Articles | Volume 20, issue 2
https://doi.org/10.5194/hess-20-787-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-787-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
Z. D. Wen
Northeast Institute of Geography and Agroecology, CAS, Changchun, China
K. S. Song
CORRESPONDING AUTHOR
Northeast Institute of Geography and Agroecology, CAS, Changchun, China
Northeast Institute of Geography and Agroecology, CAS, Changchun, China
J. Du
Northeast Institute of Geography and Agroecology, CAS, Changchun, China
J. H. Ma
Northeast Institute of Geography and Agroecology, CAS, Changchun, China
University of Chinese Academy of Sciences, Beijing, China
Related authors
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Zhidan Wen, Kaishan Song, Chong Fang, Qian Yang, Ge Liu, Yingxin Shang, and Xiaodi Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-348, https://doi.org/10.5194/bg-2018-348, 2018
Preprint withdrawn
Short summary
Short summary
The spatial distribution of the attenuation of photosynthetic active radiation (Kd(PAR)) was routinely estimated in China lakes and reservoirs. The light absorption coefficient of OACs could explain 70 %–87 % of Kd(PAR) variations. Kd(PAR) could be predicted from aOACs values in the inland waters. Besides, results of this study are suggesting that new studies on the variability of Kd(PAR) in inland waters must consider the hydrodynamic conditions, trophic status and OACs within the water column.
Kaishan Song, Sijia Li, Zhidan Wen, Lili Lyu, and Yingxin Shang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-259, https://doi.org/10.5194/bg-2018-259, 2018
Revised manuscript not accepted
Short summary
Short summary
Inland lakes are a direct link among the land, atmospheric and oceans (via rivers). Little is currently known about colored dissolved organic matter and its relationship with water quality in lakes across the Tibet Plateau. For these brackish and saline lakes, a high salt content with accumulation of carbon and low organic colored dissolved matter in brackish lakes, indicating the influence of strong evapoconcentration, intense ultraviolet irradiance and landscapes.
Kaishan Song, Ying Zhao, Zhidan Wen, Chong Fang, and Yingxin Shang
Hydrol. Earth Syst. Sci., 21, 5127–5141, https://doi.org/10.5194/hess-21-5127-2017, https://doi.org/10.5194/hess-21-5127-2017, 2017
Kaishan Song, Ying Zhao, Zhidan Wen, Jianhang Ma, Tiantian Shao, Chong Fang, and Yingxin Shang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-380, https://doi.org/10.5194/hess-2016-380, 2016
Revised manuscript not accepted
Short summary
Short summary
CDOM has strong link with DOC, which sets the basis for remote estimation of DOC in waters. However, the relationships between DOC and CDOM absorption for different types of inland waters may vary which worth further systematic investigations. Samples from fresh lakes, saline lakes, rivers, urban water bodies, ice-covered lakes were measured to examine the relationship between DOC and CDOM. The regression model slopes range from 1.03 for urban waters to 3.13 for river water.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Zhidan Wen, Kaishan Song, Chong Fang, Qian Yang, Ge Liu, Yingxin Shang, and Xiaodi Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-348, https://doi.org/10.5194/bg-2018-348, 2018
Preprint withdrawn
Short summary
Short summary
The spatial distribution of the attenuation of photosynthetic active radiation (Kd(PAR)) was routinely estimated in China lakes and reservoirs. The light absorption coefficient of OACs could explain 70 %–87 % of Kd(PAR) variations. Kd(PAR) could be predicted from aOACs values in the inland waters. Besides, results of this study are suggesting that new studies on the variability of Kd(PAR) in inland waters must consider the hydrodynamic conditions, trophic status and OACs within the water column.
Kaishan Song, Sijia Li, Zhidan Wen, Lili Lyu, and Yingxin Shang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-259, https://doi.org/10.5194/bg-2018-259, 2018
Revised manuscript not accepted
Short summary
Short summary
Inland lakes are a direct link among the land, atmospheric and oceans (via rivers). Little is currently known about colored dissolved organic matter and its relationship with water quality in lakes across the Tibet Plateau. For these brackish and saline lakes, a high salt content with accumulation of carbon and low organic colored dissolved matter in brackish lakes, indicating the influence of strong evapoconcentration, intense ultraviolet irradiance and landscapes.
