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Abstract. In situ soil moisture sensors provide highly ac-
curate but very local soil moisture measurements, while re-
motely sensed soil moisture is strongly affected by vegetation
and surface roughness. In contrast, cosmic-ray neutron sen-
sors (CRNSs) allow highly accurate soil moisture estimation
on the field scale which could be valuable to improve land
surface model predictions. In this study, the potential of a
network of CRNSs installed in the 2354 km2 Rur catchment
(Germany) for estimating soil hydraulic parameters and im-
proving soil moisture states was tested. Data measured by the
CRNSs were assimilated with the local ensemble transform
Kalman filter in the Community Land Model version 4.5.
Data of four, eight and nine CRNSs were assimilated for
the years 2011 and 2012 (with and without soil hydraulic
parameter estimation), followed by a verification year 2013
without data assimilation. This was done using (i) a regional
high-resolution soil map, (ii) the FAO soil map and (iii) an
erroneous, biased soil map as input information for the sim-
ulations. For the regional soil map, soil moisture characteri-
zation was only improved in the assimilation period but not
in the verification period. For the FAO soil map and the bi-
ased soil map, soil moisture predictions improved strongly
to a root mean square error of 0.03 cm3 cm−3 for the as-
similation period and 0.05 cm3 cm−3 for the evaluation pe-
riod. Improvements were limited by the measurement error
of CRNSs (0.03 cm3 cm−3). The positive results obtained
with data assimilation of nine CRNSs were confirmed by the
jackknife experiments with four and eight CRNSs used for
assimilation. The results demonstrate that assimilated data
of a CRNS network can improve the characterization of soil

moisture content on the catchment scale by updating spatially
distributed soil hydraulic parameters of a land surface model.

1 Introduction

Soil water content (SWC) is a key variable of land sur-
face hydrology and has a strong control on the partition-
ing of net radiation between latent and sensible heat flux
(Brutsaert, 2005). Knowledge of SWC is relevant for the as-
sessment of plant water stress and agricultural production,
as well as runoff generation as a response to precipitation
events (Vereecken et al., 2008; Robinson et al., 2008). In at-
mospheric circulation models, SWC is important as a lower
boundary condition, while it is calculated as a state variable
in land surface models. Coupling of atmospheric circulation
models and land surface models allows for the quantification
of the role of soil moisture on atmospheric processes such
as soil moisture–precipitation feedbacks (Koster et al., 2004;
Eltahir, 1998) and summer climate variability and drought
(Seneviratne et al., 2006; Oglesby and Erickson, 1989). It is
therefore important to improve the modelling and prediction
of SWC. Data assimilation of soil moisture provides a way
to improve imperfect land surface model predictions. Here,
soil moisture measurements are used to update model pre-
dictions by optimally considering the uncertainty of model
initial conditions, model parameters and model forcings.
However, there is a lack of high-quality soil moisture data
(Vereecken et al., 2016). Soil moisture measured by space-
borne remote sensing technologies provides information over
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large areas but is strongly affected by vegetation and surface
roughness (e.g. Temimi et al., 2014). Therefore, in this pa-
per an alternative source for soil moisture information is ex-
plored which can measure soil moisture more accurately un-
der dense vegetation (Bogena et al., 2013). Cosmic-ray neu-
tron sensors (CRNSs) measure fast neutron intensity on an
intermediate scale of∼ 15 ha (Kohli et al., 2015; Zreda et al.,
2008), which is the desired application scale of land surface
models (Ajami et al., 2014; Chen et al., 2007; Shrestha et al.,
2014). Fast neutrons originate from collisions of secondary
cosmic particles from outer space with terrestrial atoms. Fast
neutrons in turn are moderated most effectively by hydrogen
because the mass of a neutron is similar to that of a nucleus
of the hydrogen atom. Therefore, the corresponding fast neu-
tron intensity measured by CRNSs strongly depends on the
amount of hydrogen within the CRNS footprint, allowing for
a continuous non-invasive soil moisture estimate on the field
scale. The spatial extent of this measurement is desirable as
it matches with the desired grid cell size of a high-resolution
land surface model (Crow et al., 2012), and small scale het-
erogeneities are averaged over a larger area (Franz et al.,
2013; Kohli et al., 2015). Vertical measurement depth ranges
from a maximum of ∼ 70 cm under completely dry condi-
tions and decreases to roughly∼ 12 cm under wet conditions
(e.g. 40 vol. % soil moisture) (Kohli et al., 2015; Franz et al.,
2012). Worldwide several CRNS networks exist, such as the
North American COSMOS network (Zreda et al., 2012), the
German CRNS network (Baatz et al., 2014) installed in the
context of the TERENO infrastructure measure (Zacharias et
al., 2011), the Australian COSMoZ network (Hawdon et al.,
2014) and the British COSMOS-UK (Evans et al., 2016).

In this work, fast neutron intensity data measured by
CRNSs are assimilated in a land surface model, to evalu-
ate the impact those data can have on improving soil mois-
ture characterization and land surface model predictions. The
ensemble Kalman filtering (EnKF) is one of the most com-
monly applied data assimilation methods (Evensen, 1994;
Burgers et al., 1998). The EnKF is much less CPU-intensive
compared to alternative methods such as the particle filter
(e.g. Montzka et al., 2011), because for high-dimensional
problems the EnKF requires a much smaller ensemble size to
achieve reasonably good predictions. The ensemble Kalman
filter (Reichle et al., 2002a; Dunne and Entekhabi, 2005;
Crow, 2003; De Lannoy and Reichle, 2016), variants such
as the extended Kalman filter (Draper et al., 2009; Reichle
et al., 2002b) and the local ensemble transform Kalman fil-
ter (Han et al., 2013, 2015) were applied for updating soil
moisture states in land surface models. Reichle et al. (2002a)
performed a synthetic experiment using L-band microwave
observations of the Southern Great Plains Hydrology Exper-
iment (Jackson et al., 1999) to analyse the effect of ensemble
size and forecast errors. Dunne and Entekhabi (2005) showed
that an ensemble Kalman smoother approach, where data
from multiple time steps were assimilated to update current
and past states, can yield a reduced prediction error compared

to a pure filtering approach. More recently, state updates with
the EnKF were tested for the Soil Moisture Ocean Salin-
ity (SMOS, Kerr et al., 2012) mission. De Lannoy and Re-
ichle (2016) assimilated SMOS temperature brightness and
soil moisture retrievals into a land surface model with large
improvements in surface soil moisture. However, localized
error patterns were not captured well enough, and locally op-
timized EnKF error parameters would improve prediction re-
sults further.

More recent work addressed joint updating of model states
and parameters in hydrologic and land surface models with
data assimilation methods. Joint state–parameter estimation
with EnKF is possible by an augmented state vector ap-
proach (Chen and Zhang, 2006), a dual approach (Morad-
khani et al., 2005) or an approach with an additional exter-
nal optimization loop (Vrugt et al., 2005). In the augmented
state vector approach, parameters are included in the state
vector and are updated via cross-covariances between states
and parameters. The cross-covariances are estimated from
the ensemble. In the dual approach, first parameters are up-
dated by data assimilation, and the assimilation step is re-
peated with the updated parameters to also update the states
by data assimilation. In the approach with an external opti-
mization loop the parameters are not updated by EnKF, but
in an external optimization loop. Pauwels et al. (2009) were
one of the first to optimize soil hydraulic parameters of a
land surface model by data assimilation, assimilating syn-
thetic aperture radar data. Lee (2014) used synthetic aperture
radar soil moisture data to estimate soil hydraulic properties
at the Tibetan plateau using the EnKF and a soil–vegetation–
atmosphere transfer model. Bateni and Entekhabi (2012) as-
similated land surface temperature with an ensemble Kalman
smoother and achieved a better estimate of the partitioning
of energy between sensible and latent heat fluxes. Han et
al. (2014) updated soil hydraulic parameters of the Com-
munity Land Model version 4.5 (CLM) by assimilation of
synthetic brightness temperature data with the local ensem-
ble transform Kalman filter (LETKF) (Hunt et al., 2007) and
showed the potential of this approach for improving land
surface states and fluxes like evapotranspiration. Shi et al.
(2014) used the ensemble Kalman filter for a synthetic mul-
tivariate data assimilation problem with a land surface model
and then applied it to real data (Shi et al., 2015). Both cases
illustrate that parameters from different compartments can be
updated successfully by multivariate data assimilation. Kurtz
et al. (2016) developed a particular CPU-efficient data assim-
ilation framework for the coupled land surface–subsurface
model TerrSysMP (Shrestha et al., 2014). They successfully
updated 2× 107 states and parameters in a synthetic exper-
iment. Whereas these studies were made with land surface
models, in soil hydrological applications recently data as-
similation was also used to estimate soil hydraulic param-
eters. Early work was by Wu and Margulis (2011, 2013) in
the context of real-time control of wastewater reuse in irriga-
tion and also showed the potential of EnKF in soil hydrol-
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ogy. Montzka et al. (2011, 2013) explored the role of the
particle filter for handling non-Gaussianity in soil hydrology
data assimilation. They showed that the nonlinear character
of the soil moisture retention characteristic is critical for joint
state–parameter estimation in data assimilation systems and
showed that the particle filter is an interesting alternative for
soil hydraulic parameter estimation for 1-D problems. Erdal
et al. (2014) investigated the role of bias in the conceptual
soil model and explored bias-aware EnKF as a way to deal
with it. They argued that the exact location of soil layers is
often not known and that this can severely deteriorate the
performance of EnKF. Song et al. (2014) worked on a mod-
ified iterative EnKF-based filter to handle the non-linearity
and non-Gaussianity of data assimilation for the vadose zone.
They proposed a modified procedure which avoids the high
CPU need of a fully iterative method, but which still gives
stable results. Erdal et al. (2015) also focussed on handling
of strong non-Gaussianity of the state variable in EnKF under
very dry conditions. They showed that classical EnKF fails
under such conditions and proposed two alternative strate-
gies, both involving transformation of state variables, which
also performed favourably under very dry conditions with
strongly skewed pressure distributions. All these studies on
joint state–parameter estimation showed in general that es-
timation of soil hydraulic or land surface parameters im-
proves model predictions (strongly), but can be unstable for
strongly non-Gaussian distributions and nonlinear problems.
For a further literature review on data assimilation in the con-
text of hydrological and land surface models, we refer to Re-
ichle (2008) and Montzka et al. (2012).

Shuttleworth et al. (2013) developed the Cosmic Ray Soil
Moisture Interaction Code (COSMIC), which is a forward
operator to be applied for assimilating neutron intensity ob-
servations from CRNS. The COSMIC code was evaluated for
several sites (Baatz et al., 2014; Rosolem et al., 2014). The
COSMIC operator was successfully implemented in the Data
Assimilation Research Testbed (Rosolem et al., 2014) to al-
low for state updating by the ensemble adjustment Kalman
filter (Anderson, 2001). The surface soil moisture informa-
tion was propagated into greater soil depth than only the
measurement depth using COSMIC in combination with data
assimilation (Rosolem et al., 2014). The COSMIC operator
was implemented in a python interface that couples the land
surface model CLM and the LETKF for joint state–parameter
updating (Han et al., 2015). Neutron counts measured by
CRNSs have been used in data assimilation studies to up-
date model states (Han et al., 2015; Rosolem et al., 2014).
Soil hydraulic parameters were also updated by assimilation
of neutron counts in one synthetic study (Han et al., 2016),
showing its feasibility. CRNSs were also used for inverse es-
timation of soil hydraulic parameters of the HYDRUS-1D
model (Villarreyes et al., 2014).

This work further explores the value of measured neutron
intensity by CRNSs to improve modelling of terrestrial sys-

tems on the catchment scale (Simmer et al., 2015) using a
land surface model. The main novelties are as follows:

i. Data from a network of nine CRNSs were assimilated
in the CLM with an evaluation of the information gain
by this assimilation at the catchment scale. Until now,
evaluations with CRNSs were made for a single lo-
cation, but not for a complete network of CRNSs. A
very important question is whether CRNSs can also im-
prove the soil moisture characterization on the catch-
ment scale. The high variability of soil moisture at a
short distance could potentially limit the CRNS mea-
surement value and make updating of soil moisture
contents further away from the sensor meaningless.
Conversely, soil moisture, soil maps and atmospheric
forcings show spatial correlations over larger distances
(Kirkpatrick et al., 2014; Korres et al., 2015), which
suggests that CRNS measurements potentially carry im-
portant information to update soil moisture contents for
larger regions (e.g. Han et al., 2012). If it is found that
CRNS networks with a density such as that in this study
(nine stations per 2354 km2) can improve soil mois-
ture content characterization on the catchment scale,
this is of high relevance and importance for agricul-
tural applications, flood prediction and protection, and
regional weather prediction (Whan et al., 2015; Koster
et al., 2004; Seneviratne et al., 2010). The main research
question addressed in this paper is therefore whether a
CRNS network of the density as in this study can im-
prove large-scale soil moisture characterization.

ii. Soil hydraulic parameters are updated in this study to-
gether with the soil moisture states in a real-world case
study. The study in this paper also allows some evalu-
ation of the updated large-scale soil hydraulic parame-
ters.

