Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1849-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-1849-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Estimating annual water storage variations in medium-scale (2000–10 000 km2) basins using microwave-based soil moisture retrievals
USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA
Eunjin Han
International Research Institute for Climate and Society, Columbia
University, NY, USA
Dongryeol Ryu
Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
Christopher R. Hain
NASA Marshall Space Flight Center, Earth Science Branch,
Huntsville, AL, USA
Martha C. Anderson
USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA
Related authors
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Yixin Mao, Wade T. Crow, and Bart Nijssen
Hydrol. Earth Syst. Sci., 24, 615–631, https://doi.org/10.5194/hess-24-615-2020, https://doi.org/10.5194/hess-24-615-2020, 2020
Short summary
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.
Jianxiu Qiu, Wade T. Crow, Jianzhi Dong, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 24, 581–594, https://doi.org/10.5194/hess-24-581-2020, https://doi.org/10.5194/hess-24-581-2020, 2020
Short summary
Short summary
Accurately estimating coupling of evapotranspiration (ET) and soil water content (θ) at different depths is key to investigating land–atmosphere interaction. Here we examine whether the model can accurately represent surface θ (θs) versus ET coupling and vertically integrated θ (θv) versus ET coupling. We find that all models agree with observations that θs contains slightly more information with fPET than θv. In addition, an ET scheme is crucial for accurately estimating coupling of θ and ET.
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
Kenneth J. Tobin, Roberto Torres, Wade T. Crow, and Marvin E. Bennett
Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, https://doi.org/10.5194/hess-21-4403-2017, 2017
Short summary
Short summary
This study applied the exponential filter to produce an estimate of root-zone soil moisture at 20 to 25 cm depths. Four types of microwave, surface satellite soil moisture were used. The study focused on the continental United States, and in situ data were used from the International Soil Moisture Network for comparison. This study spans almost two decades (1997 to 2014). Root mean square error was close to 0.04, which is the baseline value for accuracy designated for many satellite missions.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
T. R. H. Holmes, W. T. Crow, and C. Hain
Hydrol. Earth Syst. Sci., 17, 3695–3706, https://doi.org/10.5194/hess-17-3695-2013, https://doi.org/10.5194/hess-17-3695-2013, 2013
R. Bradley Pierce, Monica Harkey, Allen Lenzen, Lee M. Cronce, Jason A. Otkin, Jonathan L. Case, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 9613–9635, https://doi.org/10.5194/acp-23-9613-2023, https://doi.org/10.5194/acp-23-9613-2023, 2023
Short summary
Short summary
We evaluate two high-resolution model simulations with different meteorological inputs but identical chemistry and anthropogenic emissions, with the goal of identifying a model configuration best suited for characterizing air quality in locations where lake breezes commonly affect local air quality along the Lake Michigan shoreline. This analysis complements other studies in evaluating the impact of meteorological inputs and parameterizations on air quality in a complex environment.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western
Hydrol. Earth Syst. Sci., 25, 2663–2683, https://doi.org/10.5194/hess-25-2663-2021, https://doi.org/10.5194/hess-25-2663-2021, 2021
Short summary
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Sangchul Lee, Gregory W. McCarty, Glenn E. Moglen, Haw Yen, Fangni Lei, Martha Anderson, Feng Gao, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-669, https://doi.org/10.5194/hess-2020-669, 2021
Publication in HESS not foreseen
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Yixin Mao, Wade T. Crow, and Bart Nijssen
Hydrol. Earth Syst. Sci., 24, 615–631, https://doi.org/10.5194/hess-24-615-2020, https://doi.org/10.5194/hess-24-615-2020, 2020
Short summary
Short summary
The new generation of satellite soil moisture observations are used to correct the streamflow in a regional-scale river basin simulated by a mathematical model. The correction is done via both the direct updating of soil moisture and correction of rainfall input. Results show some streamflow improvement, but the magnitude is small. A larger improvement will need future generations of even higher-quality satellite soil moisture data and better process representation in the mathematical model.