Kaishan Song, Ying Zhao, Zhidan Wen, Chong Fang, and Yingxin Shang
Hydrol. Earth Syst. Sci., 21, 5127–5141, https://doi.org/10.5194/hess-21-5127-2017, https://doi.org/10.5194/hess-21-5127-2017, 2017
Kaishan Song, Ying Zhao, Zhidan Wen, Jianhang Ma, Tiantian Shao, Chong Fang, and Yingxin Shang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-380, https://doi.org/10.5194/hess-2016-380, 2016
Revised manuscript not accepted
Short summary
Short summary
CDOM has strong link with DOC, which sets the basis for remote estimation of DOC in waters. However, the relationships between DOC and CDOM absorption for different types of inland waters may vary which worth further systematic investigations. Samples from fresh lakes, saline lakes, rivers, urban water bodies, ice-covered lakes were measured to examine the relationship between DOC and CDOM. The regression model slopes range from 1.03 for urban waters to 3.13 for river water.
Ying Zhao, Kaishan Song, Zhidan Wen, Lin Li, Shuying Zang, Tiantian Shao, Sijia Li, and Jia Du
Biogeosciences, 13, 1635–1645, https://doi.org/10.5194/bg-13-1635-2016, https://doi.org/10.5194/bg-13-1635-2016, 2016
Short summary
Short summary
Our results of this study show that two humic-like C peaks and two protein-like B and T peaks were identified from CDOM using PARAFAC for investigated lakes. The average fluorescence intensity of the components differed seasonally. Components 1 and 2 exhibited strong linear correlation (R2 = 0.63). Significantly positive linear relationships, between aCDOM and Fmax, and between DOC and salinity (R2 = 0.93), were revealed.
K. S. Song, S. Y. Zang, Y. Zhao, L. Li, J. Du, N. N. Zhang, X. D. Wang, T. T. Shao, Y. Guan, and L. Liu
Hydrol. Earth Syst. Sci., 17, 4269–4281, https://doi.org/10.5194/hess-17-4269-2013, https://doi.org/10.5194/hess-17-4269-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system)
Seasonality of density currents induced by differential cooling
Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
Contrasting hydrological and thermal intensities determine seasonal lake-level variations – a case study at Paiku Co on the southern Tibetan Plateau
Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes
A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water
Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments
Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Reliable reference for the methane concentrations in Lake Kivu at the beginning of industrial exploitation
Small dams alter thermal regimes of downstream water
Oxycline oscillations induced by internal waves in deep Lake Iseo
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown features of its thermohaline structure
Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using 222Rn and stable isotopes
Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study
Active heat pulse sensing of 3-D-flow fields in streambeds
Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations
Effectiveness of distributed temperature measurements for early detection of piping in river embankments
Citizen observations contributing to flood modelling: opportunities and challenges
Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates
Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
Information content of stream level class data for hydrological model calibration
Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands
Technical Note: Monitoring of unsteady open channel flows using the continuous slope-area method
Application of CryoSat-2 altimetry data for river analysis and modelling
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia
DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry
The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research
A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river
Characterization of sediment layer composition in a shallow lake: from open water zones to reed belt areas
Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study
Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva
Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary
Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain
Flood discharge measurement of a mountain river – Nanshih River in Taiwan
Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland
Measurement of spatial and temporal fine sediment dynamics in a small river
Technical Note: How image processing facilitates the rising bubble technique for discharge measurement
Discharge estimation in a backwater affected meandering river
Ephemeral stream sensor design using state loggers
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023, https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Short summary
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated the influence of different vegetation coverages on the flow and mixing in the small naturally vegetated channel. The obtained results are expected to be helpful for practitioners, enlarge our still limited knowledge, and show the further required scientific directions for a better understanding of the influence of vegetation on the flow and mixing of dissolved substances in real natural conditions.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary
Short summary
We found that the annual flood at the Cambodian floodplains decreased from 1960 to 2019. Consequently, the Tonle Sap Lake, the largest lake in Southeast Asia, is shrinking. The results are worrying because the local fisheries and planting calendar might be disrupted. This drastic decline of flooding extent is caused mostly by local factors, namely water withdrawal for irrigation and channel incision from sand mining activities.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, https://doi.org/10.5194/hess-24-3417-2020, 2020
Short summary
Short summary
Under rapid ongoing climate change, accurate quantification of natural greenhouse gas emissions in aquatic environments such as lakes and ponds is needed to understand regulation and feedbacks. Building on the rapid development in wireless communication, sensors, and computation technology, we present a low-cost, open-source, automated and remotely accessed and controlled device for carbon dioxide and methane fluxes from open-water environments along with tests showing their potential.
