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Abstract. Due to their shallow vertical support, remotely
sensed surface soil moisture retrievals are commonly re-
garded as being of limited value for water budget applica-
tions requiring the characterization of temporal variations in
total terrestrial water storage (dS / dt). However, advances
in our ability to estimate evapotranspiration remotely now
allow for the direct evaluation of approaches for quantify-
ing dS / dt via water budget closure considerations. By ap-
plying an annual water budget analysis within a series of
medium-scale (2000–10 000 km2) basins within the United
States, we demonstrate that, despite their clear theoretical
limitations, surface soil moisture retrievals derived from pas-
sive microwave remote sensing contain statistically signifi-
cant information concerning dS / dt . This suggests the pos-
sibility of using (relatively) higher-resolution microwave re-
mote sensing products to enhance the spatial resolution of
dS / dt estimates acquired from gravity remote sensing.

1 Introduction

Within the past decade, the analysis of data products from the
Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission (Tarpley et al., 2004a, b) has led to an enhanced
appreciation of the role played by interannual variations of
total terrestrial water storage (dS / dt) within the terrestrial
water budget (Chen et al., 2009; Rodell et al., 2007; Syed
et al., 2008). However, the application of GRACE storage re-

trievals is potentially limited by their extremely coarse spatial
resolution (∼ 200 000 km2). This has spurred interest in the
development of spatial downscaling techniques for GRACE-
based dS / dt . These approaches have generally been based
on the use of (relatively) higher-resolution water storage pre-
dictions obtained from distributed land surface model predic-
tions (Reager et al., 2015; Wan et al., 2015) or a combination
of land surface model output and independent evapotranspi-
ration (ET) and precipitation (P) flux estimates (Ning et al.,
2014). In contrast, microwave-based surface soil moisture
(θ) retrievals provide a direct assessment of soil water stor-
age that can be obtained at relatively finer resolutions (typ-
ically ∼ 1000 km2). However, such retrievals are hampered
by both shallow vertical support (reflecting soil moisture
conditions only in the top several centimeters of the soil col-
umn) and substantially reduced accuracy for dense vegetative
cover. As a result, they are generally assumed to be of lim-
ited value for the examination of dS / dt and are commonly
neglected in water budget studies. However, recent empiri-
cal work demonstrates that microwave-based θ retrievals are
generally well-correlated with GRACE-based storage esti-
mates (Abelen and Seitz, 2013; Abelen et al., 2015). This
suggests that θ retrievals retain some value for water-balance
studies – particularly at spatial scales finer than the resolution
of GRACE products.

Confirming such potential will require the availability of
accurate terrestrial water flux variables. Recent progress in
the remote sensing of dS / dt and θ has been mirrored by
the increased consideration of satellite-derived ET retrievals

Published by Copernicus Publications on behalf of the European Geosciences Union.



1850 W. T. Crow et al.: Estimating annual water storage variations in medium-scale basins

in a water balance context (Senay et al., 2011; Hain et al.,
2015; Hendrickx et al., 2016; Wang-Erlandsson et al., 2016).
In particular, when combined with P and basin-outlet stream
flow (Q) measurements, satellite-derived ET estimates can
be used to verify estimates of dS / dt obtained from indepen-
dent sources (Han et al., 2015). This opens up the possibility
for the objective “top-down” evaluation of dS / dt estimates
obtained from various remote sensing sources and the oppor-
tunity to empirically confront “bottom-up” expectations for
these products based solely on theoretical considerations.

Here, we combine ET estimates acquired from thermal
infrared (TIR) remote sensing with ground-based Q and P
measurements to evaluate the water balance performance of
passive microwave (PM) estimates of annual dS / dt for a
set of medium-scale (2000–10 000 km2) river basins within
the United States. The analysis will focus on two primary
tasks: (1) evaluating the suitability of existing ET, Q, and
P datasets to accurately estimate dS / dt and (2) empirically
investigating the ability of interannual dS / dt estimates ac-
quired from microwave remote sensing of soil moisture to
close the interannual terrestrial water balance. As discussed
above, this particular application of θ is arguably inconsis-
tent with their known theoretical limitations. Therefore, our
focus will be on empirically evaluating their ability to pro-
vide dS / dt closure within an annual water budget analysis
and examining how these results fit with a priori theoretical
expectations.

Section 2 describes the water balance datasets and study
basins. Section 3 examines the ability of existing flux and
storage products to close the terrestrial water balance within
a set of larger-scale (150 000–1 000 000 km2) hydrologic
basins where GRACE-based dS / dt can be directly uti-
lized (see task #1 defined above). Based on verification re-
sults in Sect. 3, Sect. 4 derives a technique for estimating
dS / dt from microwave remote sensing and evaluates the
ability of microwave-based dS / dt to close the terrestrial
water balance within a second set of medium-scale (2000–
10 000 km2) basins (see task #2 defined above). Results are
discussed in Sect. 5 and conclusions summarized in Sect. 6.

2 Study basins and datasets

Within a closed hydrologic basin, the annual water budget
equation can be summarized as follows:

P −Q−ET = dS/dt, (1)

where P , Q, and ET (mm yr−1) represent annual sums of
fluxes, and dS / dt (mm yr−1) is the annual change in terres-
trial water storage. Besides Q, all other lateral water fluxes
(into or out of the basin) are assumed to be negligible. See
Sect. 2.2 below for a description of data products used to
describe flux terms on the left-hand side of (1). Here, the
storage change term dS / dt is independently obtained us-
ing both gravity-based (GR) retrievals of total terrestrial wa-

ter storage and PM-based retrievals of surface soil moisture
content. In both cases, annual change estimates are based on
the differencing of temporally averaged storage retrievals ac-
quired at (or near) the end of each calendar year. Based on
constraints associated with the availability of various remote
sensing products, the analysis is conducted within a time pe-
riod from 1 January 2003 to 31 December 2010. Additional
methodological details are given below.