2 Materials and methods

2.1 Site description and measurements

The model domain, the Rur catchment (2354 km2), is situ-
ated in western Germany and illustrated in Fig. 1. The alti-
tude varies between 15 m a.s.l. in the flat northern part and
690 m a.s.l. in the hilly southern part. Precipitation, evapo-
transpiration and land use follow the topography. The dom-
inant land use types are agriculture (mainly in the north),
grassland, and coniferous and deciduous forest. Annual pre-
cipitation ranges between less than 600 mm in the north
and 1200 mm in the hilly south (Montzka et al., 2008). An-
nual potential evapotranspiration varies between 500 mm in
the south and 700 mm in the north (Bogena et al., 2005).
The Rur catchment CRNS network comprises nine CRNSs
(CRS1000, HydroInnova LLC, 2009) which were installed
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Table 1. Site information on elevation (m a.s.l.), average annual precipitation (mm yr−1), CLM plant functional type (Bonan et al., 2002),
sand content (%), clay content (%) and the date of the first SWC retrieval assimilated.

Name m a.s.l. Precip. Plant functional type Sand Clay Date of first
assimilation

Aachen 232 952 Crops 22 23 13 Jan 2012
Gevenich 108 884 Crops 22 20 7 Jul 2011
Heinsberg 57 814 Crops 18 19 9 Sep 2011
Kall 504 935 C3 grass 20 22 15 Sep 2011
Merzenhausen 94 825 Crops 21 22 19 May 2011
Rollesbroich 515 1307 C3 grass 22 23 19 May 2011
RurAue 102 743 C3 grass 19 26 8 Nov 2011
Wildenrath 76 856 Broadleaf deciduous 65 12 7 May 2012

temperate tree
Wüstebach 605 1401 Needleleaf evergreen 19 23 20 Mar 2011

temperate tree

Figure 1. Map of the Rur catchment and locations of the nine
cosmic-ray neutron sensors. The hilly south of the catchment is
prone to more rainfall, lower average temperatures and less poten-
tial evapotranspiration than the north of the catchment.

in 2011 and 2012 (Baatz et al., 2014). Climate and soil tex-
ture of the CRNS sites can be found in Table 1.

The CRNSs were calibrated in the field using gravimet-
ric soil samples. At each site, 18 soil samples were taken
along 3 circles with distances of 25, 75 and 175 m from the
CRNS, and 6 samples were evenly distributed along each cir-
cle. Each sample was extracted with a 50.8× 300 mm round
HUMAX soil corer (Martin Burch AG, Switzerland). The
samples were split into 6 sub-samples with 5 cm length each
and oven dried at 105 ◦C for 48 h to measure dry soil bulk
density and soil moisture. Lattice water, hydrogen from or-
ganic and an-organic sources, was determined for each site

using a heat conductivity detector (Ray, 1954). Soil bulk
density, soil moisture, lattice water and 12 h averaged mea-
sured neutron intensity were used to determine calibration
parameters specific to each CRNS and the COSMIC opera-
tor. This represents a compromise between the measurement
noise (which follows a Poisson distribution) and the assumed
variation of environmental variables over the averaging time
window (Iwema et al., 2015).

2.2 Community Land Model and parameterization

The CLM was the land surface model of choice for simulat-
ing water and energy exchange between the land surface and
the atmosphere (Oleson et al., 2013). Some of the key pro-
cesses which are modelled by CLM are radiative transfer in
the canopy space, interception of precipitation by the vege-
tation and evaporation from intercepted water, water uptake
by vegetation and transpiration, soil evaporation, and photo-
synthesis, as well as water and energy flow in the subsurface.
SWC in CLM is influenced by precipitation, infiltration into
the soil, water uptake by vegetation, surface evaporation, and
surface and subsurface runoff. To limit the scope and com-
plexity of this study, CLM was run using satellite phenology,
e.g. prescribed leaf area index data and the biogeochemical
module turned off. The biogeochemical module allows CLM
to model the vegetation development dynamically, but it re-
quires a large spin-up of 1000 years, and little additional gain
is expected for this study from these additionally modelled
processes.

Vertical water flow in soils is modelled by the 1-D
Richards equation. Soil hydraulic parameters are determined
from sand and clay content using pedotransfer functions for
the mineral soil fraction (Clapp and Hornberger, 1978; Cosby
et al., 1984) and organic matter content for the organic soil
fraction (Lawrence and Slater, 2008).

The joint state–parameter estimation used in this study up-
dates soil texture and organic matter in CLM. Hence, param-
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eter estimates directly determine soil hydraulic properties in
CLM. The following equations describe how soil texture and
organic matter define the soil hydraulic properties in CLM
such as porosity, hydraulic conductivity, the empirical ex-
ponent B and soil matric potential. Hydraulic conductivity
(k(zi), mm s−1) at the depth z between two layers (i and
i+ 1) is a function of soil moisture (θ , m3 m−3 in layers i and
i+ 1), saturated hydraulic conductivity (ksat(zi), mm s−1),
saturated soil moisture (θsat, m3 m−3) and the empirical ex-
ponent B (Oleson et al., 2013):

k (zi)=


φiceksat (zi)

[
(θi + θi+1)(

θsat,i + θsat,i+1
) ]2Bi+3

, 1≤ i ≤Nlevsoi− 1

φiceksat (zi)

(
θi

θsat,i

)2Bi+3

, i =Nlevsoi

,

(1)

where φice is the ice impedance factor. The ice impedance
factor was implemented to simplify an increased tortuos-
ity of water flow in a partly frozen pore space. It is calcu-
lated with φice= 10−�Fice using the resistance factor �= 6
and the frozen fraction of soil porosity Fice= θice/θsat,i . Soil
hydraulic properties are calculated separately for the min-
eral (min) and organic matter (om) soil components. Total
porosity θsat,i is calculated using the fraction of organic mat-
ter (fom,i) with the following:

θsat,i =
(
1− fom,i

)
θsat,min,i + fom,iθsat,om, (2)

where the organic matter porosity is θsat,om= 0.9 and sand
content in percentage (%) determines the mineral soil poros-
ity θsat,min as follows:

θsat,min = 0.489− 0.00126×%sand. (3)

Analogous, the exponent B is calculated with

Bi =
(
1− fom,i

)
Bmin,i + fom,iBom, (4)

where Bom= 2.7 is the organic exponent and the mineral ex-
ponent Bmin,i is determined by clay content in percentage
(%) with the following:

Bmin,i = 2.91+ 0.159×%clay. (5)

Saturated hydraulic conductivity is calculated for a con-
nected and an unconnected fraction of the grid cell with the
following:

ksat (zi)=
(
1− fperc

)
ksat,uncon (zi)+ fperc,iksat,om (zi) , (6)

where fperc,i is the fraction of a grid cell where water flows
with saturated hydraulic conductivity of the organic matter
(ksat,om(zi) in mm s−1) through the organic material only, the
so-called connected flow pathway. The saturated hydraulic
conductivity of the unconnected part (ksat,uncon(zi), mm s−1)
depends on organic and saturated mineral soil hydraulic con-
ductivity:

ksat,uncon =
(
1− fperc

)(1− fom

ksat,min
+
fom− fperc

ksat,om

)−1

, (7)

where saturated hydraulic conductivity for mineral soil is cal-
culated from the grid cell sand content as follows:

ksat,min [zi]= 0.0070556× 10−0.884+0.0153×%sand. (8)

The fraction fperc is calculated with the following:

fperc =

{
0.908× (fom− 0.5)0.139, fom ≥ 0.5
0, fom < 0.5

. (9)

Soil matric potential (mm) is defined as a function of satu-
rated soil matric potential (mm) with the following:

ψi = ψsat,i

(
θi

θsat,i

)−Bi
=
[(

1− fom,i
)
ψsat,min,i

+fom,iψsat,om
]( θi

θsat,i

)−Bi
, (10)

where saturated organic matter matric potential is
ψsat,om=−10.3 mm and saturated mineral soil matric
potential is calculated from sand content as follows:

ψsat,min,i =−10.0× 101.88−0.0131×%sand (11)

2.3 Cosmic-ray forward model

SWC retrievals were calculated from neutron intensity ob-
servations with COSMIC (Shuttleworth et al., 2013) fol-
lowing calibration results and the procedure of Baatz et
al. (2014). COSMIC parameterizes neutron transport within
the soil subsurface and was calibrated against the more com-
plex Monte Carlo Neutron Particle model MCNPx (Pelowitz,
2005). COSMIC needs considerably less CPU time than the
MCNPx model. The code was tested at multiple sites for soil
moisture determination (Baatz et al., 2014; Rosolem et al.,
2014) and analysed in detail by Rosolem et al. (2014).

COSMIC assumes that a number of high-energy neutrons
enter the soil. In the soil, the number of high-energy neutrons
is reduced by interactions within the soil, leading to genera-
tion of fast neutrons in each soil layer. Before resurfacing,
the number of fast neutrons is reduced again by their inter-
action with nuclei of elements within soil (Shuttleworth et
al., 2013). The number of neutrons, NCRP, that reaches the
CRNS can be summarized in a single integral as follows:

NCRP =NCOSMIC

∞∫
0

{A(z) [αρS(z)+ ρw(z)]

exp
(
−

[
ms(z)

L1
+
mw(z)

L2

])}
· dz, (12)

where NCOSMIC is an empirical coefficient that is
CRNS-specific and needs to be estimated by calibration,
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A(z) is the integrated average attenuation of fast neutrons,
α= 0.404− 0.101× ρS is the site-specific empirical coeffi-
cient for the creation of fast neutrons by soil, ρS is the dry
soil bulk density (g cm−3), ρw is the total soil water den-
sity (g cm−3), and ms and mw are the masses of soil and
water, respectively, per area (g cm−2) L1= 162.0 g cm−2 and
L2= 129.1 g cm−2 are scattering lengths for fast neutrons in
solids and water, respectively, that were estimated using the
MCNPx code (Shuttleworth et al., 2013). The integrated av-
erage attenuation of fast neutrons A(z) can be found numer-
ically by solving

A(z)=

(
2
π

) π∫
0

/2exp
(
−1

cos(γ )

[
ms(z)

L3
+
mw(z)

L4

])
· dγ ,

(13)

where γ is the angle along a vertical line below the CRNS
detector to the element that contributes to the attenua-
tion of fast neutrons, and L3=−31.65+ 99.29× ρS and
L4= 3.16 g cm−2 are the scattering lengths for fast neutrons
in soil and water, respectively, determined using the MCNPx
code (Shuttleworth et al., 2013). The COSMIC operator is
discretized into 300 layers of 1 cm thickness up to a depth of
3 m. For each CLM grid cell in the model domain, simulated
SWC in all CLM layers is used to generate a weighted SWC
retrieval using the COSMIC code. Simulated SWC is handed
from the CLM simulation history files to the COSMIC op-
erator. Given the vertical SWC distribution of the individual
CLM grid cell, COSMIC internally calculates the contribu-
tion of each layer to the simulated neutron intensity signal at
the soil surface in COSMIC. In this study, the contribution
of each CLM soil layer was used to calculate the weighted
CLM SWC retrieval corresponding to the vertical distribu-
tion of simulated SWC in each grid cell.

Measured neutron intensity of CRNS was used to inversely
determine a CRNS SWC retrieval, as by Baatz et al. (2014)
assuming a homogeneous vertical SWC distribution. Then,
the weighted CLM SWC retrieval is used in the data assimi-
lation scheme to relate the CRNS SWC retrieval to the model
state. Alternatively, neutron flux data could be assimilated
directly within the catchment. This would require calibra-
tion data throughout the catchment, which is only feasible
using spatially distributed data sets (e.g. Avery et al., 2016).
However, high stands of biomass are a major factor for cal-
ibration in the Rur catchment (Baatz et al., 2015), and es-
timates of biomass come along with high uncertainties. To
circumvent the introduction of these additional uncertainties,
SWC retrievals are assimilated in this study. Changes in on-
site biomass were assumed to be negligible.

2.4 Data assimilation

To further expand the work of Han et al. (2016), this study
uses the LETKF (Hunt et al., 2007) to assimilate SWC re-
trievals by CRNSs into the land surface model CLM. Up-
dates were calculated either for SWC states or jointly for
SWC states and soil parameters, depending on the experi-
ment setup. For state updates only, the LETKF was used as
proposed by Hunt et al. (2007). Calculations were made for
an ensemble of model simulations which differed depend-
ing on variations in model forcings and input parameters.
The states of the different ensemble members are indicated
by xf

i where i= 1, . . . , N and N is the number of ensem-
ble members; “f” marks the model prediction or forecast be-
fore the update. The individual state vectors xf

i contain the
CLM-simulated SWC of the 10 soil layers and the vertically
weighted SWC retrieval obtained with the COSMIC opera-
tor. For each grid cell, a matrix Xf can be constructed which
contains the deviations of the simulated states with respect to
the ensemble mean xf:

Xf
=

[
xf

1− x
f, . . .,xf

N − x
f
]
. (14)

In the case of joint state–parameter updates, a state aug-
mentation approach was followed (Hendricks Franssen and
Kinzelbach, 2008; Han et al., 2014). In this case, the aug-
mented model state matrix Xf is constructed from the simu-
lated SWC of the 10 soil layers, weighted SWC, and the grid
cell’s sand, clay and organic matter content.

