Articles | Volume 21, issue 10
https://doi.org/10.5194/hess-21-4989-2017
https://doi.org/10.5194/hess-21-4989-2017
Research article
 | 
06 Oct 2017
Research article |  | 06 Oct 2017

Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014

Myoung-Jin Um, Yeonjoo Kim, Daeryong Park, and Jeongbin Kim

Related authors

Projected effects of vegetation feedback on drought characteristics of West Africa using a coupled regional land–vegetation–climate model
Muhammad Shafqat Mehboob, Yeonjoo Kim, Jaehyeong Lee, Myoung-Jin Um, Amir Erfanian, and Guiling Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-319,https://doi.org/10.5194/hess-2019-319, 2019
Manuscript not accepted for further review

Related subject area

Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022,https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Integrating process-related information into an artificial neural network for root-zone soil moisture prediction
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022,https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Coherence of global hydroclimate classification systems
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021,https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Design flood estimation for global river networks based on machine learning models
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021,https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021,https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary

Cited articles

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964.
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013.
Dai, A.: Drought under global warming: a review, Wiley Interdisciplinary Reviews: Climate Change, 2, 45–65, 2011a.
Dai, A.: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008, J. Geophys. Res., 116, D12115, https://doi.org/10.1029/2010JD015541, 2011b.
Dai, A. and Zhao T.: Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes, Clim. Change, published online, 1–15, https://doi.org/10.1007/s10584-016-1705-2, 2016.
Download
Short summary
This study aims to understand how different reference periods (i.e., calibration periods) of climate data for estimating the drought index influence regional drought assessments. Specifically, we investigate the influence of different reference periods on historical drought characteristics such as trends, frequency, intensity and spatial extents using the Standard Precipitation Evapotranspiration Index (SPEI) estimated from the two widely used global datasets.