Jianxiu Qiu, Wade T. Crow, Jianzhi Dong, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 24, 581–594, https://doi.org/10.5194/hess-24-581-2020, https://doi.org/10.5194/hess-24-581-2020, 2020
Short summary
Short summary
Accurately estimating coupling of evapotranspiration (ET) and soil water content (θ) at different depths is key to investigating land–atmosphere interaction. Here we examine whether the model can accurately represent surface θ (θs) versus ET coupling and vertically integrated θ (θv) versus ET coupling. We find that all models agree with observations that θs contains slightly more information with fPET than θv. In addition, an ET scheme is crucial for accurately estimating coupling of θ and ET.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
Kenneth J. Tobin, Roberto Torres, Wade T. Crow, and Marvin E. Bennett
Hydrol. Earth Syst. Sci., 21, 4403–4417, https://doi.org/10.5194/hess-21-4403-2017, https://doi.org/10.5194/hess-21-4403-2017, 2017
Short summary
Short summary
This study applied the exponential filter to produce an estimate of root-zone soil moisture at 20 to 25 cm depths. Four types of microwave, surface satellite soil moisture were used. The study focused on the continental United States, and in situ data were used from the International Soil Moisture Network for comparison. This study spans almost two decades (1997 to 2014). Root mean square error was close to 0.04, which is the baseline value for accuracy designated for many satellite missions.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Min Huang, Gregory R. Carmichael, James H. Crawford, Armin Wisthaler, Xiwu Zhan, Christopher R. Hain, Pius Lee, and Alex B. Guenther
Geosci. Model Dev., 10, 3085–3104, https://doi.org/10.5194/gmd-10-3085-2017, https://doi.org/10.5194/gmd-10-3085-2017, 2017
Short summary
Short summary
Various sensitivity simulations during two airborne campaigns were performed to assess the impact of different initialization methods and model resolutions on NUWRF-modeled weather states, heat fluxes, and the follow-on MEGAN isoprene emission calculations. Proper land initialization is shown to be important to the coupled weather modeling and the follow-on emission modeling, which is also critical to accurately representing other processes in air quality modeling and data assimilation.
Jordi Cristóbal, Anupma Prakash, Martha C. Anderson, William P. Kustas, Eugénie S. Euskirchen, and Douglas L. Kane
Hydrol. Earth Syst. Sci., 21, 1339–1358, https://doi.org/10.5194/hess-21-1339-2017, https://doi.org/10.5194/hess-21-1339-2017, 2017
Short summary
Short summary
Quantifying trends in surface energy fluxes is crucial for forecasting ecological responses in Arctic regions.
An extensive evaluation using a thermal-based remote sensing model and ground measurements was performed in Alaska's Arctic tundra for 5 years. Results showed an accurate temporal trend of surface energy fluxes in concert with vegetation dynamics. This work builds toward a regional implementation over Arctic ecosystems to assess response of surface energy fluxes to climate change.
Yun Yang, Martha C. Anderson, Feng Gao, Christopher R. Hain, Kathryn A. Semmens, William P. Kustas, Asko Noormets, Randolph H. Wynne, Valerie A. Thomas, and Ge Sun
Hydrol. Earth Syst. Sci., 21, 1017–1037, https://doi.org/10.5194/hess-21-1017-2017, https://doi.org/10.5194/hess-21-1017-2017, 2017
Short summary
Short summary
This work explores the utility of a thermal remote sensing based MODIS/Landsat ET data fusion procedure over a mixed forested/agricultural landscape in North Carolina, USA. The daily ET retrieved at 30 m resolution agreed well with measured fluxes in a clear-cut and a mature pine stand. An accounting of consumptive water use by land cover classes is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components.
Joseph G. Alfieri, Martha C. Anderson, William P. Kustas, and Carmelo Cammalleri
Hydrol. Earth Syst. Sci., 21, 83–98, https://doi.org/10.5194/hess-21-83-2017, https://doi.org/10.5194/hess-21-83-2017, 2017
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
Ting Xia, William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Feng Gao, Lynn McKee, John H. Prueger, Hatim M. E. Geli, Christopher M. U. Neale, Luis Sanchez, Maria Mar Alsina, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 20, 1523–1545, https://doi.org/10.5194/hess-20-1523-2016, https://doi.org/10.5194/hess-20-1523-2016, 2016
Short summary
Short summary
This paper describes a model inter-comparison and validation study conducted using sub-meter resolution thermal data from an aircraft. The model inter-comparison is between a physically based model and a very simple empirical model. The strengths and weaknesses of both modeling approaches for high-resolution mapping of water use in vineyards is described. The findings provide significant insight into the utility of complex versus simple models for precise water resources management.