In order to relate the measured neutron intensity with the
simulated SWC of CLM, the observation operator H (COS-
MIC) is applied on the measured neutron intensity in order
to obtain the expected weighted SWC retrieval at each of the
observation locations for each of the stochastic realizations:

yf
i =H

(
xf
i

)
. (15)

The ensemble realizations of the modelled SWC retrievals
at the measurement locations yf

1 to yf
N with respect to the

ensemble mean yf are stored in the matrix Yf:

Yf
=

[
yf

1− y
f, . . .,yf

N − y
f
]
. (16)

The observation error correlation was reduced in space by
the factor fred using the spherical model:

fred = 1− (1.5× d/dmax)+
(

0.5×
[
d/dmax

]3)
, (17)

where d is the distance to the observation and dmax= 40 km
is the maximum observation correlation length, about half
the size of the catchment. Only SWC retrievals within the
maximum observation correlation length were used for as-
similation. This leads to a “localized” size of Yf and the ob-
servation error covariance matrix R. The intermediate covari-
ance matrix Pa (also called analysis error covariance matrix)
is calculated according to the following:
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Pa
=

[
(N − 1)I+YfTR−1Yf

]
. (18)

In addition, the mean weight vector wa is obtained as fol-
lows:

wa
= PaYfTR−1

(
y0
− yf

)
, (19)

where y0 contains the CRNS SWC retrievals at the measure-
ment locations. In the ensemble space, a perturbation ma-
trix Wa is calculated from the symmetric square root of Pa:

Wa
=
[
(N − 1)Pa]1/2. (20)

The final analysis Xa is obtained from the following:

Xa
= xf
+Xf [wa

+Wa] . (21)

A more detailed description of the LETKF can be found in
Hunt et al., (2007), and details on the implementation of
the LETKF in combination with CLM are given by Han et
al. (2015).

3 Model and experiment setup

3.1 Model setup

In this study, discretization and parameterization of the
hydrological catchment was done on the basis of high-
resolution data. The model of the Rur catchment was spa-
tially discretized by rectangular grid cells of 0.008◦ size
(∼ 750 m). The model time step was set to hourly. Land cover
was assumed to consist of vegetated land units only, and a
single plant functional type (PFT) for each grid cell was de-
fined. The plant functional types were derived from a re-
motely sensed land use map using RapidEye and ASTER
data with 15 m resolution (Waldhoff, 2012). Contents of
sand, clay and organic matter were derived from the high-
resolution regional soil map BK50 (Geologischer Dienst
Nordrhein-Westfalen, 2009). Alternative simulations were
also performed with the FAO soil map of the global Harmo-
nized World Soil Database (FAO, 2012) and with a biased
soil texture with a fixed sand content of 80 % and clay con-
tent of 10 % (S80 soil map). Average sand and clay content
are 22.5 and 21.4 % for the BK50 soil map and 39 and 22 %
for the FAO soil map, respectively. The FAO soil map and the
biased soil map represent large error with respect to the soil
properties of the BK50 soil map. The FAO soil map and S80
soil map simulations allow the evaluation of the joint state–
parameter estimation approach because, given the expected
bias, we can evaluate to what extent the soil properties are
modified by the data assimilation. This is important because
in many regions across the Earth a high-resolution soil map
is not available. Land surface models are applied for those re-
gions, for example in the context of global simulations, and

hence might be strongly affected by the error in soil proper-
ties.

Maximum saturated fraction, a surface parameter which is
used for runoff generation, was calculated from a 10 m digi-
tal elevation model (scilands GmbH, 2010). Leaf area index
data were derived from monthly-averaged Moderate Resolu-
tion Imaging Spectrometer data (MODIS). CLM was forced
with hourly atmospheric data from the COSMO_DE reanal-
ysis data set for the years 2010 to 2013 from the German
Weather Service (Deutscher Wetterdienst, DWD). The data
were downscaled from a resolution of 2.8 km× 2.8 km to the
CLM resolution using linear interpolation based on Delau-
nay triangulation. Forcing data include precipitation, incident
solar and longwave radiation, air temperature, air pressure,
wind speed, and relative humidity at the lowest atmospheric
level.

3.2 Model ensemble

Uncertainty was introduced into the regional CLM model
by perturbed soil parameters and external model forcings.
Contents of sand, clay and organic matter were perturbed
with spatially correlated noise from a uniform sampling dis-
tribution with mean zero and standard deviations 10 and
30 % (Han et al., 2015). Soil texture perturbation consid-
ers that in CLM a single set of pedotransfer functions is
assumed to be valid throughout the globe while pedotrans-
fer functions are usually specific to regions (e.g. Patil and
Singh, 2016). In other words, the perturbation of soil tex-
ture also covers the uncertainty in the pedotransfer function
itself. By perturbing texture, soil parameters are also per-
turbed through the pedotransfer functions used in CLM as
specified in Sect. 2.2. Precipitation (σ = 0.5 or 1.0; lognor-
mal distribution) and shortwave radiation (σ = 0.3; lognor-
mal distribution) were perturbed with multiplicative noise
with mean equal to 1. Longwave radiation (σ = 20 W m−2)
and air temperature (σ = 1 K) were perturbed with additive
noise. The forcing perturbations were imposed with corre-
lations in space (5 km) using a fast Fourier transform. Cor-
relation in time was introduced with an AR(1) model with
autoregressive parameter 0.33. These correlations and stan-
dard deviations were chosen based on previous data assimi-
lation experiments (Reichle et al., 2010; Kumar et al., 2012;
De Lannoy et al., 2012; Han et al., 2015). In this work,
only results for precipitation perturbation with σ = 0.5 will
be shown, as results for σ = 1.0 were similar. An ensemble
size of 95 realizations was used in the simulations. Based on
previous work (Baatz et al., 2015), the SWC retrieval uncer-
tainty for CRNS was estimated to be 0.03 cm3 cm−3 while
fluctuations in the measurement standard deviation, related
to the nonlinear relation between observed neutron intensity
and SWC, were assumed to be negligible.
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Table 2. Overview of simulation scenarios: open loop (OL-∗) with variation in the soil maps BK50, FAO and S80, data assimilation run
with state update (Stt) or joint state and parameter update (PAR) with variation in the soil map perturbation (−10 and −30), and jackknife
evaluation runs (jk8-S80-1 to 9, jk8-BK50-1 to 9 and jk4-S80-A to C).

Simulation code Update Sand content Soil perturbation

State Parameter BK50 80 % fix FAO 10 30

OL-BK50 + +

OL-S80 + +

OL-FAO + +

Stt-BK50 + + +

Stt-S80 + + +

PAR-BK50-30 + + + +

PAR-BK50-10 + + + +

PAR-S80-30 + + + +

PAR-S80-10 + + + +

PAR-FAO-30 + + + +

jk8-BK50-1 to 9 + + + +

jk8-S80-1 to 9 + + + +

jk4-S80-A to C + + + +

3.3 Experiment set-up

All simulation experiments in this study used initial condi-
tions from a single 5-year spin-up run in which a single forc-
ing data set of the year 2010 was repeatedly used as atmo-
spheric input. The soil moisture regime became stable after
the 5-year spin-up period, and additional spin-up simulations
would not affect soil moisture in the consecutive years. Af-
ter this 5-year spin-up, soil parameters and forcing data of
the consecutive years were perturbed. From 1 January 2011
onwards, CLM was propagated forward with an ensemble of
95 realizations. On 20 March 2011, the first SWC retrieval
was assimilated, and assimilation of SWC retrievals contin-
ued until 31 December 2012. In the data assimilation period,
soil properties were estimated at every time step when obser-
vations were made available. For the year 2013, the model
was propagated forward without data assimilation but with
an ensemble of 95 realizations. The year 2013 was used ex-
clusively as the evaluation period for data assimilation exper-
iments.

In total, 31 simulation experiments were carried out using
different setups (Table 2). The present setups are intended
to cover three different initial soil maps, three different sizes
of a CRNS network and two different parameter perturba-
tions. Three open loop simulations were run without data as-
similation and soil parameter perturbation of 30 % for the
BK50 soil map (OL-BK50), the FAO soil map (OL-FAO)
and the S80 soil map (OL-S80). These simulations are re-
ferred to as reference runs for the respective soil map. Simu-
lation results of data assimilation runs were compared to the
reference runs for quantification of data assimilation bene-
fits. Simulations were done with joint state–parameter esti-
mation (PAR-∗), two for the BK50 soil map (PAR-BK50-∗),
one for the FAO soil map (PAR-FAO-30), and two for the

S80 soil map (PAR-S80-∗). Soil texture was perturbed by
10 or 30 % as indicated by the experiment name (Table 2).
Two simulations were done with state updates only for the
BK50 soil map (Stt-BK50) and the S80 soil map (Stt-BK50).
These 10 simulations form the basic set of experiments.

Besides the data assimilation experiments, a larger num-
ber of jackknifing simulations were also conducted to eval-
uate the impact of the CRNS data assimilation on SWC at
unobserved locations in the model domain. In nine jack-
knife experiments, data from eight CRNS locations were as-
similated (jk8-∗ simulations) and data of the one remaining
CRNSs were not assimilated but kept for evaluation. In ad-
dition, three simulations were conducted where data of four
CRNSs were assimilated (jk4-∗ simulations), and data of the
five remaining CRNSs were used for evaluation. These three
simulations represent a CRNS network with much less than
the existing nine CRNSs. At the evaluation locations, simu-
lated SWC (which is affected by the assimilation of the other
eight probes) was compared to CRNS SWC retrievals. For
jackknife simulations, the perturbation of soil texture was set
to 30 %. States and parameters at these sites were jointly up-
dated, and simulations were made using either the BK50 or
the S80 soil maps as initial parameterization. Therefore, a
total of 21 jackknife simulations were performed.

Simulation results were evaluated with the root mean
square error (ERMS):

ERMS =

√√√√√ n∑
t=1

(
θt,CLM− θt,CRNS

)2
n

, (22)

where n is the total number of time steps, θt,CLM is SWC
simulated by CLM at time step t and θt,CRNS is the CRNS
SWC retrieval at time step t . In case SWC was assimilated at
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the corresponding time step, θt,CLM is SWC prior to assimi-
lation. In case the ERMS is estimated at a single point in time
over all CRNSs available, the number of time steps n can
be replaced by the number of CRNSs available. The second
evaluation measurement in this study is the bias which is, in
contrast to the ERMS, a measure for systematic deviation:

bias=

n∑
t=1

(
θt,CLM− θt,CRNS

)
n

. (23)

4 Results and discussion

4.1 General results

Table 3 summarizes the performance statistics in terms of
ERMS and bias for the assimilation period (2011 and 2012)
and evaluation period (2013). Presented are results for the
open loop scenarios with the BK50, FAO and S80, and
data assimilation scenarios. Errors of open loop simula-
tions were highest for the S80 simulation (0.11 cm3 cm−3),
followed by the FAO simulation (0.07 cm3 cm−3) and the
BK50 simulation (0.04 cm3 cm−3). Mean absolute bias was
highest for the S80 soil map (0.11 cm3 cm−3), now as high
for the FAO soil map (0.06 cm3 cm−3) and lowest for the
BK50 soil map (0.02 cm3 cm−3). Data assimilation improved
simulations more for the S80 soil map (ERMS reduced by
0.08 cm3 cm−3) than for the FAO soil map (ERMS reduced
by 0.04 cm3 cm−3) or the BK50 soil map (ERMS reduced by
0.01 cm3 cm−3). The BK50 soil map led to ERMS values
in open loop simulations lower than 0.05 cm3 cm−3, which
left little room for error reduction considering a measure-
ment error of 0.03 cm3 cm−3. However, slight improvements
by 0.01 cm3 cm−3 were possible at monitored locations in
the data assimilation period but not in the evaluation pe-
riod. Joint state–parameter estimation improved simulation
results, as shown by the reduced ERMS and bias for the S80
and the FAO soil maps. The verification period (2013) with
the updated soil hydraulic parameters for the FAO soil map
resulted in an ERMS value of 0.05 cm3 cm−3, also clearly an
improvement compared to the open loop run with an ERMS
of 0.07 cm3 cm−3 (Table 3). Joint state–parameter updating
resulted in similar ERMS values for all three initial soil maps:
the BK50, FAO and S80 soil maps (each 0.03 cm3 cm3).
State updates (Stt-S80) improved ERMS and bias for the
S80 soil map (ERMS= 0.06 cm3 cm−3 for assimilation pe-
riod) but much less compared to the joint state–parameter
updates (PAR-S80-30). The ERMS and bias for simulations
with 10 and 30 % perturbation of soil texture only showed
very small differences (smaller than 0.01 cm3 cm−3).

