Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3483-2017
https://doi.org/10.5194/hess-21-3483-2017
Research article
 | 
12 Jul 2017
Research article |  | 12 Jul 2017

Simulating cold-region hydrology in an intensively drained agricultural watershed in Manitoba, Canada, using the Cold Regions Hydrological Model

Marcos R. C. Cordeiro, Henry F. Wilson, Jason Vanrobaeys, John W. Pomeroy, Xing Fang, and The Red-Assiniboine Project Biophysical Modelling Team

Related authors

Deriving a dataset for agriculturally relevant soils from the Soil Landscapes of Canada (SLC) database for use in Soil and Water Assessment Tool (SWAT) simulations
Marcos R. C. Cordeiro, Glenn Lelyk, Roland Kröbel, Getahun Legesse, Monireh Faramarzi, Mohammad Badrul Masud, and Tim McAllister
Earth Syst. Sci. Data, 10, 1673–1686, https://doi.org/10.5194/essd-10-1673-2018,https://doi.org/10.5194/essd-10-1673-2018, 2018
Short summary
Long-term weather, hydrometric, and water chemistry datasets in high-temporal resolution at the La Salle River watershed in Manitoba, Canada
Marcos R. C. Cordeiro, Jason A. Vanrobaeys, and Henry F. Wilson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-57,https://doi.org/10.5194/essd-2017-57, 2017
Preprint withdrawn
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025,https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024,https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary

Cited articles

ASCE: Hydrology Handbook, 2nd Edn., ASCE, 1996.
Benoy, G. A., Jenkinson, R. W., Robertson, D. M., and Saad, D. A.: Nutrient delivery to Lake Winnipeg from the Red–Assiniboine River Basin – A binational application of the SPARROW model, Can. Water Resour. J., 41, 429–447, https://doi.org/10.1080/07011784.2016.1178601, 2016.
Beven, K. J.: Rainfall-Runoff Modelling: The Primer, Wiley, West Sussex, UK, 2011.
Blanke, A., Rozelle, S., Lohmar, B., Wang, J., and Huang, J.: Water saving technology and saving water in China, Agricult. Water Manage., 87, 139–150, https://doi.org/10.1016/j.agwat.2006.06.025, 2007.
Brooks, R. H. and Corey, A. T.: Properties of porous media affecting fluid flow, J. Irr. Drain. Div.-ASCE, 92, 61–88, 1966.
Download
Short summary
The physically based Cold Regions Hydrological Model (CRHM) was utilized to simulate runoff in the La Salle River, located in the northern Great Plains with flat topography, clay soils, and surface drainage. Snow sublimation and transport as well as infiltration to frozen soils were identified as critical in defining snowmelt. Challenges in representing infiltration into frozen but dry clay soils and flow routing under both dry and flooded conditions indicate the need for further study.