C. Alvarez-Garreton, D. Ryu, A. W. Western, C.-H. Su, W. T. Crow, D. E. Robertson, and C. Leahy
Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, https://doi.org/10.5194/hess-19-1659-2015, 2015
Short summary
Short summary
We assimilate satellite soil moisture into a rainfall-runoff model for improving flood prediction within a data-scarce region. We argue that the spatially distributed satellite data can alleviate the model prediction limitations. We show that satellite soil moisture DA reduces the uncertainty of the streamflow ensembles. We propose new techniques for the DA scheme, including seasonal error characterisation, bias correction of the satellite retrievals, and model error representation.
M. A. Schull, M. C. Anderson, R. Houborg, A. Gitelson, and W. P. Kustas
Biogeosciences, 12, 1511–1523, https://doi.org/10.5194/bg-12-1511-2015, https://doi.org/10.5194/bg-12-1511-2015, 2015
C.-H. Su and D. Ryu
Hydrol. Earth Syst. Sci., 19, 17–31, https://doi.org/10.5194/hess-19-17-2015, https://doi.org/10.5194/hess-19-17-2015, 2015
Short summary
Short summary
Global environmental monitoring requires geophysical measurements from a variety of sources and sensors to close the information gap. This paper proposes a novel approach for analysing temporal scale-by-scale differences (biases and errors) between geophysical estimates from disparate sources. This allows assessment of different bias correction schemes, and forms the basis for a multi-scale bias correction scheme and data-adaptive, non-linear de-noising.
C. Cammalleri, M. C. Anderson, and W. P. Kustas
Hydrol. Earth Syst. Sci., 18, 1885–1894, https://doi.org/10.5194/hess-18-1885-2014, https://doi.org/10.5194/hess-18-1885-2014, 2014
T. R. H. Holmes, W. T. Crow, and C. Hain
Hydrol. Earth Syst. Sci., 17, 3695–3706, https://doi.org/10.5194/hess-17-3695-2013, https://doi.org/10.5194/hess-17-3695-2013, 2013
R. Guzinski, M. C. Anderson, W. P. Kustas, H. Nieto, and I. Sandholt
Hydrol. Earth Syst. Sci., 17, 2809–2825, https://doi.org/10.5194/hess-17-2809-2013, https://doi.org/10.5194/hess-17-2809-2013, 2013
J. Cristóbal and M. C. Anderson
Hydrol. Earth Syst. Sci., 17, 163–175, https://doi.org/10.5194/hess-17-163-2013, https://doi.org/10.5194/hess-17-163-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Instruments and observation techniques
Wetting and drying trends in the land–atmosphere reservoir of large basins around the world
HESS Opinions: Towards a common vision for the future of hydrological observatories
Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor observations across the globe
Evaporation enhancement drives the European water-budget deficit during multi-year droughts
Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream
Technical note: Evaluation and bias correction of an observation-based global runoff dataset using streamflow observations from small tropical catchments in the Philippines
Hydrology and water resources management in ancient India
Terrestrial water loss at night: global relevance from observations and climate models
Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
SMOS brightness temperature assimilation into the Community Land Model
SMOS near-real-time soil moisture product: processor overview and first validation results
Recent trends and variability in river discharge across northern Canada
Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation – a case study in Nanjing, eastern China
The "Prediflood" database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis
Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation
Geodynamical processes in the channel connecting the two lobes of the Large Aral Sea
Juan F. Salazar, Ruben D. Molina, Jorge I. Zuluaga, and Jesus D. Gomez-Velez
Hydrol. Earth Syst. Sci., 28, 2919–2947, https://doi.org/10.5194/hess-28-2919-2024, https://doi.org/10.5194/hess-28-2919-2024, 2024
Short summary
Short summary
Global change is altering river basins and their discharge worldwide. We introduce the land–atmosphere reservoir (LAR) concept to investigate these changes in six of the world's largest basins. We found that low-latitude basins (Amazon, Paraná, and Congo) are getting wetter, whereas high-latitude basins (Mississippi, Ob, and Yenisei) are drying. If this continues, these long-term trends will disrupt the discharge regime and compromise the sustainability of these basins with widespread impacts.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Nataline Simon, Olivier Bour, Mikaël Faucheux, Nicolas Lavenant, Hugo Le Lay, Ophélie Fovet, Zahra Thomas, and Laurent Longuevergne
Hydrol. Earth Syst. Sci., 26, 1459–1479, https://doi.org/10.5194/hess-26-1459-2022, https://doi.org/10.5194/hess-26-1459-2022, 2022
Short summary
Short summary
Groundwater discharge into streams plays a major role in the preservation of stream ecosystems. There were two complementary methods, both based on the use of the distributed temperature sensing technology, applied in a headwater catchment. Measurements allowed us to characterize the spatial and temporal patterns of groundwater discharge and quantify groundwater inflows into the stream, opening very promising perspectives for a novel characterization of the groundwater–stream interface.