2.1 Study basins

For the analysis, hydrologic basins are sought with the fol-
lowing: excellent ground-based rain gauge coverage, the
availability of good remotely sensed ET products, and the
relative absence of complex topography and/or dense veg-
etation conditions known to reduce the accuracy of exist-
ing long-term, satellite-based soil moisture products. In addi-
tion, arid areas are avoided due to their known lack of inter-
annual dS / dt variability. The North American Mississippi
River system is one of only a handful of continental-scale
river basins that generally meets all of these criteria. There-
fore, water budget closure will be examined in two separate
sets of basins within the Mississippi River system. To start, a
large-scale analysis will be conducted on five major Missis-
sippi River sub-basins: the Missouri, the Arkansas, the Red,
the Ohio and the Upper Mississippi – see Fig. 1 and Table 1.
The primary focus in these large-scale basins will be eval-
uating the ability of existing P , Q, ET, and GRACE-based
dS / dt product to close the annual water budget. The results
of this water balance analysis will then be used to refine the
geographic focus and water flux processing approach applied
in the medium-scale analysis described below.

Following this large-scale water balance analysis, the per-
formance of a microwave-based dS / dt proxy is examined
within 16 (smaller) medium-scale (2000–10 000 km2) unreg-
ulated basins positioned along an east–west transect across
the United States Southern Great Plains (SGP) region (see
Fig. 1 and Table 2). A complete justification of this geo-
graphic emphasis is given in Sect. 3. However, in general,
medium-scale basins were selected following a screening
analysis applied by the Model Parameter Estimation Exper-
iment project (Duan et al., 2006), which removed basins
with either inadequate rain gauge coverage or excessive hu-
man regulation of stream flow. Moving from west to east,
these basins exhibit progressively higher mean P and annual
runoff ratios (Q/P) (Fig. 1 and Table 2). Associated with this
climatic gradient is a gradual west–east increase in vegeta-
tion biomass. Western basins are characterized by large frac-
tions of rangeland, grassland, and winter wheat land cover
with relatively low biomass. In contrast, basins located along
the eastern edge of the transect contain significant upland
forest cover and intensive summer agricultural cultivation in
low-lying areas.
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Figure 1. Map of the 5 large-scale basins (color shading – see Table 1) and 16 unregulated medium-scale basins (red outlines – see Table 2)
considered in the analysis.

Table 1. Attributes of large-scale basins in Fig. 1.

River basin USGS station USGS station name Basin size Annual P Runoff ratio
no. (km2) (mm) Q/P

Missouri 06934500 Missouri River at Hermann, MO 1 347 556 563 0.10
Arkansas 07263450 Arkansas River at Little Rock, AR 409 201 747 0.14
Red 07344370 Red River at Spring Bank, AR 153 906 850 0.13
Upper Miss. 07022000 Mississippi River at Thebes, IL 496 016 898 0.31
Ohio 03611500 Ohio River at Metropolis, IL 527 557 1187 0.45

2.2 Data products and processing

A range of ground and remotely sensed datasets were ac-
quired to characterize components of the terrestrial water bal-
ance summarized in Eq. (1). The acquisition and processing
of these datasets is described below.

2.2.1 Thermal remote sensing of ET

Daily evapotranspiration estimates were obtained from the
Atmosphere–Land Exchange Inverse (ALEXI) algorithm. In
particular, ALEXI exploits the moisture signal conveyed by
the mid-morning rise in satellite-observed land surface tem-
perature (LST) in order to capture water limitations on sur-
face energy fluxes (Anderson et al., 2007a, b; Hain et al.,
2009, 2011). Based on this principle, ALEXI produces esti-
mates of daily evapotranspiration without direct knowledge
of antecedent precipitation or soil water balance considera-
tions (Anderson et al., 2011). This ensures that ALEXI evap-
otranspiration estimates are independent of those derived via
water balance calculations.

ALEXI evapotranspiration has been evaluated using a spa-
tial disaggregation technique (DisALEXI) which uses high-
resolution LST retrievals from Landsat to downscale ALEXI
fluxes to a 30 m pixel level (Anderson et al., 2004). Typi-

cal accuracies obtained in comparison with eddy-covariance
tower observations are on the order of 5 to 15 % for daily to
seasonal evapotranspiration estimates during snow-free peri-
ods (Anderson et al., 2012; Cammalleri et al., 2013, 2014a;
Semmens et al., 2016).

Here, the ALEXI model was processed over CONUS at
a spatial resolution of 4 km for the period 2003–2010 and
forced with meteorological inputs from the Climate Forecast
System Reanalysis (CFSR; Saha et al., 2010), thermal in-
frared land surface temperature from the Geostationary Oper-
ational Environmental Satellites (GOES East and West), and
leaf area index estimates obtained from the 4-day 1 km Com-
bined Aqua-Terra MODIS product (MCD15A3).

Daily, instantaneous, clear-sky latent heat fluxes retrieved
from ALEXI were upscaled to daytime-integrated evapo-
transpiration estimates assuming a self-preservation of the
ratio of latent heat flux and incoming shortwave radiation
(fSUN) during daytime hours (Cammalleri et al., 2014b).
Hourly CFSR incoming shortwave radiation inputs were in-
tegrated to produce daily estimates (24 h) of insolation used
in this temporal upscaling. Currently, ALEXI is not executed
over snow-covered surfaces. These periods were instead gap-
filled with a linear interpolation of fSUN and a snow albedo
correction to account for differences in surface net radia-
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Table 2. Attributes of medium-scale basins in Fig. 1.

Basin USGS station USGS station Name Basin size Annual P Runoff ratio
number no. (km2) (mm) Q/P

1 07144780 Ninnescah River AB Cheney Re, KS 2049 768 0.08
2 07144200 Arkansas River at Valley Center, KS 3402 842 0.11
3 07152000 Chikaskia River near Blackwell, OK 4891 896 0.19
4 07243500 Deep Fork near Beggs, OK 5210 945 0.15
5 07147800 Walnut River at Winfield, KS 4855 980 0.31
6 07177500 Bird Creek Near Sperry, OK 2360 1025 0.23
7 06908000 Blackwater River at Blue Lick, MS 2924 1140 0.29
8 07196500 Illinois River near Tahlequah, OK 2492 1175 0.29
9 07019000 Meramec River near Eureka, MO 9766 1187 0.28
10 07052500 James River at Galena, MO 2568 1255 0.31
11 07186000 Spring River near Wace, MO 2980 1258 0.27
12 07056000 Buffalo River near St. Joe, AR 2148 1238 0.37
13 06933500 Gasconade River at Jerome, MO 7356 1293 0.24
14 07067000 Current River at Van Buren, MO 4351 1309 0.31
15 07068000 Current River at Doniphan, MO 5323 1314 0.36
16 07290000 Big Black River NR Bovina, MS 7227 1368 0.37

tion over snow-covered versus snow-free surfaces. Resulting
4 km ALEXI daily evapotranspiration estimates were tempo-
rally summed within calendar years to produce annual ET
(mm yr−1) and spatially averaged within each of the basins
listed in Tables 1 and 2. Annual ALEXI ET estimates ac-
quired in this way have been successfully applied to verify
interannual evapotranspiration estimates acquired from land
surface modeling (Han et al., 2015).