The temporal course of simulated soil moisture in 2011
at the two sites, Merzenhausen and Gevenich, is shown in
Fig. 2. The figure illustrates that simulated SWC at both sites
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Figure 2. Temporal evolution of simulated soil water con-
tent (SWC) retrievals, calculated with open loop (OL-∗) simulations
and data assimilation including parameter updating (PAR-S80-30),
together with the CRNS SWC retrieval during the first year of sim-
ulation at the sites Merzenhausen and Gevenich. Simulated SWC
was vertically weighted using the COSMIC operator to obtain the
appropriate SWC corresponding to the CRNS SWC retrieval.

was lowest with the S80 soil map (OL-S80) and highest with
the BK50 soil map (OL-BK50), and the FAO soil map re-
sulted in intermediate soil moisture (OL-FAO). Mean open
loop SWC in 2011 was 0.17 cm3 cm−3 for the S80 soil map,
0.24 cm3 cm−3 for the FAO soil map and 0.27 cm3 cm−3 for
the BK50 soil map at both sites. Measurements with CRNS
started in May 2011 at Merzenhausen. At Gevenich, the first
observation was recorded on 7 July 2011. In the data assimi-
lation run shown (PAR-S80-30), modelled SWC was imme-
diately affected at both sites, Merzenhausen and Gevenich,
as soon as data at Merzenhausen were assimilated. By July,
simulated SWC with the biased soil map and data assimi-
lation (PAR-S80-30) was already close to the CRNS SWC
retrieval at the Gevenich site (Fig. 2). This demonstrates the
beneficial impact of data availability for assimilation at one
site and the information brought into space by the data as-
similation scheme. Figure 2 also shows that the BK50 open
loop run was close to the observed SWC at both sites, even
without data assimilation.

Figure 3 shows the temporal course of SWC from Jan-
uary 2011 to December 2013 at Heinsberg and Wilden-
rath. Assimilation and evaluation results are shown for the
open loop (OL-S80 and OL-FAO) simulations, only state up-
dates (Stt-S80), joint state–parameter updates (PAR-S80-30)
and CRNS SWC retrievals. At Heinsberg, results show that
simulated SWC with assimilation was closer to the CRNS
when both states and parameters were updated (PAR-S80-
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Table 3. Root mean square error (ERMS, cm3 cm−3) and mean absolute bias (cm3 cm−3) for open loop simulations (OL-∗), data assimilation
with state updates (Stt-∗) and joint state–parameter updates (PAR-∗) for both the assimilation period (2011 and 2012) and the evaluation
period (2013). Error and bias was averaged over all sites with observations. Site-specific errors and biases are provided in Appendix A1
to A4. The best cases are marked in bold.

Soil map Simulation Site average

Data assimilation 2011 Evaluation period
and 2012 2013

ERMS Absolute ERMS Absolute
bias bias

BK50 OL-BK50 0.04 0.02 0.04 0.02
Stt-BK50 0.03 0.01 0.04 0.01
PAR-BK50-10 0.03 0.01 0.05 0.03
PAR-BK50-30 0.03 0.01 0.05 0.03

FAO OL-FAO 0.07 0.06 0.07 0.06
PAR-FAO-30 0.03 0.02 0.05 0.03

Biased (S80) OL-S80 0.12 0.11 0.12 0.11
Stt-S80 0.06 0.05 0.10 0.09
PAR-S80-10 0.03 0.01 0.05 0.03
PAR-S80-30 0.03 0.02 0.04 0.02

30) than if only states were updated (Stt-S80). This is the
case for both the assimilation and the evaluation periods.
At the beginning of the evaluation period (first few days
of 2013), the Stt-S80 simulation shows an increase in bias
between modelled SWC and CRNS. The bias of Stt-S80 re-
mained throughout the evaluation period. In contrast, if pa-
rameters were previously updated (PAR-S80-30), modelled
SWC was close to the CRNS during the evaluation period.
Open loop SWC modelled with the FAO soil map is lower
than the CRNS SWC retrievals at Heinsberg and higher than
CRNS SWC retrievals at Wildenrath. At Wildenrath, results
of the OL-S80 run suggest that the initial sand content of the
biased soil map is closer to the optimal sand content than
the sand content of the FAO soil map. Consequently, the OL-
FAO bias was −0.05 and 0.05 cm3 cm−3 for Heinsberg and
Wildenrath, respectively (Tables A1 and A4 in Appendix).
At both sites, absolute bias was reduced with joint state–
parameter updates to equal or less than 0.01 cm3 cm−3 (S80
and FAO soil map). The reduced bias is also well reflected
in the temporal course of modelled SWC with joint state–
parameter updates (PAR-S80-30).

It is interesting to notice that the error values for the ver-
ification period are very similar if soil hydraulic parameters
were estimated in the assimilation period, independent of the
initial soil map (Table 3). ERMS values for the 2013 sim-
ulations with state updates only (Stt-BK50 and Stt-BK50)
show that in the evaluation period the improvements by
state updates (without parameter updates) were small (re-
duction by 0.02 and 0.00 cm3 cm−3 for S80 and BK50, re-
spectively) compared to the improvements obtained by joint
state–parameter updates (reduction by 0.07 cm3 cm−3 for

S80). This illustrates the benefits of joint state–parameter up-
dates compared to state updates only, and that soil moisture
states are strongly determined by soil hydraulic parameters.
The case of only state updates also illustrates that the im-
proved characterization of soil moisture states in the assim-
ilation period results in improved initial states for the veri-
fication period (Table 3) but in the verification period these
improvements lose their influence quickly over time (Fig. 3).

4.2 Temporal evolution of mean ERMS

Figure 4 shows the temporal evolution of the hourly ERMS
calculated for all nine CRNSs. ERMS was highest for the
S80 open loop run and lowest for the PAR-S80-30 simula-
tion. The FAO soil map resulted in errors mostly between
0.05 and 0.1 cm3 cm−3, which are lower than the S80 soil
map but not as good as simulation results with joint state–
parameter updates (PAR-S80-30) or with the BK50 soil map
(OL-BK50). State updates did not improve modelled SWC as
much as joint state–parameter updates. For most of the time,
the ERMS of the Stt-S80 run is larger than the ERMS of the
OL-BK50 run. During the evaluation period, the open loop
run with the FAO soil map (OL-FAO) also performs better
than the Stt-S80 run. In contrast, joint state–parameter up-
dates to the S80 soil map improved the ERMS most of the
time compared to open loop simulations (OL-BK50, OL-
FAO and OL-S80). As shown in Fig. 4, the PAR-S80-30
simulation performed best out of the four simulations dur-
ing the assimilation period 2011–2012. During the evaluation
period 2013, OL-BK50 and PAR-S80-30 performed equally
well, except in summer 2013 when the PAR-S80-30 simula-
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Table 4. Root mean square error (ERMS, cm3 cm−3) and mean absolute bias (cm3 cm−3) for open loop (OL-∗), jackknife simulations with
eight CRNSs (simulations jk8-S80-1 to 9 were averaged) and with four CRNSs (simulations jk4-S80-A to C). Results were averaged over
the omitted sites only. Data at omitted sites were not assimilated, while at the other sites data were assimilated. At sites where data were
assimilated, ERMS and bias were equal to the values found in simulation PAR-S80-30. Site-specific errors and biases are provided in the
Appendix A1 to A4. The best cases are marked in bold.

Soil map Simulation Site average

Data assimilation Evaluation period
2011 and 2012 2013

ERMS Absolute ERMS Absolute
bias bias

BK50 OL-BK50 0.04 0.02 0.04 0.02
jk8-BK50-1 to 9 0.06 0.04 0.05 0.04

Biased (S80) OL-S80 0.12 0.11 0.12 0.11
jk8-S80-1 to 9 0.06 0.05 0.06 0.04
jk4-S80-A 0.08 0.06 0.06 0.04
jk4-S80-B 0.06 0.05 0.06 0.05
jk4-S80-C 0.07 0.05 0.07 0.06
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Figure 3. Temporal evolution of simulated soil water con-
tent (SWC) retrievals, calculated with open loop (OL-∗), data as-
similation with state update only (Stt-S80), and data assimila-
tion including parameter updating (PAR-S80-30), together with the
CRNS SWC retrieval at the sites Heinsberg and Wildenrath for
the data assimilation period 2011 and 2012 and the evaluation pe-
riod 2013. Simulated SWC was vertically weighted to obtain the
appropriate SWC corresponding to the CRNS SWC retrieval.

tion yielded much higher ERMS values than the BK50 open
loop run.
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Figure 4. Temporal evolution of root mean square error (ERMS)
for hourly SWC retrievals. ERMS is calculated hourly for all nine
CRNSs for open loop (OL-∗) runs for soil maps BK50, FAO
and S80; joint state–parameter updates (PAR-S80-30); and state
updates only (Stt-S80) during the assimilation period with joint
state–parameter updates (2011 and 2012) and the verification pe-
riod (2013).

4.3 Jackknife simulations

The jackknife simulations investigated the impact of CRNS
data on improving simulated SWC at locations beyond the
CRNS stations. Spatial improvements are possible by spatial
correlation structures of atmospheric forcings, soil hydraulic
parameters and soil moisture which are taken into account
by the local ensemble transform Kalman filter. The error and
bias shown in Table 4 refer to jackknife simulations with the
BK50 and the S80 soil map. On average, over the three runs
where only data of four CRNSs were assimilated (jk4-S80-
∗), the ERMS was 0.07 m3 m−3, which is much lower than
the ERMS for the open loop run (0.12 m3 m−3) and only a
bit higher than the case where eight CRNSs were assim-
ilated (ERMS= 0.06 m3 m−3 for jk8-S80-∗). The improved
simulation results were also due to the bias reduction from
0.11 to 0.05 m3 m−3 in the case of four and 0.04 m3 m−3 in
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the case of eight assimilated CRNSs. However, for the BK50
soil map where ERMS (0.04 m3 m−3) and bias (0.02 m3 m−3)
of the open loop run were already good, the jackknife sim-
ulations led to slightly higher ERMS (0.05 m3 m−3) and bias
(0.04 m3 m−3). More detailed site statistics (Tables A1 to A4
of the Appendix) demonstrate that all jackknife simulations
with the S80 soil map resulted in an improved ERMS at the
omitted locations compared to the open loop simulation, ex-
cept for Wildenrath. At sites with large open loop ERMS, the
assimilation could reduce the ERMS by 50 % or more.

The jackknife simulations illustrate that a network of
CRNSs can improve modelled SWC if the soil map informa-
tion is not sufficient. This suggests that assimilation of CRNS
data is particularly useful for regions with little information
on subsurface parameters. A trade-off can be expected be-
tween the initial uncertainty on soil moisture and parameters,
and the density of a CRNS network. In the case of a large un-
certainty, like in regions with limited information about soils
or a strongly biased soil map (e.g. FAO or S80 soil map) and
a low density of meteorological stations, a sparse network
of probes can already be helpful for improving soil moisture
characterization. The results of the real-world jackknife ex-
periments demonstrated that four CRNSs are already benefi-
cial, but it is desirable to have more CRNSs for improved pa-
rameter estimates. The results also suggest that the additional
information gain for an extra CRNS is reduced for a denser
network, because the soil moisture characterization did not
improve so much more when eight instead of four CRNSs
were used for assimilation. However, in regions with a high
density of meteorological stations and a high-resolution soil
map, it can be expected that a denser CRNS network than
that in this study is needed to further lower the error of
soil moisture characterization. Further potentially synthetic
experiments in other regions with networks of CRNSs are
needed to obtain more quantitative information about this.

4.4 Temporal evolution of parameter estimates and
parameter uncertainty

The temporal evolution of sand content estimates during
the assimilation period for the nine sites with CRNSs is
shown in Fig. 5 for PAR-S80-30, PAR-S80-10, PAR-BK50-
30, PAR-BK50-10, jk8-S80-∗ and jk8-BK50-∗. Time series
start on 20 March 2011, the date of the first assimilated
CRNS SWC retrieval at Wüstebach. At Wüstebach and sites
within the influence sphere of Wüstebach (Aachen, Kall and
Rollesbroich), sand content estimates were updated from
20 March 2011 onwards. Because of the localization, all
other sites show a first update in sand content in May 2012
when Rollesbroich and Merzenhausen start operating, and
their data were assimilated. During the data assimilation pe-
riod with joint state–parameter updates, all sites show vari-
ability in sand content estimates over time with differences
in magnitude. Values and spread in sand content estimates
amongst the experiments is smaller at the sites Merzen-

hausen, Gevenich, RurAue, Heinsberg and Wildenrath, com-
pared to the sites Wüstebach, Aachen and Rollesbroich
where spread is considerably larger. At the sites Merzen-
hausen, Kall, Gevenich, RurAue and Heinsberg, sand con-
tent estimates of the jackknife simulations were close to the
sand content of the other data assimilation experiments with
joint state–parameter estimation. A comparison of parameter
estimates at the end of the assimilation period indicates that
initial soil parameterization has a limited effect on the result-
ing parameter estimates. Parameter estimates of jk8-BK50-∗

and jk8-S80-∗ are close together at the end of the assimilation
period.

