, T. R., Rui, L., Walker, J., Fitzpatrick, R. W., and Changming, L., ACIAR Monograph No. 84, 31–47, 2002.
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
This study uses a multi-tracer geochemical approach to determine the extent of artesian...