2.2.2 Land surface model predictions of ET

For the purposes of cross-comparison with ALEXI ET re-
sults, annual ET was also acquired from 0.125◦ resolution
Noah v3.2 simulations (Chen et al., 2001; Chen and Dud-
hia, 2001; Ek et al., 2003) generated as part of North Amer-
ican Land Data Assimilation Phase 2 (NLDAS-2) activi-
ties (Xia et al., 2012). Hourly Noah predictions of (1) di-
rect evaporation from the surface soil, (2) direct evaporation
of canopy-intercepted precipitation, and (3) transpiration via
plant root uptake of soil water were aggregated to produce
an hourly evapotranspiration estimate. Annual ET averages
were then obtained by summing these estimates for the cal-
endar years 2003 to 2010 and spatially averaging these sum-
mations within the basins indicated in Fig. 1.

2.2.3 Ground-based observations of P and Q

Daily stream-flow magnitudes were obtained from United
States Geologic Survey (USGS) stream gauging stations lo-
cated at the outlet of basins listed in Tables 1 and 2. These
values were aggregated into (calendar year) sums and nor-
malized by basin drainage area to obtain units of water depth
per year (mm yr−1). Annual total (liquid plus solid phase)
precipitation (P) (mm yr−1) was based on the temporal ag-

gregation of rain gauge observations acquired by the Na-
tional Centers for Environmental Prediction (NCEP)’s Cli-
mate Prediction Center (CPC) and re-sampled onto a 0.125◦

grid by the NLDSE-2 project (Xia et al., 2012). These an-
nual averages were then spatially averaged within each of
the basins listed in Tables 1 and 2.

2.2.4 Gravity remote sensing of dS / dt

Monthly GRACE terrestrial water storage deviation (SGR)

data were obtained by separately applying the rescal-
ing coefficients of Landerer and Swenson (2012) to grid-
ded 1◦ GRACE Level-3 terrestrial water storage prod-
ucts provided by the GeoForschungsZentrum (GFZ; ver-
sion RL05.DSTvSCS1409), University of Texas Center for
Space Research (CSR; version RL05.DSTvSCS1409), and
the NASA/Cal-Tech Jet Propulsion Laboratory (JPL; ver-
sion RL05.DSTvSCS1411). GRACE-based annual estimates
of terrestrial water storage variations (dSGR / dt) were then
derived via simple linear averaging of the GFZ, CSR and
JPL terrestrial storage product to estimate SGR,Dec,i and
SGR,Jan,i+1 (where i is an annual index) and the subsequent
application of year-over-year differencing:

(dSGR/dt) ,i =
(
SGR,Dec,i + SGR,Jan,i+1

)
/2

−
(
SGR,Dec,i−1+ SGR,Jan,i

)
/2. (2)

Finally, gridded 1◦ dSGR / dt (mm yr−1) products were spa-
tially averaged within all of the coarse-scale basins listed in
Table 1. Note that GRACE Level-3 values capture monthly
deviations from a long-term average datum (based on aver-
age 2004–2009 conditions) and not absolute storage levels.
However, the distinction is immaterial since our focus lies
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solely on annual dSGR / dt , which is insensitive to the pres-
ence or absence of any such datum.

The primary application of dSGR / dt retrievals will be
to verify annual water balance closure within the coarse-
scale basins listed in Table 1. However, we will also ap-
ply dSGR / dt within the medium-scale basins to calibrate
microwave-based dS / dt estimates (see Sect. 4.1) and as a
baseline for evaluating microwave-based dS / dt as a source
of downscaling information (see Sect. 4.2). These applica-
tions will be approached with caution since the spatial res-
olution of the dSGR / dt retrievals (∼ 200 000 km2) is much
coarser than the size of the medium-scale basins considered
here (2000–10 000 km2). The impacts of this significant scale
mismatch will be discussed below.

2.2.5 Passive microwave remote sensing of soil moisture

PM-based surface soil moisture retrievals were based on
the application of the Land Parameter Retrieval Model
(LPRM; Owe et al., 2001) to Advanced Microwave Scan-
ning Radiometer – EOS (AMSR-E) C- and X-band bright-
ness temperature observations obtained from both ascend-
ing (13:30 LT) and descending (01:30 LT) orbits of the
NASA Aqua satellite (Owe et al., 2008). AMSR-E LPRM
Level 3 soil moisture data products were downloaded from
the NASA Global Change Master Directory (http://gcmd.
nasa.gov). The Aqua satellite was launched in June 2002
and remained operational until October 2011. Soil moisture
datasets acquired from AMSR-E represent the longest sur-
face soil moisture data record currently available from a sin-
gle satellite sensor. The processing of these datasets into
dS / dt estimates is discussed in Sect. 4.

2.3 Statistical approach

The temporal length of required remotely sensed datasets im-
poses a serious challenge for this analysis. The primary lim-
iting factor for this length is the availability of a consistent
microwave-based θ dataset. As noted above, the data period
utilized here (2003–2010) represents the longest current pe-
riod of (temporally consistent) microwave-based θ retrievals
available from any single sensor (AMSR-E). Nevertheless, it
still provides only eight annual values upon which to evalu-
ate the annual closure expressed in Eq. (1). Longer θ datasets
based on the merger of multi-sensor θ retrievals exist (Liu et
al., 2011). However, concerns about their temporal consis-
tency currently limit their value for analyses conducted at
interannual timescales (Loew et al., 2013).