Estimates of the soil hydraulic parameter B and saturated
hydraulic conductivity are shown in Figs. 6 and 7 for PAR-
S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, jk8-
S80-∗ and jk8-BK50-∗. Updates of soil hydraulic parameters
start in March and May 2011 with the assimilation of CRNS
SWC retrievals, depending on the location. The B parameter
estimates increase for all simulations. Throughout the whole
assimilation period the empirical B parameter varies con-
siderably within short time intervals. The total range of the
B parameter estimates is between 2.7 and 14 at all sites. At
the sites Merzenhausen, Kall, Aachen, Gevenich and Rolles-
broich, B generally ranges between 6 and 10. At Wüstebach,
Heinsberg and RurAue, estimates of B range most of the
time between 8 and 12, and at Wildenrath, B is below 8.
Initial saturated hydraulic conductivity ksat is rather high
(ksat> 0.015 mm s−1) in the case of high sand content, i.e. for
the S80 soil map, and rather low (ksat< 0.005 mm s−1) in the
case of low sand content, i.e. for the BK50 soil map. In the
case of the S80 soil map, at all sites except Wildenrath, high
initial ksat estimates decrease quickly through joint state–
parameter updates to values below 0.01 mm s−1. The initial
spread in ksat estimates amongst the simulation scenarios de-
creases at most sites. At Wüstebach, Merzenhausen, Aachen,
Gevenich, RurAue and Heinsberg, the spread is rather small,
particularly at the end of the assimilation period, while at
Wildenrath ksat ranges from 0.005 to 0.015 for individual ex-
periments at the end of the assimilation period.

Temporally unstable parameter estimates imply that there
may be multiple or seasonal optimal parameter values. This
is also supported by the findings of the temporal behaviour
of site-average ERMS (Fig. 4), e.g. during the evaluation pe-
riod when, in the dry summer of 2013, the ERMS peaks for
the PAR-S80-30 simulation. In this context, it is important
to mention that many possible error sources were not sub-
ject to calibration in this study but could be crucial for an
even better modelled soil moisture and more reliable soil pa-
rameter estimation. In this study we only considered uncer-
tainty of soil parameters, but vegetation parameters are also
uncertain. Also, a number of other CLM-specific hydrologic
parameters (e.g. decay factor for subsurface runoff and max-
imum subsurface drainage) strongly influence state variables
in CLM and hence show potential for optimization (Sun et
al., 2013). Considering this uncertainty from multiple param-
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Figure 5. At nine sites, estimates of percentage sand content are shown for simulations with parameter update: PAR-S80-30 (green), PAR-
S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk8-S80-∗ (black) and jk8-BK50-∗ (black). The value of the BK50 soil
map is marked at the second y axis.
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Figure 6. At nine sites, estimates of the B parameter (top 15 cm) are shown for simulations with parameter update: PAR-S80-30 (green),
PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk8-S80-∗ (black) and jk8-BK50-∗ (black).
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Figure 7. At nine sites, estimates of saturated hydraulic conductivity (top 15 cm) are shown for simulations with parameter update: PAR-
S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk8-S80-∗ (black) and jk8-BK50-∗ (black).

eters could give a better parameter-uncertainty characteriza-
tion (Shi et al., 2014). Precipitation is also an important forc-
ing for hydrologic modelling. For this study, precipitation
data from the COSMO_DE re-analysis were used. A product
which optimally combines precipitation estimates from radar
and gauge measurements is expected to give better precipita-
tion estimates than the reanalysis. This could improve the soil
moisture characterization and also potentially lead to better
parameter estimates. Further improvements and constraining
of parameter uncertainty is also possible using multivariate
data assimilation with observations such as latent heat flux
(e.g. Shi et al., 2014). Also, other error sources related to the
model structure play a significant role. These options should
be subject to future investigations.

4.5 Latent heat flux

Latent heat flux, or evapotranspiration (ET), is another im-
portant diagnostic variable of land surface models (e.g. Best
et al., 2015) and is of importance for atmospheric models.
Results of the data assimilation experiments showed that soil
texture updates altered soil moisture states significantly. In
Fig. 8 it is shown that joint state–parameter estimation also
altered ET during the evaluation period. Figure 8 shows ET
within the evaluation period 2013 across the whole catch-
ment for four simulation experiments. On the one hand, ET
was similar for both open loop simulations (OL-S80 and OL-
BK50) in the south of the catchment. On the other hand, ET

in the north was up to 80 mm lower per year for the S80
open loop run compared to the BK50 open loop run. The
differences can be linked to the drier soil conditions for OL-
S80 compared to OL-BK50 simulation results. The differ-
ences in ET between the runs with and without parameter up-
dates were larger for the S80 soil map than for the BK50 soil
map. For PAR-S80-10, ET increased by up to 40 mm yr−1 in
the northern part of the catchment through data assimilation
while the change in ET from OL-BK50 to PAR-BK50-10 is
rather small. This is linked to the comparatively larger up-
dates made to soil hydraulic parameters.

Additionally, the impact of soil parameter estimates on ET
is different in the north of the catchment compared to the
south. While ET in the north of the catchment was impacted
by the estimated soil properties during the evaluation period
in 2013 for PAR-S80-10, ET in the south was not impacted as
much by estimated soil properties. This is related to the fact
that in the north ET is moisture-limited in summer, whereas
in the south this is not moisture-limited but energy-limited.
Therefore, ET in the north is sensitive to variations in soil hy-
draulic parameter values, whereas in the south this is not the
case. In the south, ET is sensitive to model forcings such as
incoming shortwave radiation. Nearing et al. (2016) came to
the conclusion that soil parameter uncertainty dominates soil
moisture uncertainty and forcing uncertainty dominates ET
uncertainty. Our findings in the southern part of the catch-
ment support their conclusion, but in the northern part of
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Figure 8. Annual evapotranspiration (ET) is shown in the year 2013 (evaluation period, no assimilation). This figure demonstrates the impact
of parameter updates (PAR-S80-10 and PAR-BK50-10) in comparison to open loop (OL-S80) and the reference soil map (OL-BK50). ET
changes in the north but not as much in the south.

the catchment soil parameter uncertainty strongly affects ET.
Hence, particularly in the northern part of the catchment, fur-
ther observations such as ET measurements are desirable for
further improving the land surface model. These additional
observations could be used for future land surface model
benchmarking (Best et al., 2015) or for more constrained pa-
rameter estimates (Shi et al., 2015).

5 Conclusions and outlook

This real-world case study on assimilating CRNS SWC re-
trievals into a land surface model shows the potential of
CRNS networks to improve subsurface parameterization in
regional land surface models, especially if prior information
on soil properties is limited. CRNS SWC retrievals were as-
similated into the land surface model CLM version 4.5 using
the LETKF. SWC and subsurface parameters were updated
with the LETKF at unmonitored locations in the catchment
considering model and observation uncertainties. Joint state–
parameter estimates improved soil moisture estimates during
the assimilation and during the evaluation period. The error
and bias for the soil moisture characterization was strongly
reduced for simulations initialized with a biased soil map and
similarly well if initialized with the FAO soil map. Simula-
tions initialized with a biased or global soil map approached

similar error statistics with joint state–parameter updates to
the ones obtained when the regional soil map was used as
input to the simulations. Error values in simulations with the
regional soil map were not improved during the evaluation
period, because open loop simulation results were already
close to the observations. The beneficial results of joint state–
parameter updates were confirmed by additional jackknife
experiments with eight and four CRNSs for assimilation.
In many areas of the world, only global soil maps (e.g. the
FAO soil map) are available but there are no detailed high-
resolution regional soil maps. This study has shown that in
these areas a more advanced subsurface characterization is
possible using CRNS measurements and the data assimila-
tion framework presented in this study.

For now, neutron intensity observations by CRNSs were
not assimilated directly. In future studies it would be desir-
able to use the COSMIC operator for assimilating neutron
intensity observations directly. However, in this case the im-
pact of biomass on the CRNS measurement signal would
have to be taken into account. Therefore, it is desirable to
further develop the COSMIC operator to include the impact
of biomass on neutron intensities. Using the biogeochemi-
cal module of CLM would then allow for modelling of local
vegetation states as input for the measurement operator. Re-
motely sensed vegetation states are another option to char-
acterize vegetation states as input for the measurement op-
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erator. Both methods require additional field measurements
for the verification of vegetation state estimates. The further
extension of the data assimilation framework would also en-
able the estimation of additional land surface parameters. In
addition, the impact of other subsurface parameters, such as
subsurface drainage parameters and the surface drainage de-
cay factor, on SWC states and radiative surface fluxes has
already been shown (Sun et al., 2013). Estimation of these
parameters is desirable because of the inherent uncertainty
of these globally tuned parameters. However, estimation of
soil texture and organic matter content was demonstrated to
already be beneficial for improved SWC modelling. Hence,
this study represents a way forward towards the integration
of CRNS information in the calibration or real-time updating
of land surface models.

Data availability. Most data presented in this study are freely avail-
able via the TERENO data portal TEODOOR (http://teodoor.icg.
kfa-juelich.de/). Atmospheric data were licensed by the German
Weather Service (Deutscher Wetterdienst, DWD), and the BK50
soil map was licensed by the Geologischer Dienst Nordrhein-
Westfalen.
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Appendix A

Table A1. ERMS (cm3 cm−3) at CRNS sites for open loop runs and different data assimilation scenarios, for the assimilation period (2011
and 2012). For jackknife experiments (21 in total) only the error of the omitted sites is reported. The best cases are marked in bold.

Soil 2011 and 2012 Rollesbroich Merzenhausen Gevenich Heinsberg Kall RurAue Wüstebach Aachen Wildenrath Average
map ERMS

BK50 OL-BK50 0.058 0.060 0.039 0.039 0.046 0.034 0.056 0.032 0.017 0.042
Stt-BK50 0.031 0.039 0.021 0.021 0.030 0.024 0.039 0.023 0.017 0.027
PAR-BK50-10 0.033 0.036 0.020 0.019 0.032 0.025 0.035 0.045 0.015 0.029
PAR-BK50-30 0.030 0.032 0.018 0.018 0.028 0.024 0.040 0.044 0.016 0.028
jk8-BK50-1 to 9 0.067 0.056 0.065 0.033 0.047 0.051 0.062 0.050 0.091 0.058

FAO OL-FAO 0.097 0.033 0.029 0.056 0.082 0.096 0.079 0.098 0.056 0.070
PAR-FAO-30 0.029 0.033 0.018 0.019 0.028 0.025 0.042 0.056 0.017 0.030

Biased OL-S80 0.169 0.054 0.082 0.119 0.152 0.161 0.110 0.169 0.020 0.115
(S80) Stt-S80 0.098 0.019 0.036 0.050 0.082 0.054 0.083 0.086 0.018 0.058

PAR-S80-10 0.031 0.035 0.023 0.023 0.033 0.024 0.041 0.048 0.015 0.030
PAR-S80-30 0.029 0.032 0.018 0.019 0.028 0.024 0.042 0.068 0.016 0.031
jk8-S80-1 to 9 0.081 0.038 0.060 0.035 0.068 0.043 0.057 0.073 0.095 0.061
jk4-S80-A 0.064 0.038 0.059 0.076 – 0.157 – – – 0.079
jk4-S80-B 0.077 0.041 – 0.051 0.062 0.079 – – – 0.062
jk4-S80-C – 0.073 0.056 – 0.051 – – 0.078 0.109 0.073

Table A2. ERMS (cm3 cm−3) at CRNS sites for open loop, data assimilation and jackknife simulations on the basis of a comparison with
CRNS SWC retrievals for the verification period (2013). For jackknife experiments (21 in total) only the error of the omitted sites is reported.
The best cases are marked in bold.

Soil 2013 Rollesbroich Merzenhausen Gevenich Heinsberg Kall RurAue Wüstebach Aachen Wildenrath Average
map ERMS

BK50 OL-BK50 0.04 0.07 0.04 0.03 0.05 0.04 0.05 0.04 0.02 0.040
Stt-BK50 0.04 0.05 0.03 0.03 0.05 0.04 0.05 0.04 0.02 0.039
PAR-BK50-10 0.07 0.06 0.04 0.04 0.06 0.06 0.04 0.06 0.02 0.048
PAR-BK50-30 0.05 0.06 0.04 0.03 0.07 0.05 0.04 0.05 0.04 0.047
jk8-BK50-1 to 9 0.04 0.05 0.04 0.03 0.05 0.04 0.05 0.06 0.11 0.052

FAO OL-FAO 0.08 0.04 0.04 0.05 0.09 0.09 0.07 0.09 0.07 0.068
PAR-FAO-30 0.06 0.06 0.04 0.04 0.06 0.03 0.05 0.07 0.04 0.049

Biased OL-S80 0.16 0.06 0.11 0.12 0.16 0.15 0.10 0.17 0.02 0.115
(S80) Stt-S80 0.10 0.06 0.11 0.11 0.10 0.15 0.10 0.16 0.02 0.100

PAR-S80-10 0.06 0.04 0.04 0.04 0.06 0.04 0.05 0.06 0.02 0.047
PAR-S80-30 0.05 0.06 0.04 0.04 0.05 0.03 0.05 0.05 0.04 0.044
jk8-S80-1 to 9 0.08 0.05 0.04 0.04 0.059 0.04 0.06 0.04 0.11 0.057
jk4-S80-A 0.05 0.03 0.05 0.04 – 0.16 – – – 0.065
jk4-S80-B 0.05 0.07 – 0.04 0.07 0.07 – – – 0.061
jk4-S80-C – 0.05 0.04 – 0.07 – – 0.06 0.13 0.069
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Table A3. Bias (cm3 cm3) at CRNS sites for open loop, data assimilation and jackknife simulations compared to CRNS SWC retrievals for
the data assimilation period (2011 and 2012). For jackknife experiments (21 in total) only the bias of the omitted sites is reported. The best
cases are marked in bold.