Daniel E. Ibarra, Carlos Primo C. David, and Pamela Louise M. Tolentino
Hydrol. Earth Syst. Sci., 25, 2805–2820, https://doi.org/10.5194/hess-25-2805-2021, https://doi.org/10.5194/hess-25-2805-2021, 2021
Short summary
Short summary
We evaluate a recently published global product of monthly runoff using streamflow data from small tropical catchments in the Philippines. Using monthly runoff observations from catchments, we tested for correlation and prediction. We demonstrate the potential utility of this product in assessing trends in regional-scale runoff, as well as look at the correlation of phenomenon such as the El Niño–Southern Oscillation on streamflow in this wet but drought-prone archipelago.
Pushpendra Kumar Singh, Pankaj Dey, Sharad Kumar Jain, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 24, 4691–4707, https://doi.org/10.5194/hess-24-4691-2020, https://doi.org/10.5194/hess-24-4691-2020, 2020
Short summary
Short summary
Like in all ancient civilisations, the need to manage water propelled the growth of hydrological science in ancient India also. In this paper, we provide some fascinating glimpses into the hydrological, hydraulic, and related engineering knowledge that existed in ancient India, as discussed in contemporary literature and recent explorations and findings. Many interesting dimensions of early scientific endeavours emerge as we investigate deeper into ancient texts, including Indian mythology.
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020, https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
Short summary
We focus on the net exchange of water between land and air via evapotranspiration and dew during the night. We provide, for the first time, an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often overlooked flux, with implications for water resources and climate studies.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017, https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
Short summary
We have assimilated 6 years of satellite-observed passive microwave data into a state-of-the-art land surface model to improve surface soil moisture as well as root-zone soil moisture simulations. Long-term assimilation effects/biases are identified, and they are especially dependent on model perturbations, applied to simulate model uncertainty. The implications are put into context of using such assimilation-improved data for classifying extremes within hydrological monitoring systems.
Nemesio J. Rodríguez-Fernández, Joaquin Muñoz Sabater, Philippe Richaume, Patricia de Rosnay, Yann H. Kerr, Clement Albergel, Matthias Drusch, and Susanne Mecklenburg
Hydrol. Earth Syst. Sci., 21, 5201–5216, https://doi.org/10.5194/hess-21-5201-2017, https://doi.org/10.5194/hess-21-5201-2017, 2017
Short summary
Short summary
The new SMOS satellite near-real-time (NRT) soil moisture (SM) product based on a neural network is presented. The NRT SM product has been evaluated with respect to the SMOS Level 2 product and against a large number of in situ measurements showing performances similar to those of the Level 2 product but it is available in less than 3.5 h after sensing. The new product is distributed by the European Space Agency and the European Organisation for the Exploitation of Meteorological Satellites.
Stephen J. Déry, Tricia A. Stadnyk, Matthew K. MacDonald, and Bunu Gauli-Sharma
Hydrol. Earth Syst. Sci., 20, 4801–4818, https://doi.org/10.5194/hess-20-4801-2016, https://doi.org/10.5194/hess-20-4801-2016, 2016
Short summary
Short summary
This manuscript focuses on observed changes to the hydrology of 42 rivers in northern Canada draining one-half of its land mass over the period 1964–2013. Statistical and trend analyses are presented for the 42 individual rivers, 6 regional drainage basins, and collectively for all of northern Canada. A main finding is the reversal of a statistically significant decline in the first half of the study period to a statistically significant 18.1 % incline in river discharge across northern Canada.
Y. Tang, H. Pang, W. Zhang, Y. Li, S. Wu, and S. Hou
Hydrol. Earth Syst. Sci., 19, 4293–4306, https://doi.org/10.5194/hess-19-4293-2015, https://doi.org/10.5194/hess-19-4293-2015, 2015
Short summary
Short summary
We examined the variability of daily stable isotopic composition in precipitation in Nanjing, eastern China. We found that both the upstream rainout effect on stable isotopes related to changes in the Asian summer monsoon and the temperature effect of precipitation stable isotopes associated with the Asian winter monsoon should be taken into account when interpreting the stable isotopic composition of speleothems in the Asian monsoon region.