The restriction of the annual analysis to only 8 years lim-
its our ability to robustly assess closure using temporal sam-
pling alone. Therefore, whenever possible, we will sample
closure evaluation statistics across both space and time to
maximize the total degrees of freedom available for a sta-
tistical analysis. However, due to significant amounts of both
spatial and temporal auto-correlation in P −Q−ET fields,

considerations must be made for oversampling (in both space
and time) when calculating effective sample sizes. To address
this we applied the approach of Bretherton et al. (1999) who
recommended (for the case of sampling quadratic statistics)
an effective sampling size N∗ of

N∗ =N(1− ρ2)/(1+ ρ2), (3)

where N is the original sample size and ρ the auto-
correlation at individual sampling points. In particular, we
applied Eq. (3) separately in both space and time, utilizing
both temporal (separated in time, sampled over time, and
then averaged across various basins) and spatial (separated
in space, sampled over space, and then averaged over various
years) samples of ρ to obtain both spatial and temporal sam-
ple size reduction factors. Next, the total sample size (i.e.,
total time samples× total space samples) was multiplied by
both reduction factors to estimate effective sample sizes in
both time and space. For example, in the large-scale basin
analysis, we have a total sample size of 40 annual values
(5 basins over 8 years); however, after accounting for over-
sampling in both space and time, the effective sample size
was reduced to 9.7. Likewise, for the medium-scale basins
analysis, the total sample size of 128 annual values (16 basins
over 8 years) was reduced to an actual effective size of 48.4.
These effective sample sizes were then used to calculate ef-
fective degrees of freedom for all statistical hypothesis tests.

3 Water balance closure within large-scale basins

All water storage and flux products described above contain
significant errors and biases. In addition, it is possible that
non-resolved flux terms in Eq. (1) may hinder closure ver-
sus observed storage changes. Therefore, before deriving and
evaluating an approach to estimate dS / dt for medium-scale
basins using microwave-based remote sensing, we will first
verify the ability of water balance datasets introduced in Sec-
tion 2 to close the terrestrial water balance via Eq. (1). Due
to the coarse spatial resolution of GRACE, a direct closure
analysis is possible only for the large-scale basins listed in
Table 1. Based on ET values derived from ALEXI, Fig. 2
plots annual variations of P −Q−ET and (GRACE-based)
dSGR / dt for all five large-scale basins. In all basins except
the Missouri, annual values of P −Q−ET depart signifi-
cantly from zero – illustrating the general importance of an-
nual dS / dt on the terrestrial water budget. Within the Mis-
souri, P −Q is roughly balanced by ET, and therefore, alone
among other basins examined here, the annual estimation of
dSGR / dt does not appear to be a requirement for closing the
annual water budget. This may be linked to the very large
reservoir capacity of the Missouri River Basin system and
the active management of Q to minimize interannual reser-
voir and channel level variability. This aggressive level of
management ensures that the Missouri River Basin exhibits
the smallest standard deviation of interannual P −Q−ET
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Figure 2. Annual time series of P −Q−ET (black) and gravity-
based dSGR / dt (red) estimates for each of the large-scale basins
listed in Table 1.

variability (∼ 30 mm yr−1- see Fig. 2) of any large basin con-
sidered in this analysis.

The best closure results in Fig. 2 are obtained in the
Arkansas River and Red River basins. In these two basins,
GRACE-based dSGR / dt closely matches interannual varia-
tions in P −Q−ET. This suggests that in the United States
SGP region, both the assumptions underlying Eq. (1) and
the water flux datasets considered are sufficiently accurate
to characterize interannual variations in dS / dt . In contrast,
there is clear evidence of a low bias in annual P −Q−ET
relative to dSGR / dt within both the Upper Mississippi and
Ohio River Basins. Given the frequency and extent of win-
tertime snow cover in these basins, it seems reasonable to
ascribe this bias to known under-catch issues associated with
the gauge-based measurement of snowfall (Goodison et al.,
1998). In addition, there exists a potential for systematic er-
ror in cold-season ALEXI ET estimates (which are based on
a simple extrapolation approach).

Figure 3a shows annual P −Q−ET versus dSGR / dt for
all five large-scale basins. The sampled correlation in Fig. 3a
is marginal (0.37 [−]) but improves considerably (0.52 [−])
when the 8-year mean of annual P −Q−ET is subtracted
from yearly P −Q−ET results for each basin (Fig. 3b). This
is equivalent to imposing closure of P −Q−ET within each
basin over the entire 8-year time period. In addition, replac-
ing ALEXI ET with Noah-based ET reduces the sampled
correlations in both Fig. 3a and b (from 0.37 to 0.33 [−] and
from 0.52 to 0.33 [−], respectively). This implies that pref-
erence should be given to the remote-sensing-based ALEXI
ET product.

Due to the coarse spatial resolution of GRACE-based
dSGR / dt , a comparable water balance analysis cannot be
applied to the medium-scale basins listed in Fig. 1 and Ta-
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Figure 3. (a) Relationship between annual P−Q−ET and gravity-
based dSGR / dt within each of the large-scale basins listed in Ta-
ble 1. (b) Same, except that annual P −Q−ET time series for each
basin have been closed (i.e., modified to sum to zero over the 8-
year data record). The blue line is a one-to-one line and red line is
the least-squares linear fit.

ble 2. Instead we will cross-apply general tendencies ob-
served in the large-scale closure analysis (Figs. 2 and 3) to
refine the medium-scale analysis presented below. In partic-
ular, the medium-scale basins listed in Table 2 are selected
based on the principal of minimization of both human regu-
lation (to avoid the lack of annual P −Q−ET signal noted
in the Missouri Basin) and cold season impacts (to avoid the
low bias in annual P −Q−ET observed in the Ohio and Up-
per Mississippi River basins). Overall, these two considera-
tions motivate our decision to utilize only lightly regulated
MOPEX basins within the SGP portion of the Mississippi
River system (see Fig. 1 and earlier discussion in Sect. 2.1).
In addition, based on annual water balance closure results
presented in Figs. 2–3, ALEXI-based (as opposed to Noah-
based)ET will be used and closure will be imposed on 8-year
P −Q−ET totals.