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416, https://doi.org/10.5194/hess-24-3399-2020, https://doi.org/10.5194/hess-24-3399-2020, 2020
Short summary
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Short summary
In the attempt to identify and disentangle long-term impacts of changes in snow cover and precipitation along with reservoir constructions, we employ a set of analytical tools on hydro-climatic time series. We identify storage reservoirs as an important factor redistributing runoff from summer to winter. Furthermore, our results hint at more (intense) rainfall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019, https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Short summary
Dissolved methane in Lake Kivu (East Africa) represents a precious energy deposit, but the high gas loads have also been perceived as a threat by the local population. Our measurements confirm the huge amount of methane and carbon dioxide present, but do not support the current theory of a significant recharge. Direct measurements of gas pressure indicate no imminent danger due to limnic eruptions. A continuous survey is mandatory to support responsible action during industrial exploitation.
André Chandesris, Kris Van Looy, Jacob S. Diamond, and Yves Souchon
Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, https://doi.org/10.5194/hess-23-4509-2019, 2019
Short summary
Short summary
We found that small dams in rivers alter the thermal regimes of downstream waters in two distinct ways: either only the downstream daily minimum temperatures increase, or both the downstream daily minimum and maximum temperatures increase. We further show that only two physical dam characteristics can explain this difference in temperature response: (1) residence time, and (2) surface area. These results may help managers prioritize efforts to restore the fragmented thermalscapes of rivers.
Giulia Valerio, Marco Pilotti, Maximilian Peter Lau, and Michael Hupfer
Hydrol. Earth Syst. Sci., 23, 1763–1777, https://doi.org/10.5194/hess-23-1763-2019, https://doi.org/10.5194/hess-23-1763-2019, 2019
Short summary
Short summary
This paper provides experimental evidence of the occurrence of large and periodic movements induced by the wind at 95 m in depth in Lake Iseo, where a permanent chemocline is located. These movements determine vertical oscillations of the oxycline up to 20 m. Accordingly, in 3 % of the sediment area alternating redox conditions occur, which might force unsteady sediment–water fluxes. This finding has major implications for the internal matter cycle in Lake Iseo.
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
Short summary
We have discovered transient appearances of strong turbulent mixing beneath the ice of an Arctic lake. Such mixing events increase heating of the ice base up to an order of magnitude and can significantly accelerate ice melting. The source of mixing was identified as oscillations of the entire lake water body triggered by strong winds over the lake surface. This previously unknown mechanism of ice melt may help understand the link between the climate conditions and the seasonal ice formation.
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018, https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary
Short summary
This paper reports the results of field surveys conducted in Lake Issyk-Kul in 2015–2017 and compares the present-day data with the available historical records. Our data do not confirm the reports of progressive warming of the deep Issyk-Kul waters as suggested in some previous publications. However, they do indicate a positive trend of salinity in the lake’s interior over the last 3 decades. An important newly found feature is a persistent salinity maximum at depths of 70–120 m.
Xin Luo, Xingxing Kuang, Jiu Jimmy Jiao, Sihai Liang, Rong Mao, Xiaolang Zhang, and Hailong Li
Hydrol. Earth Syst. Sci., 22, 5579–5598, https://doi.org/10.5194/hess-22-5579-2018, https://doi.org/10.5194/hess-22-5579-2018, 2018
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Nicholas Voichick, David J. Topping, and Ronald E. Griffiths
Hydrol. Earth Syst. Sci., 22, 1767–1773, https://doi.org/10.5194/hess-22-1767-2018, https://doi.org/10.5194/hess-22-1767-2018, 2018
Short summary
Short summary
This paper describes instances in the Grand Canyon study area and a laboratory experiment in which very high suspended-sediment concentrations result in incorrectly low turbidity recorded with a commonly used field instrument. If associated with the monitoring of a construction or dredging project, false low turbidity could result in regulators being unaware of environmental damage caused by the actually much higher turbidity.
Silvia Bersan, André R. Koelewijn, and Paolo Simonini
Hydrol. Earth Syst. Sci., 22, 1491–1508, https://doi.org/10.5194/hess-22-1491-2018, https://doi.org/10.5194/hess-22-1491-2018, 2018
Short summary
Short summary
Backward erosion piping is the cause of a significant percentage of failures and incidents involving dams and river embankments. In the past 20 years fibre-optic Distributed Temperature Sensing (DTS) has proved to be effective for the detection of leakages and internal erosion in dams. This work investigates the effectiveness of DTS for monitoring backward erosion piping in river embankments. Data from a large-scale piping test performed on an instrumented dike are presented and discussed.