M. Barriendos, J. L. Ruiz-Bellet, J. Tuset, J. Mazón, J. C. Balasch, D. Pino, and J. L. Ayala
Hydrol. Earth Syst. Sci., 18, 4807–4823, https://doi.org/10.5194/hess-18-4807-2014, https://doi.org/10.5194/hess-18-4807-2014, 2014
Short summary
Short summary
This paper shows an interdisciplinary effort for a common methodology on flood risk analysis: hydraullics, hydrology, climatology and meteorology. Most basic problems of work with historical information are faced. Firsts results of data collection on historical floods for Catalonia (Ne Spain) are showed for period AD 1035-2014.
L. Seoane, G. Ramillien, F. Frappart, and M. Leblanc
Hydrol. Earth Syst. Sci., 17, 4925–4939, https://doi.org/10.5194/hess-17-4925-2013, https://doi.org/10.5194/hess-17-4925-2013, 2013
E. Roget, P. Zavialov, V. Khan, and M. A. Muñiz
Hydrol. Earth Syst. Sci., 13, 2265–2271, https://doi.org/10.5194/hess-13-2265-2009, https://doi.org/10.5194/hess-13-2265-2009, 2009
Cited articles
Abelen, S. and Seitz, F.: Relating satellite gravimetry data to global soil moisture products via data harmonization and correlation analysis, Rem. Sens. Environ., 136, 89–98, 2013.
Abelen, S., Seitz, F., Abarca-del-Rio, R., and Güntner, A.: Droughts and floods in the La Plata Basin in soil moisture data and GRACE, Remote Sens., 7, 7324–7349, https://doi.org/10.3390/rs70607324, 2015.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Torn, R. D., Kustas, W. P., and Basara, J. B.: A multi-scale remote sensing model for disaggregating regional fluxes to micrometeorological scales, J. Hydrometeor., 5, 343–363, 2004.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: I. Model formulation, J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007a.
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental U.S. based on thermal remote sensing: II. Surface moisture climatology, J. Geophys. Res., 112, D11112, https://doi.org/11110.11029/12006JD007507, 2007b.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Kustas, W. P., Alfieri, J. G., Hain, C. R., Prueger, J. H., Evett, S. R., Colaizzi, P. D., Howell, T. A., and Chavez, J. L.: Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign, Adv. Water Resour., 50, 162–177, 2012.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The effective number of spatial degrees of freedom of a time-varying field, J. Climate, 12, 1990–2009, 1999.
Cammalleri, C., Anderson, M. C., Gao, F., Hain, C. R., and Kustas, W. P.: A data fusion approach for mapping daily evapotranspiration at field scale, Water Resour. Res., 49, 1–15, https://doi.org/10.1002/wrcr.20349, 2013.
Cammalleri, C., Anderson, M. C., Gao, F., Hain, C. R., and Kustas, W. P.: Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion, Agric. For. Meteorol., 186, 1–11, 2014a.
Cammalleri, C., Anderson, M. C., and Kustas, W. P.: Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications, Hydrol. Earth Syst. Sci., 18, 1885–1894, https://doi.org/10.5194/hess-18-1885-2014, 2014b.
Chagnon, S.: Detecting drought conditions in Illinois, ISWA/CIR-169-87, 36 pp., 1987.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Chen, J. L., Wilson, C. R., Tapley, B. D., Yang, Z. L., and Niu, G. Y.: 2005 Drought event in the Amazon River basin as measured by GRACE and estimated by climate models, J. Geophys. Res., 114, B05404, https://doi.org/10.1029/2008JB006056, 2009.
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G., Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3–17, https://doi.org/10.1016/j.jhydrol.2005.07.031, 2006.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Entekhabi, D., Rodriguez-Iturbe, I., and Bras, R. L.: Variability in large-scale water-balance with land surface atmosphere interaction, J. Climate, 5, 798–813, 1992.
Goodison, B. E., Louie, P. Y. T., and Yang, D.: WMO solid precipitation measurement intercomparison, WMO Instruments and Observing Methods Rep. 67, WMO/TD-872, 212 pp., 1998.
Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C., and Holmes, T.: An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling, J. Geophys. Res., 116, D15107, https://doi.org/10.1029/2011JD015633, 2011.
Hain, C. R., Mecikalski, J. R., and Anderson, M. C.: Retrieval of an available water-based soil moisture proxy from thermal infrared remote sensing. Part I: Methodology and validation, J. Hydrometeor., 10, 665–683, 2009.