4 Microwave-based closure for medium-scale basins

As discussed above, the primary focus of this analysis is the
utilization of new ET remote sensing products to objectively
evaluate the contribution of microwave surface soil moisture
retrievals towards describing interannual P −Q−ET vari-
ations within medium-scale basins. To this end, this section
will describe the derivation of a new microwave-based proxy
for dS / dt and its empirical evaluation within the specific set
of medium-scale basins listed in Table 2.
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4.1 Microwave-based dS / dt estimation

Any transition between surface soil moisture and terrestrial
water storage must account for relative variations in the tem-
poral scale and phase of both quantities. In particular, the ten-
dency for terrestrial water storage to be temporally smoothed
and lagged in time with respect to corresponding surface soil
moisture variations (Chagnon, 1987; Entekhabi et al., 1992;
Swenson et al., 2008). Based on this reasoning, instantaneous
0.25◦ LPRM surface soil moisture retrievals (see Sect. 2.2)
were averaged in time and space into a single monthly value
for each of the basins in Tables 1 and 2. Next monthly (basin-
scale) soil moisture averages for October, November, and
December (θPM,Oct, θPM,Nov, and θPM,Dec) were merged into
a single, end-of-calendar-year estimate of PM-based θPM:

θPM,i =WOctθPM,Oct,i +WNovθPM,Nov,i +WDecθPM,Dec,i, (4)

where i is an annual index (here corresponding to calendar
years between 2003 and 2010), andW are constant weighting
factors (summing to unity) applied to each month. Annual
changes in θPM(dθPM / dt) were then derived from annual
differencing of θPM,i with θPM,i−1. This entire procedure was
done separately for LPRM retrievals acquired during both as-
cending and descending AMSR-E orbits. Finalized values of
dθPM / dt were then obtained by averaging results obtained
from both orbits. Our decision to utilize a calendar year to
accumulate annual flux or storage change totals in Eq. (1)
is largely arbitrary, and the impact of utilizing other annual
periods will be discussed below.

In addition to the specification of W , we also allowed
for the application of a single calibration factor KPM (mm)
when converting volumetric dθPM / dt (m3 m−3 yr−1) varia-
tions into annual dS / dt depth changes (mm yr−1):

dSPM/dt =KPMdθPM/dt. (5)

Our approach for obtaining KPM was based on scaling
dθPM / dt to match the sampled temporal variance of gravity-
based dSGR / dt . Therefore, KPM was defined as the follow-
ing ratio:

KPM = σ (dSGR/dt)/σ (dθPM/dt) , (6)

where the σ operator indicates a standard deviation sampled
across all available years and medium-scale study basins.

Despite some evidence for significant large-scale correla-
tion between θ and S (Abelen and Seitz, 2013; Abelen et
al., 2015), there are viable reasons for scepticism regard-
ing the application of Eqs. (4)–(6) to a water budget appli-
cation. First, due to the extremely shallow vertical support
of PM-based surface soil moisture retrievals, it is uncertain
if dθPM / dt actually provides an effective linear proxy for
dS / dt . Second, even if such a linear relationship can be es-
tablished, it is unclear if the ratio σ (dSGR / dt) / σ(dθPM / dt)
in Eq. (6) provides a robust calibration coefficient to convert
surface soil moisture variations into annual variations in S.
These theoretical concerns are addressed below.
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Figure 4. For the 16 medium-scale basins listed in Table 2, the an-
nual time series of raw P−Q−ET (solid black line) and P−Q−ET
obtained by assuming flux closure over the 8-year period of record
(dashed red line). Values of the microwave-based dSPM / dt proxy
are also plotted (solid blue line).

4.2 Evaluation of proxy assumptions and calibration

Figure 4 plots (annual) variations of P −Q−ET and
dSPM / dt for all 16 medium-scale basins listed in Table 1.
See Sect. 3 for the rationale behind the selection of these par-
ticular basins. The large plotted departures (from zero) seen
for P −Q−ET confirm that interannual variations in S play
a significant role in the application of Eq. (1) at an annual
timescale.

In addition, consistently negative P −Q−ET estimates
are observed within several medium-scale basins (see, e.g.,
basins #5, #8, #9, and #12 in Fig. 4). Because these basins
cannot be directly resolved by GRACE, it is difficult to con-
firm whether this tendency is real (i.e., a decadal-scale trend
in storage) or an artefact of the summed impact of multi-
ple long-term measurement biases in independent P,Q, and
ET products. However, based on the large-basin analysis
presented in Sect. 3, the latter appears more likely. There-
fore, annual P −Q−ET values are de-biased by subtracting
out (on a basin-by-basin basis) the 8-year annual mean of
P −Q−ET (see dashed line in Fig. 4). The impact of this
assumption on subsequent results will be discussed below.

Our primary goal is to determine the potential for explain-
ing observed annual P−Q−ET variations in Fig. 4 using the
microwave-based dSPM / dt proxy introduced above and em-
pirically evaluating the assumptions – expressed in Eqs. (4)–
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Figure 5. The impact of monthly weighting factors in Eq. (4) on
the sampled correlation between (a) dθPM / dt and P −Q−ET
and (b) dθPM / dt and dSGR / dt .

(6) – which underlie the proxy. The first issue is the degree
to which the appropriate temporal averaging of microwave-
based soil moisture via Eq. (4) can be used to obtain a robust
linear proxy for P−Q−ET. Figure 5a addresses this by plot-
ting the average linear correlation for all the medium-scale
basins between annual P −Q−ET and dθPM / dt obtained
using all potential combinations of WDec, WNov, and WOct
(where WDec+WNov+WOct = 1.0). Plotted correlations in
Fig. 5a are generally greater than 0.50 [−]. In fact, even after
realistically accounting for the impact of over-sampling due
to spatial and temporal auto-correlation in the P −Q−ET
fields (Sect. 2.3), sampled correlations are statistically sig-
nificant (one-tailed, 95 % confidence) for all possible com-
binations of WDec, WNov, and WOct. Since these correlations
are based on annual values (where there is no potential for
obtaining spurious fitting due to the trivial representation of
an obvious seasonal cycle), and there is no credible reason to
suspect cross-correlated errors between the wholly indepen-
dent P −Q−ET and dSPM / dt fields, the statistical signifi-
cance of sampled correlation in Fig. 5a can be taken as clear
evidence of a robust linear underlying relationship between
dθPM / dt and P −Q−ET. As such, it provides empirical
support for Eqs. (4)–(5).