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
Jutta Metzger, Manuela Nied, Ulrich Corsmeier, Jörg Kleffmann, and Christoph Kottmeier
Hydrol. Earth Syst. Sci., 22, 1135–1155, https://doi.org/10.5194/hess-22-1135-2018, https://doi.org/10.5194/hess-22-1135-2018, 2018
Short summary
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.
Pauline Leduc, Peter Ashmore, and Darren Sjogren
Hydrol. Earth Syst. Sci., 22, 1–11, https://doi.org/10.5194/hess-22-1-2018, https://doi.org/10.5194/hess-22-1-2018, 2018
Short summary
Short summary
We show the utility of ground-based time-lapse cameras for automated monitoring of stream stage and flow characteristics. High-frequency flow stage, water surface width and other information on the state of flow can be acquired for extended time periods with simple local calibration using a low-cost time-lapse camera and a few simple field measurements for calibration and for automated image selection and sorting. The approach is a useful substitute or complement to the conventional stage data.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Kyutae Lee, Ali R. Firoozfar, and Marian Muste
Hydrol. Earth Syst. Sci., 21, 1863–1874, https://doi.org/10.5194/hess-21-1863-2017, https://doi.org/10.5194/hess-21-1863-2017, 2017
Short summary
Short summary
Accurate estimation of stream/river flows is important in many aspects, including public safety during floods, effective uses of water resources for hydropower generation and irrigation, and environments. In this paper, we investigated a feasibility of the continuous slope area (CSA) method which measures dynamic changes in instantaneous water surface elevations, and the results showed promising capabilities of the suggested method for the accurate estimation of flows in natural streams/rivers.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Short summary
Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth’s surface in dangerous and previously inaccessible locations. Here we present a method whereby image acquisition and subsequent analysis have enabled the highly dynamic and oft-immeasurable hydraulic phenomenon present during high-energy flash floods to be quantified at previously unattainable spatial and temporal resolutions.
Ian Cartwright and Harald Hofmann
Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, https://doi.org/10.5194/hess-20-3581-2016, 2016
Short summary
Short summary
This paper uses the natural geochemical tracer Rn together with streamflow measurements to differentiate between actual groundwater inflows and water that exits the river, flows through the near-river sediments, and subsequently re-enters the river downstream (parafluvial flow). Distinguishing between these two components is important to understanding the water balance in gaining streams and in managing and protecting surface water resources.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
J. Halder, S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal
Hydrol. Earth Syst. Sci., 19, 3419–3431, https://doi.org/10.5194/hess-19-3419-2015, https://doi.org/10.5194/hess-19-3419-2015, 2015
Short summary
Short summary
We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. A regionalized, cluster-based precipitation isotope model was used to compare measured to predicted isotope compositions of riverine catchments. The study demonstrated that the seasonal isotopic composition and variation of river water can be predicted, which will improve the application of water stable isotopes in rivers.
L. Schulte, J. C. Peña, F. Carvalho, T. Schmidt, R. Julià, J. Llorca, and H. Veit
Hydrol. Earth Syst. Sci., 19, 3047–3072, https://doi.org/10.5194/hess-19-3047-2015, https://doi.org/10.5194/hess-19-3047-2015, 2015
Short summary
Short summary
A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli-Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods.
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015, https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.