Hain, C. R., Crow, W. T., Anderson, M. C., and Yilmaz, M. T.: Diagnosing neglected soil moisture source/sink processes via a thermal infrared-based two-source energy balance model, J. Hydrometeor., 16, 1070–1086, https://doi.org/10.1175/JHM-D-14-0017.1, 2015.
Han, E., Crow, W. T., Hain, C. R., and Anderson, M. C.: On the use of a water balance to evaluate inter-annual terrestrial ET variability, J. Hydrometeor., 16, 1102–1108, https://doi.org/10.1175/JHM-D-14-0175.1, 2015.
Hendrickx, J. M. H., Allen, R. G., Brower, A., Byrd, A. R., Hong, S.-H. Ogden, F. L., Pradhan, N. R., Robison, C. W., Toll, D., Trezza, R., Umstot, T. G., and Wilson, J. L.: Benchmarking optical/thermal satellite imagery for estimating evapotranspiration and soil moisture in decision support tools, J. Am. Water Resour. As., 52, 89–119, https://doi.org/10.1111/1752-1688.12371, 2016.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Lo, M.-H. and Famiglietti, J. S.: Effect of water table dynamics on land surface hydrologic memory, J. Geophys. Res., 115, D22118, https://doi.org/10.1029/2010JD014191, 2010.
Loew, A., Stacke, T., Dorigo, W., de Jeu, R., and Hagemann, S.: Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies, Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, 2013.
Ning, S., Ishidaira, H., and Wang, J.:: Statistical downscaling of GRACE-derived terrestrial water storage using satellite and GLDAS products, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 70, 133–138, 2014.
Owe, M., de Jeu, R. A. M., and Walker, J.: A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index, IEEE T. Geosci. Remote, 39, 1643–1654, 2001.
Owe, M., de Jeu, R. A. M., and Holmes, T.: Multisensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res., 113, F01002, https://doi.org/10.1029/2007JF000769, 2008.
Reager, J. T., Thomas, A. C., Sproles, E. A., Rodell, M., Beaudoing, H. K., Li, B., and Famiglietti, J. S.: Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential, Remote Sens., 7, 14663–14679, 2015.
Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J. D., and Wilson, C. R.: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeol. J., 15, 159–166, 2007.
Rodell, M., Velicogna, I., and Famiglietti, J. S.: Satellite-based estimates of groundwater depletion in India, Nature, 460, 999–1002, https://doi.org/10.1038/nature08238, 2009.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, 2010.
Semmens, K. A., Anderson, M. C., Kustas, W. P., Gao, F., Alfieri, J. G., McKee, L., Prueger, J. H., Hain, C. R., Cammalleri, C., Yang, Y., Xiz, T., Sanchez, L., Alsina, M. M., and Velez, M.: Monitoring daily evaporatranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach, Remote Sens. Environ., 185, 155–170, https://doi.org/10.1016/j.rse.2015.10.025, 2016.
Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., and Glenn, E. P.: Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods, Hydrol. Process., 25, 4037–4049, https://doi.org/10.1002/hyp.8379, 2011.
Swenson, S. C.: GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA, https://doi.org/10.5067/TELND-NC005 (last access: 20 March 2017), 2012.
Swenson, S., Famiglietti, J., Basara, J., and Wahr, J.: Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data, Water Resour. Res., 44, W01413, https://doi.org/10.1029/2007WR006057, 2008.
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., and Wilson, C. R.: Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779, 2008.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M.: GRACE Measurements of Mass Variability in the Earth System, Science, 305, 5683, 503–505, 2004a.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004b.
Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley, J. J.: Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States, Water Resour. Res., 51, 6485–6499, 2015.
Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jägermeyr, J., Senay, G. B., van Dijk, A. I. J. M., Guerschman, J. P., Keys, P. W., Gordon, L. J., and Savenije, H. H. G.: Global root zone storage capacity from satellite-based evaporation, Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, 2016.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.
Short summary
Terrestrial water storage is defined as the total volume of water stored within the land surface and sub-surface and is a key variable for tracking long-term variability in the global water cycle. Currently, annual variations in terrestrial water storage can only be measured at extremely coarse spatial resolutions (> 200 000 km2) using gravity-based remote sensing. Here we provide evidence that microwave-based remote sensing of soil moisture can be applied to enhance this resolution.
Terrestrial water storage is defined as the total volume of water stored within the land surface...