Nevertheless, the performance of the dθPM / dt proxy does
vary as a function of WDec, WNov, and WOct in Fig. 5a and

feasible parameterization strategies will be required to fix
their values. To this end, Fig. 5b plots the sampled cor-
relation between dθPM / dt and dSGR / dt as a function of
WDec, WNov, and WOct. Note that monthly weighting val-
ues which maximize this correlation in Fig. 5b also tend to
maximize the correlation between dθPM / dt and P −Q−ET
in Fig. 5a. Based on Fig. 5b, the maximum correlation be-
tween dθPM / dt and dSGR / dt is found at WOct = 0.4 [−],
WNov = 0.5 [−], and WDec = 0.1 [−]. These (spatially and
seasonally fixed) weighting values will be used for all sub-
sequent calculations of dθPM / dt via Eq. (4). The relative
lack of weight applied to December surface soil moisture re-
trievals is likely reflective of frozen soil moisture conditions
at this time and the need for dS / dt anomalies to be lagged
in time with respect to superficial surface soil moisture varia-
tions. Adding monthly-averaged θ retrievals from September
(θPM,Sep) into Eq. (4) – so that end-of-year θPM was calcu-
lated using a 4-month weighted-average product – produced
essentially no change to Fig. 5.

The parameterization of WOct, WNov, and WDec alone is
sufficient if dθPM / dt is to be interpreted solely as a linear
proxy for relative interannual variations in dS / dt ; however,
interpretation of dθPM / dt as an absolute measure requires
the additional parameterization of KPM (mm) in Eq. (5) to
transform dθPM / dt into a dS / dt estimates with units of
(mm yr−1) (i.e., dSPM / dt). Figure 6 shows the impact of
KPM in Eq. (5) on the root-mean-square difference (RMSD)
between dSPM / dt and P −Q−ET. Results are obtained by
lumping annual results for all years within all medium-scale
basins listed in Table 2, and the assumption thatKPM is fixed
in both space and time. The plotted horizontal line plots the
interannual standard deviation of P −Q−ET – which is
equivalent to the RMSD accuracy achievable by assuming
dS / dt = 0 in Eq. (1). This baseline is improved upon by a
wide range of KPM values. However, the absolute accuracy
of the dSPM / dt proxy is maximized near KPM = 900 mm.

The KPM estimation approach in Eq. (6) is based on the
assumption that this optimal value can be obtained via a
simple variance matching approach applied to dθPM / dt and
dSPM / dt . Applying Eq. (6) (in a lumped manner to all years
and all medium-scale basins in Table 2) leads to a value of
KPM = 1150 mm, which is reasonably close to the optimal
value ofKPM (900 mm). It is also well within the broad range
ofKPM which improves upon a baseline of neglecting dS / dt
entirely (see Fig. 6).

It should be noted that the parameterization strategies pre-
sented above involve direct comparison between (relatively)
high-resolution θ products obtained from microwave remote
sensing with lower-resolution GRACE-based dSGR / dt re-
trievals (which have been trivially re-sampled to capture
a basin-scale mean). Despite the inability of GRACE re-
trievals to spatially resolve the medium-scale basins consid-
ered here, Figs. 5 and 6 suggest these comparisons are still
able to yield useful calibration information. However, it is
possible that resolution inconsistencies between GRACE and
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Figure 6. The impact of KPM in Eq. (5) on the RMSD between
dSPM / dt and P−Q−ET. Also plotted is the standard deviation of
P −Q−ET (i.e., the RMSD incurred by neglecting annual dS / dt)
and the value ofKPM defined by the variance matching approach in
Eq. (6).

AMSR-E may have a degrading impact on results. One strat-
egy for resolving this scale inconsistency is to first degrade
the spatial resolution of the AMSR-E θ field to match the
∼ 200 000 km2 GRACE resolution prior to applying the cal-
ibration approach outlined in Figs. 5a and 6. However, at-
tempts to do this (via smoothing of the AMSR-E θ fields
using a 2-dimensional Gaussian filter) actually led to a small
decrease in the quality of the WOct, WNov, WDec, and KPM
calibration. This implies that, despite their resolution differ-
ences, direct comparisons between AMSR-E and GRACE
products appear to offer the most viable calibration approach.

4.3 Microwave-based closure evaluation

Utilizing the calibrated W and KPM derived in Sect. 4.2
leads to the dSPM / dt values plotted in Fig. 7. Each point
in the scatter plot represents one annual value within a single
medium-scale basin. Our microwave-based dSPM / dt proxy
product has a linear correlation with independently acquired
P −Q−ET values of 0.71 [−], which is statistically signif-
icant (one-tailed, at 99 % confidence) even after allowances
have been made for over-sampling in both time and space
(see Sect. 2.3). Note that all calibrated parameters (W and
KPM) are constant in both space and time and therefore can-
not provide a spurious source of skill for dSPM / dt tempo-
ral variations. In addition, all calibration is against GRACE-
based dSGR / dt and P−Q−ET fields are used solely for the
purpose of independent verification.

While P −Q−ET derived in medium-scale basins can-
not be directly validated against GRACE-based dSGR / dt re-
trievals (due to the ground resolution of GRACE being much
coarser than the size of the medium-scale basins), the sig-
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Figure 7. Relationship between annual P −Q−ET (closed over
the 9-year time series) and the microwave-based dSPM / dt proxy
within each of the 16 medium-scale basins listed in Table 1. The
blue line is a one-to-one line and red line is the least-squares linear
fit.

nificant correlation in Fig. 7 strongly suggests that they are
adequately representing the net annual flux of water into and
out of the medium-scale basins. A slight reduction in corre-
lation (from 0.71 to 0.62 [−]) is found when P −Q−ET
is not corrected to close water balance over the 8-year study
period. Likewise, replacing ALEXI ET with NOAH-based
ET leads to another (very) slight reduction in correlation in
Fig. 7 (from 0.71 to 0.69 [−]). However, it should be stressed
that, in all cases, the correlation between dSGR / dt and plot-
ted P−Q−ET remains statistically significant (one-tailed, at
95 % confidence). See Fig. 4 for dSPM / dt time series results
within individual medium-scale basins.