I. Kogelbauer and W. Loiskandl
Hydrol. Earth Syst. Sci., 19, 1427–1438, https://doi.org/10.5194/hess-19-1427-2015, https://doi.org/10.5194/hess-19-1427-2015, 2015
M. Schirmer, J. Luster, N. Linde, P. Perona, E. A. D. Mitchell, D. A. Barry, J. Hollender, O. A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser
Hydrol. Earth Syst. Sci., 18, 2449–2462, https://doi.org/10.5194/hess-18-2449-2014, https://doi.org/10.5194/hess-18-2449-2014, 2014
A. Parvathi, X. Zhong, A. S. Pradeep Ram, and S. Jacquet
Hydrol. Earth Syst. Sci., 18, 1073–1087, https://doi.org/10.5194/hess-18-1073-2014, https://doi.org/10.5194/hess-18-1073-2014, 2014
A. Zlinszky and G. Timár
Hydrol. Earth Syst. Sci., 17, 4589–4606, https://doi.org/10.5194/hess-17-4589-2013, https://doi.org/10.5194/hess-17-4589-2013, 2013
B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell
Hydrol. Earth Syst. Sci., 17, 4031–4042, https://doi.org/10.5194/hess-17-4031-2013, https://doi.org/10.5194/hess-17-4031-2013, 2013
Y.-C. Chen
Hydrol. Earth Syst. Sci., 17, 1951–1962, https://doi.org/10.5194/hess-17-1951-2013, https://doi.org/10.5194/hess-17-1951-2013, 2013
A. T. Rezende Filho, S. Furian, R. L. Victoria, C. Mascré, V. Valles, and L. Barbiero
Hydrol. Earth Syst. Sci., 16, 2723–2737, https://doi.org/10.5194/hess-16-2723-2012, https://doi.org/10.5194/hess-16-2723-2012, 2012
Y. Schindler Wildhaber, C. Michel, P. Burkhardt-Holm, D. Bänninger, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 1501–1515, https://doi.org/10.5194/hess-16-1501-2012, https://doi.org/10.5194/hess-16-1501-2012, 2012
K. P. Hilgersom and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 16, 345–356, https://doi.org/10.5194/hess-16-345-2012, https://doi.org/10.5194/hess-16-345-2012, 2012
H. Hidayat, B. Vermeulen, M. G. Sassi, P. J. J. F. Torfs, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 15, 2717–2728, https://doi.org/10.5194/hess-15-2717-2011, https://doi.org/10.5194/hess-15-2717-2011, 2011
R. Bhamjee and J. B. Lindsay
Hydrol. Earth Syst. Sci., 15, 1009–1021, https://doi.org/10.5194/hess-15-1009-2011, https://doi.org/10.5194/hess-15-1009-2011, 2011
Cited articles
Alvarez-Cobelas, M., Angeler, D. G., Sanchez-Carrillo, S., and Almendros,
G.: A worldwide view of organic carbon export from catchments,
Biogeochemistry, 107, 275–293, https://doi.org/10.1007/s10533-010-9553-z, 2012.
Anderson, N. J. and Stedmon, C. A.: The effect of evapoconcentration on
dissolved organic carbon concentration and quality in lakes of SW Greenland,
Freshwater Biol., 52, 280–289, https://doi.org/10.1111/j.1365-2427.2006.01688.x, 2007.
APHA/AWWA/WEF: Standard methods for the examination of water and wastewater,
American Public Health Association, Washington, D.C., 1998.
Arts, M. T., Robarts, R. D., Kasai, F., Waiser, M. J., Tumber, V. P.,
Plante, A. J., Rai, H., and de Lange, H. J.: The attenuation of ultraviolet
radiation in high dissolved organic carbon waters of wetlands and lakes on
the northern Great Plains, Limnol. Oceanogr., 45, 292–299, 2000.
Bai, Y. F., Wu, J. G., Xing, Q., Pan, Q. M., Huang, J. H., Yang, D. L., and
Han, X. G.: Primary production and rain use efficiency across a
precipitation gradient on the Mongolia plateau, Ecology, 89, 2140–2153,
https://doi.org/10.1890/07-0992.1, 2008.
Bracchini, L., Tognazzi, A., Dattilo, A., Decembrini, F., Rossi, C., and
Loiselle, S.: Sensitivity analysis of CDOM spectral slope in artificial and
natural samples: an application in the central eastern Mediterranean Basin,
Aquat. Sci., 72, 485–498, https://doi.org/10.1007/s00027-010-0150-y, 2010.
Bricaud, A. and Stramski, D.: Spectral absorption coefficients of living
phytoplankton and nonalgal biogenous matter: A comparison between the Peru
upwelling area and the Sargasso Sea, Limnol. Oceanogr., 35, 562–582, 1990.
Bricaud, A., Morel, A., and Prieur, L.: Absorption by dissolved organic
matter of the sea (Yekkow substance) in the UV and visible domains, Limnol.
Oceanogr., 26, 43–53, 1981.
Bricaud, A., Roesler, C. S., Parslow, J. S., and Ishizaka, J.: Bio-optical
studies during the JGOFS-equatorial Pacific program: a contribution to the
knowledge of the equatorial system, Deep-Sea Res. Pt. II, 49, 2583–2599,
https://doi.org/10.1016/S0967-0645(02)00049-8, 2002.
Carder, K. L., Hawes, S., Baker, K., Smith, R., Steward, R., and Mitchell,
B.: Reflectance model for quantifying chlorophyll a in the presence of
productivity degradation products, J. Geophys. Res.-Oceans, 96, 20599-20611, 1991.
