Articles | Volume 21, issue 5
Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017
https://doi.org/10.5194/hess-21-2509-2017
Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017
https://doi.org/10.5194/hess-21-2509-2017
Research article
16 May 2017
Research article | 16 May 2017

Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction

Roland Baatz et al.

Related authors

COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022,https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018,https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
Hanna Post, Harrie-Jan Hendricks Franssen, Xujun Han, Roland Baatz, Carsten Montzka, Marius Schmidt, and Harry Vereecken
Biogeosciences, 15, 187–208, https://doi.org/10.5194/bg-15-187-2018,https://doi.org/10.5194/bg-15-187-2018, 2018
Short summary
Investigating temporal field sampling strategies for site-specific calibration of three soil moisture–neutron intensity parameterisation methods
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015,https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Stochastic approaches
Detecting hydrological connectivity using causal inference from time series: synthetic and real karstic case studies
Damien Delforge, Olivier de Viron, Marnik Vanclooster, Michel Van Camp, and Arnaud Watlet
Hydrol. Earth Syst. Sci., 26, 2181–2199, https://doi.org/10.5194/hess-26-2181-2022,https://doi.org/10.5194/hess-26-2181-2022, 2022
Short summary
Covariance resampling for particle filter – state and parameter estimation for soil hydrology
Daniel Berg, Hannes H. Bauser, and Kurt Roth
Hydrol. Earth Syst. Sci., 23, 1163–1178, https://doi.org/10.5194/hess-23-1163-2019,https://doi.org/10.5194/hess-23-1163-2019, 2019
Short summary
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017,https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017,https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Kalman filters for assimilating near-surface observations into the Richards equation – Part 1: Retrieving state profiles with linear and nonlinear numerical schemes
G. B. Chirico, H. Medina, and N. Romano
Hydrol. Earth Syst. Sci., 18, 2503–2520, https://doi.org/10.5194/hess-18-2503-2014,https://doi.org/10.5194/hess-18-2503-2014, 2014

Cited articles

Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model, Water Resour. Res., 50, 2636–2656, https://doi.org/10.1002/2013wr014258, 2014.
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2, 2001.
Avery, W. A., Finkenbiner, C., Franz, T. E., Wang, T. J., Nguy-Robertson, A. L., Suyker, A., Arkebauer, T., and Munoz-Arriola, F.: Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content, Hydrol. Earth Syst. Sci., 20, 3859–3872, https://doi.org/10.5194/hess-20-3859-2016, 2016.
Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Qu, W., Montzka, C., and Vereecken, H.: Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods, J. Hydrol., 516, 231–244, https://doi.org/10.1016/j.jhydrol.2014.02.026, 2014.
Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030–2046, https://doi.org/10.1002/2014WR016443, 2015.
Download
Short summary
Soil moisture is a major variable that affects regional climate, weather and hydrologic processes on the Earth's surface. In this study, real-world data of a network of cosmic-ray sensors were assimilated into a regional land surface model to improve model states and soil hydraulic parameters. The results show the potential of these networks for improving model states and parameters. It is suggested to widen the number of observed variables and to increase the number of estimated parameters.