4.4 Downscaling evaluation

An important follow-on question is the degree to which the
skill demonstrated in Fig. 7 enhances our ability to track
dS / dt in medium-scale basins above and beyond existing
GRACE products. To this end, Fig. 8a plots annual GRACE-
based dSGR / dt versus P −Q−ET for all medium-scale
basins. Since the ground resolution of GRACE is signifi-
cantly coarser than the size of these basins, it is unfair to
evaluate dSGR / dt based on these comparisons. However,
despite this severe resolution penalty, dSGR / dt still man-
ages to correlate relatively well (i.e., a linear correlation
of 0.66 [−]) with independently acquired estimates of an-
nual P −Q−ET. The tendency for skill in GRACE-based
dSGR / dt to persist even at these (sub-resolution) scales im-
plies that annual dS / dt fields in this region contain spatial
auto-correlation at length scales finer than the GRACE spa-
tial resolution. However, it should be stressed that the use of
GRACE-based dSGR / dt fields at these spatial resolutions is
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Figure 8. (a) Relationship between annual P −Q−ET (with 8-
year closure) and gravity-based dSGR / dt estimates within each of
the 16 medium-scale basins listed in Table 1. Part (b) is the same
as (a) except for correlation against the simple average of dSPM / dt
and dSGR / dt . The blue line is a one-to-one line and red line is the
least-squares linear fit.

not recommended and applied here only to define a baseline
upon which to evaluate the benefits of subsequent downscal-
ing using microwave-based dSPM / dt estimates.

To this end, Fig. 8b plots the relationship between an-
nual P −Q−ET and dS / dt estimates obtained via a sim-
ple downscaling strategy based on the direct averaging of
annual dSGR / dt and dSPM / dt estimates for each medium-
scale basin. Relative to GRACE-only results presented in
Fig. 8a, this simple downscaling strategy leads to a signifi-
cant improvement in the degree of correlation with indepen-
dent P −Q−ET values. Specifically, this correlation is in-
creased from 0.66 [−] for the GRACE-only dSGR / dt case
in Fig. 8a to 0.77 [−] for the case of averaging dSGR / dt and
dSPM / dt in Fig. 8b. Application of a Fisher z-transformation
and the effective degree sample size calculation presented in
Sect. 2.3 confirms that this increase in correlation is statisti-
cally significant (two-tailed, at 95 % confidence).

In order to further examine geographic trends in results,
Fig. 9 evaluates dSPM / dt , dSGR / dt , and downscaling re-
sults (based on the simple linear averaging of dSPM / dt
and dSGR / dt) obtained individually for each medium-scale
basin in Table 2. Results are shown for both the linear corre-
lation and absolute RMSD match with annual P −Q−ET
variations. It is reasonable to expect that the accuracy of
microwave-based θ retrievals, and thus their value as the ba-
sis of dSPM / dt estimates, should progressively degrade for
higher-numbered study basins (which generally have wet-
ter climates and denser vegetation coverage – see Fig. 1).
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Figure 9. For the 16 medium-scale basins listed in Table 1: (a) the
linear correlation between annual P −Q−ET and various annual
dS / dt estimates and (b) the RMSD between P −Q−ET and vari-
ous dS / dt estimates. Basins are ordered from drier to wetter (from
left to right) and basin numbering corresponds to listing in Fig. 2.

Therefore, it is somewhat surprising that no clear trend be-
tween basin land cover and the relative performance of the
microwave-based dSPM / dt proxy is discernible in Fig. 9.
However, dSPM / dt results demonstrate relatively poor ac-
curacy for the furthest northern (and most heavily cultivated)
basin (i.e., basin #7) and for the wettest basin (i.e., basin
#16). The downscaled results (based on the simple averaging
of dSPM / dt and dSGR / dt) generally produce results which
are superior to the isolated application of either dSPM / dt or
dSGR / dt ; however, basin-to-basin variations are large and
metric values for individual basins are impacted by consider-
able sampling errors.

It is possible to replicate the dSPM / dt approach applied to
the medium-scale basins for the larger-scale basins listed in
Table 1. However, large-scale dSPM / dt proxies calculated
in this way (not shown) are significantly less accurate than
GRACE-based dSGR / dt results, and there is no indication
that a microwave-based dSPM / dt proxy can consistently im-
prove upon the relative accuracy of annual dS / dt in large
basins beyond what is already possible via the utilization of
existing GRACE-based dSGR / dt . As a result, the added ben-
efits of a microwave-based dSPM / dt proxy appear to be lim-
ited to basins which cannot be directly resolved by GRACE.
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5 Discussion

PM-based estimates of surface soil moisture capture only soil
water storage variations occurring within the couple of cen-
timeters of the vertical soil column and cannot directly de-
tect storage dynamics occurring in deeper layers of the un-
saturated zone – to say nothing of even deeper variations in
groundwater storage or reservoir storage. However, despite
this severe theoretical limitation, PM surface soil moisture
retrievals (θ) appear to retain significant value as an indi-
cator of relative interannual variations in P −Q−ET (see
e.g., Fig. 7). This implies that, at least at an annual timescale
and for certain conditions, unobserved components of dS / dt
are sufficiently correlated with observable trends in surface
soil moisture such that θ retrievals may serve as a potential
proxy for variations in total terrestrial water storage. Given
the difference of 2 orders of magnitude in the spatial resolu-
tion of microwave-based θ (1000 km2) versus gravity-based
(200 000 km2) dS / dt estimates, the microwave-based proxy
appears to enhance our existing ability to close the terrestrial
water budget within the medium scale (2000–10 000 km2)

basins listed in Table 2 (Fig. 8).
Intuitively, the ability of surface θ retrievals to capture

(much deeper) dS / dt variations is likely due to the tendency
for (non-anthropogenic) variations in dS / dt to be forced,
in a “top-down manner”, by atmospherically driven anoma-
lies in P and ET. In this simple conceptual model, vari-
ations in surface soil moisture provide a leading indicator
of these anomalies as they are propagated downward into
deeper hydrologic storage units (Chagnon, 1987; Entekhabi
et al., 1992; Swenson et al., 2008). However, it must be
stressed that this conceptual model is likely to break down for
a number of cases. For example, storage variations due to di-
rect groundwater pumping (Rodell et al., 2009), particularly
when associated with increased surface soil moisture via ir-
rigation, will almost certainly confound the ability of θ re-
trievals to effectively capture dS / dt . Likewise, it is difficult
to imagine microwave-based θ providing an effective repre-
sentation of dS / dt due to large changes in reservoir storage
and/or river system management. Finally, even in cases lack-
ing significant anthropogenic modifications of the hydrologic
cycle, the relationship between soil moisture and ground-
water memory is known to vary significantly as a function
of climate (Lo and Famiglietti, 2010). Some modes of soil
moisture–groundwater interactions are almost certainly in-
consistent with the application of Eqs. (4)–(6). Therefore, ad-
ditional study is required to better understand the geographic
limitations of dθPM / dt as a credible dS / dt proxy.