Soil 2011 and 2012 Rollesbroich Merzenhausen Gevenich Heinsberg Kall RurAue Wüstebach Aachen Wildenrath Mean
map absolute

bias

BK50 OL-BK50 −0.05 0.05 0.02 −0.01 −0.02 −0.01 −0.03 0.00 0.00 0.02
Stt-BK50 −0.02 0.03 0.00 −0.01 −0.01 −0.01 −0.02 0.00 −0.01 0.01
PAR-BK50-10 0.00 0.03 0.00 0.00 0.00 0.00 −0.02 −0.03 0.00 0.01
PAR-BK50-30 −0.02 0.03 0.00 −0.01 −0.01 −0.01 −0.03 −0.03 0.00 0.01
jk8-BK50-1 to 9 −0.05 0.05 0.05 −0.01 0.00 −0.04 −0.04 −0.04 0.09 0.04

FAO OL-FAO −0.09 0.02 −0.01 −0.05 −0.07 −0.09 −0.06 −0.09 0.05 0.06
PAR-FAO-30 −0.01 0.03 0.00 −0.01 −0.01 −0.01 −0.03 −0.04 0.01 0.02

Biased OL-S80 −0.17 −0.05 −0.08 −0.12 −0.15 −0.16 −0.09 −0.17 −0.01 0.11
(S80) Stt-S80 −0.09 0.00 −0.03 −0.04 −0.07 −0.04 −0.07 −0.07 −0.01 0.05

PAR-S80-10 0.00 0.03 0.00 −0.01 0.00 0.00 −0.03 −0.04 0.00 0.01
PAR-S80-30 −0.02 0.03 0.00 −0.01 −0.01 −0.01 −0.03 −0.06 0.00 0.02
jk8-S80-1 to 9 −0.07 0.02 0.05 −0.01 −0.06 −0.03 −0.03 −0.07 0.09 0.05
jk4-S80-A −0.05 −0.02 −0.03 −0.06 − −0.16 − − − 0.06
jk4-S80-B −0.07 0.02 − −0.04 −0.05 −0.07 – – – 0.05
jk4-S80-C – 0.04 0.02 – −0.02 – – −0.07 0.11 0.05

Table A4. Bias (cm3 cm−3) at CRNS sites for open loop, data assimilation and jackknife simulations compared to CRNS SWC retrievals for
the data assimilation period (2011 and 2012). For jackknife experiments (21 in total) only the bias of the omitted sites is reported. The best
cases are marked in bold.

Soil 2013 Rollesbroich Merzenhausen Gevenich Heinsberg Kall RurAue Wüstebach Aachen Wildenrath Mean
map absolute

bias

BK50 OL-BK50 −0.03 0.06 0.01 0.00 −0.02 0.00 −0.02 0.01 0.00 0.02
Stt-BK50 −0.01 0.04 0.00 0.00 −0.01 −0.01 −0.02 0.00 −0.01 0.01
PAR-BK50-10 0.06 0.05 0.01 0.02 0.04 0.04 0.02 −0.04 0.00 0.03
PAR-BK50-30 0.03 0.05 0.00 0.02 0.04 0.03 −0.01 −0.03 0.03 0.03
jk8-BK50-1 to 9 −0.02 0.04 0.01 −0.01 −0.03 −0.02 −0.04 −0.05 0.11 0.04

FAO OL-FAO −0.08 0.02 −0.02 −0.04 −0.08 −0.08 −0.05 −0.08 0.06 0.06
PAR-FAO-30 0.04 0.05 0.00 0.02 0.03 0.00 −0.02 −0.06 0.03 0.03

Biased OL−S80 −0.15 −0.05 −0.10 −0.11 −0.16 −0.15 −0.09 −0.16 −0.01 0.11
(S80) Stt-S80 −0.09 −0.05 −0.10 −0.10 −0.08 −0.14 −0.09 −0.15 −0.01 0.09

PAR-S80-10 0.04 0.03 −0.03 0.03 0.05 0.03 0.03 −0.04 −0.01 0.03
PAR-S80-30 0.03 0.05 −0.01 0.02 0.03 0.01 −0.01 −0.03 0.03 0.02
jk8-S80-1 to 9 −0.07 0.03 0.02 0.02 −0.05 −0.02 −0.04 −0.03 0.10 0.04
jk4-S80-A 0.00 0.01 0.03 −0.03 − −0.15 − − − 0.04
jk4-S80-B −0.03 0.06 − −0.03 −0.06 −0.06 − − − 0.05
jk4-S80-C − 0.04 0.02 − −0.05 − − −0.05 0.13 0.06

Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017 www.hydrol-earth-syst-sci.net/21/2509/2017/



R. Baatz et al.: Evaluation of a cosmic-ray neutron sensor network for land surface model prediction 2527

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors gratefully acknowledge the
support by the SFB-TR32 “Pattern in Soil–Vegetation–Atmosphere
Systems: Monitoring, Modelling and Data Assimilation”,
funded by the Deutsche Forschungsgemeinschaft (DFG), and
TERENO (Terrestrial Environmental Observatories), funded by the
Helmholtz-Gemeinschaft. The authors also gratefully acknowledge
the computing time granted by the John von Neumann Institute for
Computing (NIC) and provided on the supercomputer JURECA at
Jülich Supercomputing Centre (JSC). Finally, the authors acknowl-
edge and thank four anonymous referees for providing constructive
comments and the Editor, Nunzio Romano, for guiding the revision
process.

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Edited by: N. Romano
Reviewed by: four anonymous referees

References

Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the
impact of model spin-up on surface water-groundwater interac-
tions using an integrated hydrologic model, Water Resour. Res.,
50, 2636–2656, doi:10.1002/2013wr014258, 2014.

Anderson, J. L.: An ensemble adjustment Kalman filter for
data assimilation, Mon. Weather Rev., 129, 2884–2903,
doi:10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2,
2001.

Avery, W. A., Finkenbiner, C., Franz, T. E., Wang, T. J., Nguy-
Robertson, A. L., Suyker, A., Arkebauer, T., and Munoz-Arriola,
F.: Incorporation of globally available datasets into the rov-
ing cosmic-ray neutron probe method for estimating field-scale
soil water content, Hydrol. Earth Syst. Sci., 20, 3859–3872,
doi:10.5194/hess-20-3859-2016, 2016.

Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman,
J. A., Qu, W., Montzka, C., and Vereecken, H.: Calibration
of a catchment scale cosmic-ray probe network: A comparison
of three parameterization methods, J. Hydrol., 516, 231–244,
doi:10.1016/j.jhydrol.2014.02.026, 2014.

Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huis-
man, J. A., Montzka, C., and Vereecken, H.: An empirical
vegetation correction for soil water content quantification us-
ing cosmic ray probes, Water Resour. Res., 51, 2030–2046,
doi:10.1002/2014WR016443, 2015.

Bateni, S. M. and Entekhabi, D.: Surface heat flux estima-
tion with the ensemble Kalman smoother: Joint estimation
of state and parameters, Water Resour. Res., 48, W08521,
doi:10.1029/2011wr011542, 2012.

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Bal-
samo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P.
A., Dong, J., Ek, M., Guo, Z., Haverd, V., Van den Hurk, B. J.
J., Nearing, G. S., Pak, B., Peters-Lidard, C., Santanello, J. A.,

Stevens, L., and Vuichard, N.: The Plumbing of Land Surface
Models: Benchmarking Model Performance, J. Hydrometeorol.,
16, 1425–1442, doi:10.1175/Jhm-D-14-0158.1, 2015.

Bogena, H. R., Herbst, M., Hake, J. F., Kunkel, R., Montzka,
C., Pütz, T., Vereecken, H., and Wendland, F.: MOSYRUR
– Water balance analysis in the Rur basin, in: Schriften
des Forschungszentrums Jülich, Reihe Umwelt/Environment,
Forschungszentrum Jülich, Jülich, 2005.

Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks-Franssen, H. J.,
and Vereecken, H.: Accuracy of the cosmic-ray soil water content
probe in humid forest ecosystems: The worst case scenario, Wa-
ter Resour. Res., 49, 5778–5791, doi:10.1002/wrcr.20463, 2013.

Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Land-
scapes as patches of plant functional types: An integrating con-
cept for climate and ecosystem models, Global Biogeochem. Cy.,
16, 1021, doi:10.1029/2000GB001360, 2002.

Brutsaert, W.: Hydrology: an introduction, Cambridge University
Press, Cambridge, New York, 605 pp., 2005.

Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme
in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–
1724, doi:10.1175/1520-0493(1998)126<1719:Asitek>2.0.Co;2,
1998.

Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfieri, J.
G., Roberts, R., Tewari, M., Niyogi, D., Horst, T. W., Oncley,
S. P., Basara, J. B., and Blanken, P. D.: Description and eval-
uation of the characteristics of the NCAR high-resolution land
data assimilation system, J. Appl. Meteorol. Clim., 46, 694–713,
doi:10.1175/Jam2463.1, 2007.

Chen, Y. and Zhang, D. X.: Data assimilation for transient flow
in geologic formations via ensemble Kalman filter, Adv. Water
Resour., 29, 1107–1122, doi:10.1016/j.advwatres.2005.09.007,
2006.

Clapp, R. B. and Hornberger, G. M.: Empirical Equations for
Some Soil Hydraulic-Properties, Water Resour. Res., 14, 601–
604, doi:10.1029/Wr014i004p00601, 1978.

Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.:
A Statistical Exploration of the Relationships of Soil-Moisture
Characteristics to the Physical-Properties of Soils, Water Resour.
Res., 20, 682–690, doi:10.1029/Wr020i006p00682, 1984.

Crow, W. T.: Correcting land surface model predictions for the im-
pact of temporally sparse rainfall rate measurements using an en-
semble Kalman filter and surface brightness temperature obser-
vations, J. Hydrometeorol., 4, 960–973, 2003.

Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P.,
Panciera, R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling
Sparse Ground-Based Soil Moisture Observations for the Valida-
tion of Coarse-Resolution Satellite Soil Moisture Products, Rev.
Geophys., 50, Rg2002, doi:10.1029/2011rg000372, 2012.

De Lannoy, G. J. M. and Reichle, R. H.: Assimilation of
SMOS brightness temperatures or soil moisture retrievals into
a land surface model, Hydrol. Earth Syst. Sci., 20, 4895–4911,
doi:10.5194/hess-20-4895-2016, 2016.

De Lannoy, G. J. M., Reichle, R. H., Arsenault, K. R., Houser,
P. R., Kumar, S., Verhoest, N. E. C., and Pauwels, V. R.
N.: Multiscale assimilation of Advanced Microwave Scanning
Radiometer-EOS snow water equivalent and Moderate Resolu-
tion Imaging Spectroradiometer snow cover fraction observa-
tions in northern Colorado, Water Resour. Res., 48, W01522,
doi:10.1029/2011wr010588, 2012.

www.hydrol-earth-syst-sci.net/21/2509/2017/ Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017

http://dx.doi.org/10.1002/2013wr014258
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2
http://dx.doi.org/10.5194/hess-20-3859-2016
http://dx.doi.org/10.1016/j.jhydrol.2014.02.026
http://dx.doi.org/10.1002/2014WR016443
http://dx.doi.org/10.1029/2011wr011542
http://dx.doi.org/10.1175/Jhm-D-14-0158.1
http://dx.doi.org/10.1002/wrcr.20463
http://dx.doi.org/10.1029/2000GB001360
http://dx.doi.org/10.1175/1520-0493(1998)126<1719:Asitek>2.0.Co;2
http://dx.doi.org/10.1175/Jam2463.1
http://dx.doi.org/10.1016/j.advwatres.2005.09.007
http://dx.doi.org/10.1029/Wr014i004p00601
http://dx.doi.org/10.1029/Wr020i006p00682
http://dx.doi.org/10.1029/2011rg000372
http://dx.doi.org/10.5194/hess-20-4895-2016
http://dx.doi.org/10.1029/2011wr010588


2528 R. Baatz et al.: Evaluation of a cosmic-ray neutron sensor network for land surface model prediction

Draper, C. S., Mahfouf, J. F., and Walker, J. P.: An EKF
assimilation of AMSR-E soil moisture into the ISBA land
surface scheme, J. Geophys. Res.-Atmos., 114, D20104,
doi:10.1029/2008JD011650, 2009.