The geographic scope of this study was limited by two
considerations. First, the evaluation analysis required access
to sufficiently accurate annual P −Q−ET time series to
serve as an independent benchmark for microwave-based
dSPM / dt estimates. As discussed in Sect. 2, this require-
ment restricts the geographic domain over which the analysis
can currently be conducted. Second, the long-term AMSR-

E LPRM soil moisture dataset utilized in the analysis has
known limitations within areas of moderate and/or dense
vegetation cover. Datasets based on lower-frequency L-band
observations are currently being produced but will require 2
or 3 more years (beyond 2017) to match the temporal length
of the existing AMSR-E data record. However, once longer-
term L-band datasets become available, they will enable the
expansion of this analysis into more densely vegetated areas.

Our decision to calculate annual flux quantities using a
calendar year (i.e., 1 January to 31 December) approach is
admittedly arbitrary. This choice may impact the accuracy
of dSPM / dt proxy estimates due to seasonal variations in
the availability and accuracy of remotely sensed soil mois-
ture retrievals acquired from PM remote sensing (due to, e.g.,
vegetation phenology and/or the presence of snow or frozen
soils). In order to directly examine this issue, results in Fig. 8
were re-generated using a 1 September to 31 August annual
time period. Relative to earlier 1 January to 31 December
results, this new annual definition resulted in less skill for
both estimates of interannual storage change (i.e., a reduc-
tion in correlation from 0.66 to 0.39 (−) for dSGR / dt results
in Fig. 8a and from 0.77 to 0.54 (−) for the simple average
of dSPM / dt and dSGR / dt in Fig. 8b). However, the relative
improvement seen when incorporating dSPM / dt remained
statistically significant (two-tailed, at 95 % confidence). The
reason for the reduction in performance is unclear; however,
the added value of the microwave-based dSPM / dt retrievals
appears to be robust regardless of whether the fixed annual
period is defined to end during the summer (31 August) or
the winter (31 December). A more detailed sensitivity anal-
ysis involving a more continuous range of annual end dates
is possible; however, it is complicated by the relatively small
number of annual cycles currently available for this analy-
sis and thus the tendency to significantly change temporal
sampling supports when accommodating changes in the def-
inition of an annual period.

The targeting of annual variations in S is motivated by
the need to address important questions surrounding inter-
annual variations in the hydrologic cycle. However, a natural
extension of this work is the application of dSPM / dt at a
finer timescale. In theory this is possible; however, a season-
ally varying W and/or KPM parameterization would likely
be required for dSPM / dt to accurately capture monthly vari-
ations in total water storage. Given that monthly dSPM / dt
variations are commonly dominated by a fixed seasonal cy-
cle, it is then challenging to discern whether any apparent
skill in monthly dSPM / dt variations is real or simply an
artefact of over-fitting a seasonally varying parameterization.
As a result, the objective validation of a monthly dSPM / dt
proxy will require the availability of longer dSPM / dt and
P −Q−ET datasets capable of supporting mutually exclu-
sive calibration and validation time periods.
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6 Conclusions

Advances in the remote sensing ofET currently afford an op-
portunity to independently verify other annual components
of the terrestrial water budget – including changes in ter-
restrial water storage (dS / dt). Confirming recent work with
GRACE, results demonstrate the importance of dS / dt for
closing the annual water budget. In particular, GRACE-based
dSGR / dt estimates appear to provide a reliable source of
such information within large-scale river basins with rela-
tively low annual snowfall totals and anthropogenic man-
agement (Figs. 2–3). In addition, for basins smaller than
the 200 000 km2 GRACE spatial resolution, estimates of
dSPM / dt derived from PM remote sensing and Eqs. (4)–
(6) also demonstrate clear value for providing annual clo-
sure information (Fig. 7). Given that PM-based soil mois-
ture retrievals are available at substantially finer spatial res-
olution than gravity-based retrievals of dS / dt , this opens
up the strong possibility of using microwave-based surface
soil moisture retrievals to downscale gravity-based dS / dt
retrievals (Fig. 8).

The retrieval of the microwave-based dSPM / dt proxy is
based on two – somewhat ad hoc – assumptions expressed
in Eqs. (4)–(6) which claim that (1) dθPM / dt obtained via
Eq. (4) has a linear underlying relationship with dS / dt and
(2) the constant of proportionality in the relationship can
be derived via variance matching between microwave- and
gravity-based estimates of dS / dt . These assumptions are
directly supported by empirical results presented in Figs. 5
and 6. Nevertheless, it should be stressed that theoretical sup-
port for Eqs. (4)–(6) is still quite weak, and it is relatively
easy to imagine cases in which these assumptions would
be expected to fail (see Sect. 5). Therefore, additional val-
idation work over a wider variety of conditions is certainly
required. Likewise, an objective intercomparison between
this approach and earlier downscaling approaches based on
higher-resolution land surface model output (e.g., Reager et
al., 2015; Wan et al., 2015) is warranted.

In addition to isolating potential value in microwave-based
dSPM / dt estimates, water balance results presented here
also provide confidence regarding our ability to capture an-
nual variations in dS / dt via Eq. (1) and flux observations.
In particular, both annual dSGR / dt and dSPM / dt estimates
exhibit a statistically significant correlation against indepen-
dent annual P −Q−ET values within the medium-scale
basins examined here (Fig. 7). Terrestrial ET, in particular,
is commonly perceived to represent a weak link in the char-
acterization of Eq. (1). However, based on results presented
here, it appears that ALEXI-basedET products over CONUS
are now sufficiently accurate (at least in a relative interan-
nual sense) for annual ET estimates to be used as a viable
constraint to infer the accuracy of other water budget com-
ponents. This is a marked improvement over the calculation
of ET as a balance residual and opens the door to the fuller

use of Eq. (1) as a diagnostic tool for various water balance
products.
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this analysis are available upon request from the corresponding au-
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