Dunne, S. and Entekhabi, D.: An ensemble-based reanalysis ap-
proach to land data assimilation, Water Resour. Res., 41,
W02013, doi:10.1029/2004wr003449, 2005.

Eltahir, E. A. B.: A soil moisture rainfall feedback mechanism
1. Theory and observations, Water Resour. Res., 34, 765–776,
doi:10.1029/97wr03499, 1998.

Erdal, D., Neuweiler, I., and Wollschlager, U.: Using a bias
aware EnKF to account for unresolved structure in an un-
saturated zone model, Water Resour. Res., 50, 132–147,
doi:10.1002/2012wr013443, 2014.

Erdal, D., Rahman, M. A., and Neuweiler, I.: The im-
portance of state transformations when using the ensem-
ble Kalman filter for unsaturated flow modeling: Dealing
with strong nonlinearities, Adv. Water Resour., 86, 354–365,
doi:10.1016/j.advwatres.2015.09.008, 2015.

Evans, J. G., Ward, H. C., Blake, J. R., Hewitt, E. J., Morrison,
R., Fry, M., Ball, L. A., Doughty, L. C., Libre, J. W., Hitt, O.
E., Rylett, D., Ellis, R. J., Warwick, A. C., Brooks, M., Parkes,
M. A., Wright, G. M. H., Singer, A. C., Boorman, D. B., and
Jenkins, A.: Soil water content in southern England derived from
a cosmic-ray soil moisture observing system – COSMOS-UK,
Hydrol. Process., 30, 4987–4999, doi:10.1002/hyp.10929, 2016.

Evensen, G.: Sequential Data Assimilation with a Nonlinear Quasi-
Geostrophic Model Using Monte-Carlo Methods to Forecast
Error Statistics, J. Geophys. Res.-Oceans., 99, 10143–10162,
doi:10.1029/94jc00572, 1994.

FAO: ISRIC ISSCAS Harmonized World Soil Database v1.2,
Rome, Italy, 2012.

Franz, T. E., Zreda, M., Ferre, T. P. A., Rosolem, R., Zweck, C.,
Stillman, S., Zeng, X., and Shuttleworth, W. J.: Measurement
depth of the cosmic ray soil moisture probe affected by hy-
drogen from various sources, Water Resour. Res., 48, W08515,
doi:10.1029/2012wr011871, 2012.

Franz, T. E., Zreda, M., Ferre, T. P. A., and Rosolem, R.: An as-
sessment of the effect of horizontal soil moisture heterogeneity
on the area-average measurement of cosmic-ray neutrons, Water
Resour. Res., 49, 6450–6458, doi:10.1002/Wrcr.20530, 2013.

Geologischer Dienst Nordrhein-Westfalen: Informationssystem
Bodenkarte 50, 1 : 50 000, Geologischer Dienst Nordrhein-
Westfalen, Krefeld, Germany, 2009.

Han, X., Li, X., Franssen, H. J. H., Vereecken, H., and Montzka,
C.: Spatial horizontal correlation characteristics in the land data
assimilation of soil moisture, Hydrol. Earth Syst. Sci., 16, 1349–
1363, doi:10.5194/hess-16-1349-2012, 2012.

Han, X., Franssen, H. J. H., Rosolem, R., Jin, R., Li, X., and
Vereecken, H.: Correction of systematic model forcing bias of
CLM using assimilation of cosmic-ray Neutrons and land sur-
face temperature: a study in the Heihe Catchment, China, Hy-
drol. Earth Syst. Sci., 19, 615–629, doi:10.5194/hess-19-615-
2015, 2015.

Han, X., Franssen, H. J. H., Bello, M. A. J., Rosolem, R., Bogena,
H., Alzamora, F. M., Chanzy, A., and Vereecken, H.: Simultane-
ous Soil Moisture and Properties Estimation for a Drip Irrigated
Field by Assimilating Cosmic-ray Neutron Intensity, J. Hydrol.,
539, 611–624, doi:10.1016/j.jhydrol.2016.05.050, 2016.

Han, X. J., Franssen, H. J. H., Li, X., Zhang, Y. L., Montzka, C.,
and Vereecken, H.: Joint Assimilation of Surface Temperature
and L-Band Microwave Brightness Temperature in Land Data
Assimilation, Vadose Zone J., 12, 3, doi:10.2136/vzj2012.0072,
2013.

Han, X. J., Franssen, H. J. H., Montzka, C., and Vereecken, H.: Soil
moisture and soil properties estimation in the Community Land
Model with synthetic brightness temperature observations, Wa-
ter Resour. Res., 50, 6081–6105, doi:10.1002/2013WR014586,
2014.

Hawdon, A., McJannet, D., and Wallace, J.: Calibration and cor-
rection procedures for cosmic-ray neutron soil moisture probes
located across Australia, Water Resour. Res., 50, 5029–5043,
doi:10.1002/2013WR015138, 2014.

Hendricks Franssen, H. J. and Kinzelbach, W.: Real-time
groundwater flow modeling with the Ensemble Kalman Fil-
ter: Joint estimation of states and parameters and the fil-
ter inbreeding problem, Water Resour. Res., 44, W09408,
doi:10.1029/2007wr006505, 2008.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient
data assimilation for spatiotemporal chaos: A local en-
semble transform Kalman filter, Physica D, 230, 112–126,
doi:10.1016/j.physd.2006.11.008, 2007.

Iwema, J., Rosolem, R., Baatz, R., Wagener, T., and Bogena,
H. R.: Investigating temporal field sampling strategies for site-
specific calibration of three soil moisture-neutron intensity pa-
rameterisation methods, Hydrol. Earth Syst. Sci., 19, 3203–3216,
doi:10.5194/hess-19-3203-2015, 2015.

Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J.,
Swift, C. T., Isham, J. D., and Haken, M.: Soil moisture map-
ping at regional scales using microwave radiometry: The South-
ern Great Plains Hydrology Experiment, IEEE T. Geosci. Re-
mote, 37, 2136–2151, doi:10.1109/36.789610, 1999.

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferraz-
zoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Ju-
glea, S. E., Leroux, D., Mialon, A., and Delwart, S.: The SMOS
Soil Moisture Retrieval Algorithm, IEEE T. Geosci. Remote, 50,
1384–1403, doi:10.1109/Tgrs.2012.2184548, 2012.

Kirkpatrick, J. B., Green, K., Bridle, K. L., and Venn, S. E.: Patterns
of variation in Australian alpine soils and their relationships to
parent material, vegetation formation, climate and topography,
Catena, 121, 186–194, doi:10.1016/j.catena.2014.05.005, 2014.

Kohli, M., Schron, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour.
Res., 51, 5772–5790, doi:10.1002/2015WR017169, 2015.

Korres, W., Reichenau, T. G., Fiener, P., Koyama, C. N., Bogena,
H. R., Comelissen, T., Baatz, R., Herbst, M., Diekkruger, B.,
Vereecken, H., and Schneider, K.: Spatio-temporal soil moisture
patterns – A meta-analysis using plot to catchment scale data,
J. Hydrol., 520, 326–341, doi:10.1016/j.jhydrol.2014.11.042,
2015.

Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox,
P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu,
P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko,
D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M.,
Verseghy, D., Vasic, R., Xue, Y. K., Yamada, T., and Team, G.:
Regions of strong coupling between soil moisture and precipi-

Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017 www.hydrol-earth-syst-sci.net/21/2509/2017/

http://dx.doi.org/10.1029/2008JD011650
http://dx.doi.org/10.1029/2004wr003449
http://dx.doi.org/10.1029/97wr03499
http://dx.doi.org/10.1002/2012wr013443
http://dx.doi.org/10.1016/j.advwatres.2015.09.008
http://dx.doi.org/10.1002/hyp.10929
http://dx.doi.org/10.1029/94jc00572
http://dx.doi.org/10.1029/2012wr011871
http://dx.doi.org/10.1002/Wrcr.20530
http://dx.doi.org/10.5194/hess-16-1349-2012
http://dx.doi.org/10.5194/hess-19-615-2015
http://dx.doi.org/10.5194/hess-19-615-2015
http://dx.doi.org/10.1016/j.jhydrol.2016.05.050
http://dx.doi.org/10.2136/vzj2012.0072
http://dx.doi.org/10.1002/2013WR014586
http://dx.doi.org/10.1002/2013WR015138
http://dx.doi.org/10.1029/2007wr006505
http://dx.doi.org/10.1016/j.physd.2006.11.008
http://dx.doi.org/10.5194/hess-19-3203-2015
http://dx.doi.org/10.1109/36.789610
http://dx.doi.org/10.1109/Tgrs.2012.2184548
http://dx.doi.org/10.1016/j.catena.2014.05.005
http://dx.doi.org/10.1002/2015WR017169
http://dx.doi.org/10.1016/j.jhydrol.2014.11.042


R. Baatz et al.: Evaluation of a cosmic-ray neutron sensor network for land surface model prediction 2529

tation, Science, 305, 1138–1140, doi:10.1126/science.1100217,
2004.

Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D.,
Yatheendradas, S., and Santanello, J. A.: A comparison of meth-
ods for a priori bias correction in soil moisture data assimilation,
Water Resour. Res., 48, W03515, doi:10.1029/2010wr010261,
2012.

Kurtz, W., He, G. W., Kollet, S. J., Maxwell, R. M., Vereecken,
H., and Franssen, H. J. H.: TerrSysMP-PDAF (version 1.0): a
modular high-performance data assimilation framework for an
integrated land surface-subsurface model, Geosci. Model Dev.,
9, 1341–1360, doi:10.5194/gmd-9-1341-2016, 2016.

Lawrence, D. M. and Slater, A. G.: Incorporating organic soil
into a global climate model, Clim. Dynam., 30, 145–160,
doi:10.1007/s00382-007-0278-1, 2008.

Lee, J. H.: Spatial-Scale Prediction of the SVAT Soil Hydraulic
Variables Characterizing Stratified Soils on the Tibetan Plateau
from an EnKF Analysis of SAR Soil Moisture, Vadose Zone J.,
13, 11, doi:10.2136/vzj2014.06.0060, 2014.

Montzka, C., Canty, M., Kunkel, R., Menz, G., Vereecken, H., and
Wendland, F.: Modelling the water balance of a mesoscale catch-
ment basin using remotely sensed land cover data, J. Hydrol.,
353, 322–334, doi:10.1016/j.jhydrol.2008.02.018, 2008.

Montzka, C., Moradkhani, H., Weihermuller, L., Franssen, H.
J. H., Canty, M., and Vereecken, H.: Hydraulic parame-
ter estimation by remotely-sensed top soil moisture obser-
vations with the particle filter, J. Hydrol., 399, 410–421,
doi:10.1016/j.jhydrol.2011.01.020, 2011.

Montzka, C., Pauwels, V. R. N., Franssen, H. J. H., Han, X. J., and
Vereecken, H.: Multivariate and Multiscale Data Assimilation in
Terrestrial Systems: A Review, Sensors-Basel, 12, 16291–16333,
doi:10.3390/s121216291, 2012.

Montzka, C., Grant, J. P., Moradkhani, H., Franssen, H. J. H., Wei-
hermuller, L., Drusch, M., and Vereecken, H.: Estimation of
Radiative Transfer Parameters from L-Band Passive Microwave
Brightness Temperatures Using Advanced Data Assimilation,
Vadose Zone J., 12, 3, doi:10.2136/vzj2012.0040, 2013.

Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P.
R.: Dual state-parameter estimation of hydrological models us-
ing ensemble Kalman filter, Adv. Water Resour., 28, 135–147,
doi:10.1016/j.advwatres.2004.09.002, 2005.

Nearing, G. S., Mocko, D. M., Peters-Lidard, C. D., Kumar, S.
V., and Xia, Y. L.: Benchmarking NLDAS-2 Soil Moisture
and Evapotranspiration to Separate Uncertainty Contributions,
J. Hydrometeorol., 17, 745–759, doi:10.1175/Jhm-D-15-0063.1,
2016.

Oglesby, R. J. and Erickson, D. J.: Soil-Moisture and the Persis-
tence of North-American Drought, J. Climate, 2, 1362–1380,
doi:10.1175/1520-0442(1989)002<1362:Smatpo>2.0.Co;2,
1989.

Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang,
M., Koven, C. D., Levis, S., Li, F., Riley, J. M., Subin, Z. M.,
Swenson, S., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald,
C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L.
R., Lipscomb, W., Muszala, S. P., Ricciuto, D. M., Sacks, W. J.,
Sun, Y., Tang, J., and Yang, Z.-L.: Technical description of ver-
sion 4.5 of the Community Land Model (CLM), NCAR Techni-
cal Note NCAR/TN-503+STR, NCAR, Boulder, Colorado, 1–
435, doi:10.5065/D6RR1W7M, 2013.

Patil, N. G. and Singh, S. K.: Pedotransfer Functions for Estimating
Soil Hydraulic Properties: A Review, Pedosphere, 26, 417–430,
doi:10.1016/S1002-0160(15)60054-6, 2016.

Pauwels, V. R. N., Balenzano, A., Satalino, G., Skriver, H., Ver-
hoest, N. E. C., and Mattia, F.: Optimization of Soil Hydraulic
Model Parameters Using Synthetic Aperture Radar Data: An In-
tegrated Multidisciplinary Approach, IEEEE T. Geosci. Remote,
47, 455–467, doi:10.1109/Tgrs.2008.2007849, 2009.

Pelowitz, D. B.: MCNPX user’s manual, version 5, Rep. LA-CP-
05-0369, Los Alamos National Laboratory, Los Alamos, 2005.

Ray, N. H.: Gas Chromatography. 1. The Separation and Estimation
of Volatile Organic Compounds by Gas-Liquid Partition Chro-
matography, J. Appl. Chem., 4, 21–25, 1954.

Reichle, R. H.: Data assimilation methods in the
Earth sciences, Adv. Water Resour., 31, 1411–1418,
doi:10.1016/j.advwatres.2008.01.001, 2008.

Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hy-
drologic data assimilation with the ensemble Kalman fil-
ter, Mon. Weather Rev., 130, 103–114, doi:10.1175/1520-
0493(2002)130<0103:Hdawte>2.0.Co;2, 2002a.

Reichle, R. H., Walker, J. P., Koster, R. D., and Houser, P. R.:
Extended versus ensemble Kalman filtering for land data as-
similation, J. Hydrometeorol., 3, 728–740, doi:10.1175/1525-
7541(2002)003<0728:Evekff>2.0.Co;2, 2002b.

Reichle, R. H., Kumar, S. V., Mahanama, S. P. P., Koster, R. D.,
and Liu, Q.: Assimilation of Satellite-Derived Skin Temperature
Observations into Land Surface Models, J. Hydrometeorol., 11,
1103–1122, doi:10.1175/2010jhm1262.1, 2010.

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B.
K., Jones, S. B., Knight, R., Ogden, F., Selker, J., and Wendroth,
O.: Soil moisture measurement for ecological and hydrological
watershed-scale observatories: A review, Vadose Zone J., 7, 358–
389,doi:10.2136/Vzj2007.0143, 2008.

Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttle-
worth, W. J., Zeng, X., and Franz, T. E.: Translating aboveground
cosmic-ray neutron intensity to high-frequency soil moisture pro-
files at sub-kilometer scale, Hydrol. Earth Syst. Sci., 18, 4363–
4379, doi:10.5194/hess-18-4363-2014, 2014.

scilands GmbH: Digital Elevation Model 10 without anthropogenic
landforms, Göttingen, 2010.

Seneviratne, S. I., Luthi, D., Litschi, M., and Schar, C.: Land–
atmosphere coupling and climate change in Europe, Nature, 443,
205–209, doi:10.1038/Nature05095, 2006.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M.,
Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling,
A. J.: Investigating soil moisture–climate interactions in a
changing climate: A review, Earth-Sci. Rev., 99, 125–161,
doi:10.1016/j.earscirev.2010.02.004, 2010.

Shi, Y. N., Davis, K. J., Zhang, F. Q., Duffy, C. J., and Yu, X.: Pa-
rameter estimation of a physically based land surface hydrologic
model using the ensemble Kalman filter: A synthetic experiment,
Water Resour. Res., 50, 706–724, doi:10.1002/2013wr014070,
2014.

Shi, Y. N., Davis, K. J., Zhang, F. Q., Duffy, C. J., and Yu,
X.: Parameter estimation of a physically-based land surface
hydrologic model using an ensemble Kalman filter: A multi-
variate real-data experiment, Adv. Water Resour., 83, 421–427,
doi:10.1016/j.advwatres.2015.06.009, 2015.

www.hydrol-earth-syst-sci.net/21/2509/2017/ Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017

http://dx.doi.org/10.1126/science.1100217
http://dx.doi.org/10.1029/2010wr010261
http://dx.doi.org/10.5194/gmd-9-1341-2016
http://dx.doi.org/10.1007/s00382-007-0278-1
http://dx.doi.org/10.2136/vzj2014.06.0060
http://dx.doi.org/10.1016/j.jhydrol.2008.02.018
http://dx.doi.org/10.1016/j.jhydrol.2011.01.020
http://dx.doi.org/10.3390/s121216291
http://dx.doi.org/10.2136/vzj2012.0040
http://dx.doi.org/10.1016/j.advwatres.2004.09.002
http://dx.doi.org/10.1175/Jhm-D-15-0063.1
http://dx.doi.org/10.1175/1520-0442(1989)002<1362:Smatpo>2.0.Co;2
http://dx.doi.org/10.5065/D6RR1W7M
http://dx.doi.org/10.1016/S1002-0160(15)60054-6
http://dx.doi.org/10.1109/Tgrs.2008.2007849
http://dx.doi.org/10.1016/j.advwatres.2008.01.001
http://dx.doi.org/10.1175/1520-0493(2002)130<0103:Hdawte>2.0.Co;2
http://dx.doi.org/10.1175/1520-0493(2002)130<0103:Hdawte>2.0.Co;2
http://dx.doi.org/10.1175/1525-7541(2002)003<0728:Evekff>2.0.Co;2
http://dx.doi.org/10.1175/1525-7541(2002)003<0728:Evekff>2.0.Co;2
http://dx.doi.org/10.1175/2010jhm1262.1
http://dx.doi.org/10.2136/Vzj2007.0143
http://dx.doi.org/10.5194/hess-18-4363-2014
http://dx.doi.org/10.1038/Nature05095
http://dx.doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1002/2013wr014070
http://dx.doi.org/10.1016/j.advwatres.2015.06.009


2530 R. Baatz et al.: Evaluation of a cosmic-ray neutron sensor network for land surface model prediction

Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A
Scale-Consistent Terrestrial Systems Modeling Platform Based
on COSMO, CLM, and ParFlow, Mon. Weather Rev., 142, 3466–
3483, doi:10.1175/Mwr-D-14-00029.1, 2014.

Shuttleworth, J., Rosolem, R., Zreda, M., and Franz, T.: The
COsmic-ray Soil Moisture Interaction Code (COSMIC) for use
in data assimilation, Hydrol. Earth Syst. Sci., 17, 3205–3217,
doi:10.5194/hess-17-3205-2013, 2013.

Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Bogena,
H., Crewell, S., Diekkruger, B., Ewert, F., Franssen, H. J. H.,
Huisman, J. A., Kemna, A., Klitzsch, N., Kollet, S., Langen-
siepen, M., Lohnert, U., Rahman, A. S. M. M., Rascher, U.,
Schneider, K., Schween, J., Shao, Y. P., Shrestha, P., Stiebler,
M., Sulis, M., Vanderborght, J., Vereecken, H., van der Kruk, J.,
Waldhoff, G., and Zerenner, T.: Monitoring and modeling the ter-
restrial system from pores to catchment, The Transregional Col-
laborative Research Center on Patterns in the Soil–Vegetation–
Atmosphere System, B. Am. Meteorol. Soc., 96, 1765–1787,
doi:10.1175/Bams-D-13-00134.1, 2015.

Song, X. H., Shi, L. S., Ye, M., Yang, J. Z., and Navon, I. M.:
Numerical Comparison of Iterative Ensemble Kalman Filters
for Unsaturated Flow Inverse Modeling, Vadose Zone J., 13, 2,
doi:10.2136/vzj2013.05.0083, 2014.

Sun, Y., Hou, Z., Huang, M., Tian, F., and Leung, L. R.: Inverse
modeling of hydrologic parameters using surface flux and runoff
observations in the Community Land Model, Hydrol. Earth Syst.
Sci., 17, 4995–5011, doi:10.5194/hess-17-4995-2013, 2013.

Temimi, M., Lakhankar, T., Zhan, X. W., Cosh, M. H., Krakauer,
N., Fares, A., Kelly, V., Khanbilvardi, R., and Kumassi, L.: Soil
Moisture Retrieval Using Ground-Based L-Band Passive Mi-
crowave Observations in Northeastern USA, Vadose Zone J., 13,
3, doi:10.2136/vzj2013.06.0101, 2014.

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt,
J. A., and Hopmans, J. W.: On the value of soil moisture measure-
ments in vadose zone hydrology: A review, Water Resour. Res.,
44, W00d06, doi:10.1029/2008wr006829, 2008.

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D.,
Roose, D. O. T., Vanderborght, J., Young, M. H., Amelung, W.,
Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli,
M., Bruggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G.,
Ghezzehei, T., Hallett, P., Franssen, H. J. H., Heppell, J., Horn,
R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F.,
Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka,
C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth,
K., Rothfuss, Y., Rowe, E. C., Schwen, A., Simunek, J., Tiktak,
A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt,
J. A., Wohling, T., and Young, I. M.: Modeling Soil Processes:
Review, Key Challenges, and New Perspectives, Vadose Zone J.,
15, 5, doi:10.2136/vzj2015.09.0131, 2016.

Villarreyes, C. A. R., Baroni, G., and Oswald, S. E.: In-
verse modelling of cosmic-ray soil moisture for field-scale
soil hydraulic parameters, Eur. J. Soil Sci., 65, 876–886,
doi:10.1111/ejss.12162, 2014.

Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., and
Verstraten, J. M.: Improved treatment of uncertainty in hydro-
logic modeling: Combining the strengths of global optimiza-
tion and data assimilation, Water Resour. Res., 41, W01017,
doi:10.1029/2004wr003059, 2005.

Waldhoff, G.: Enhanced Land Use Classification of 2009 for
the Rur catchment, CRC/TR32 Database (TR32DB), Cologne,
doi:10.5880/TR32DB.2, 2012.

Whan, K., Zscheischler, J., Orth, R., Shongwe, M., Rahimi, M.,
Asare, E. O., and Seneviratne, S. I.: Impact of soil moisture on
extreme maximum temperatures in Europe, Weather Clim. Extr.,
9, 57–67, doi:10.1016/j.wace.2015.05.001, 2015.

Wu, C. C. and Margulis, S. A.: Feasibility of real-time soil state
and flux characterization for wastewater reuse using an embed-
ded sensor network data assimilation approach, J. Hydrol., 399,
313–325, doi:10.1016/j.jhydrol.2011.01.011, 2011.

Wu, C. C. and Margulis, S. A.: Real-Time Soil Moisture and Salin-
ity Profile Estimation Using Assimilation of Embedded Sensor
Datastreams, Vadose Zone J., 12, 1, doi:10.2136/vzj2011.0176,
2013.

Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuss, R.,
Putz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-
Bahl, K., Bens, O., Borg, E., Brauer, A., Dietrich, P., Hajnsek,
I., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J. C.,
Papen, H., Priesack, E., Schmid, H. P., Steinbrecher, R., Rosen-
baum, U., Teutsch, G., and Vereecken, H.: A Network of Terres-
trial Environmental Observatories in Germany, Vadose Zone J.,
10, 955–973, doi:10.2136/Vzj2010.0139, 2011.

Zreda, M., Desilets, D., Ferre, T. P. A., and Scott, R. L.: Measuring
soil moisture content non-invasively at intermediate spatial scale
using cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402,
doi:10.1029/2008GL035655, 2008.

Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets,
D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray
Soil Moisture Observing System (vol. 16, pg. 4079, 2012), Hy-
drol. Earth Syst. Sci., 17, 1065–1066, doi:10.5194/hess-17-1065-
2013, 2012.

Hydrol. Earth Syst. Sci., 21, 2509–2530, 2017 www.hydrol-earth-syst-sci.net/21/2509/2017/

http://dx.doi.org/10.1175/Mwr-D-14-00029.1
http://dx.doi.org/10.5194/hess-17-3205-2013
http://dx.doi.org/10.1175/Bams-D-13-00134.1
http://dx.doi.org/10.2136/vzj2013.05.0083
http://dx.doi.org/10.5194/hess-17-4995-2013
http://dx.doi.org/10.2136/vzj2013.06.0101
http://dx.doi.org/10.1029/2008wr006829
http://dx.doi.org/10.2136/vzj2015.09.0131
http://dx.doi.org/10.1111/ejss.12162
http://dx.doi.org/10.1029/2004wr003059
http://dx.doi.org/10.5880/TR32DB.2
http://dx.doi.org/10.1016/j.wace.2015.05.001
http://dx.doi.org/10.1016/j.jhydrol.2011.01.011
http://dx.doi.org/10.2136/vzj2011.0176
http://dx.doi.org/10.2136/Vzj2010.0139
http://dx.doi.org/10.1029/2008GL035655
http://dx.doi.org/10.5194/hess-17-1065-2013
http://dx.doi.org/10.5194/hess-17-1065-2013

	Abstract
	Introduction
	Materials and methods
	Site description and measurements
	Community Land Model and parameterization
	Cosmic-ray forward model
	Data assimilation

	Model and experiment setup
	Model setup
	Model ensemble
	Experiment set-up

	Results and discussion
	General results
	Temporal evolution of mean ERMS
	Jackknife simulations
	Temporal evolution of parameter estimates and parameter uncertainty
	Latent heat flux

	Conclusions and outlook
	Data availability
	Appendix A
	Competing interests
	Acknowledgements
	References