Cleveland, J. S. and Weidemann, A. D.: Quantifying absorption by aquatic
particles – A multiple-scattering correction for galss-fiber filters,
Limnol. Oceanogr., 38, 1321–1327, 1993.
Coble, P. G.: Marine Optical Biogeochemistry: The Chemistry of Ocean Color,
Chem. Rev., 107, 402–418, https://doi.org/10.1021/cr050350, 2007.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Cole, J. J., Carpenter, S. R., Kitchell, J., Pace, M. L., Solomon, C. T.,
and Weidel, B.: Strong evidence for terrestrial support of zooplankton in
small lakes based on stable isotopes of carbon, nitrogen, and hydrogen,
Proc. Natl. Acad. Sci., 108, 1975–1980, https://doi.org/10.1073/pnas.1012807108, 2011.
Cory, R. M., McKnight, D. M., Chin, Y.-P., Miller, P., and Jaros, C. L.:
Chemical characteristics of fulvic acids from Arctic surface waters:
Microbial contributions and photochemical transformations, J. Geophys. Res.-Biogeo.,
112, G04S51, https://doi.org/10.1029/2006jg000343, 2007.
Curtis, P. J. and Adams, H. E.: Dissolved organic matter quantity and
quality from freshwater and saltwater lakes in east-central Alberta,
Biogeochemistry, 30, 59–76, https://doi.org/10.1007/bf02181040, 1995.
De Haan, H. and De Boer, T.: Applicability of light absorbance and
fluorescence as measures of concentration and molecular size of dissolved
organic carbon in humic Laken Tjeukemeer, Water Res., 21, 731–734, 1987.
Dillon, P. J. and Molot, L. A.: Effect of landscape form on export of
dissolved organic carbon, iron, and phosphorus from forested stream
catchments, Water Resour. Res., 33, 2591–2600, https://doi.org/10.1029/97wr01921, 1997.
Dillon, P. J. and Molot, L. A.: Long-term trends in catchment export and
lake retention of dissolved organic carbon, dissolved organic nitrogen,
total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998, J.
Geophys. Res.-Biogeo., 110, G01002, https://doi.org/10.1029/2004jg000003, 2005.
Duarte, C. M., Prairie, Y. T., Montes, C., Cole, J. J., Striegl, R., Melack,
J., and Downing, J. A.: CO2 emissions from saline lakes: A global estimate
of a surprisingly large flux, J. Geophys. Res.-Biogeo., 113, G04041, https://doi.org/10.1029/2007jg000637, 2008.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in
surface water dissolved organic carbon: Observations, possible causes and
environmental impacts, Environ. Pollut., 137, 55–71, https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Findlay, S. E. G. and Sinsabaugh, R. L.: Aquatic Ecosystems Interactivity
of Dissolved Organic Matter, Academic Press, Elsevier Science, USA, 2003.
Frenette, J. J., Arts, M. T., and Morin, J.: Spectral gradients of
downwelling light in a fluvial lake (Lake Saint-Pierre, St-Lawrence River),
Aquat. Ecol., 37, 77–85, https://doi.org/10.1023/a:1022133530244, 2003.
Gonnelli, M., Vestri, S., and Santinelli, C.: Chromophoric dissolved organic
matter and microbial enzymatic activity. A biophysical approach to
understand the marine carbon cycle, Biophys. Chem., 182, 79–85,
https://doi.org/10.1016/j.bpc.2013.06.016, 2013.
Graeber, D., Gelbrecht, J., Pusch, M. T., Anlanger, C., and von Schiller,
D.: Agriculture has changed the amount and composition of dissolved organic
matter in Central European headwater streams, Sci. Total Environ., 438,
435–446, https://doi.org/10.1016/j.scitotenv.2012.08.087, 2012.
Griffin, C. G., Frey, K. E., Rogan, J., and Holmes, R. M.: Spatial and
interannual variability of dissolved organic matter in the Kolyma River,
East Siberia, observed using satellite imagery, J. Geophys. Res.-Biogeo., 116,
G03018, https://doi.org/10.1029/2010jg001634, 2011.
Gueguen, C., Granskog, M. A., McCullough, G., and Barber, D. G.:
Characterisation of colored dissolved organic matter in Hudson Bay and
Hudson Strait using parallel factor analysis, J. Mar. Syst., 88, 423–433,
https://doi.org/10.1016/j.jmarsys.2010.12.001, 2011.
Guo, L., Cai, Y., Belzile, C., and Macdonald, R. W.: Sources and export
fluxes of inorganic and organic carbon and nutrient species from the
seasonally ice-covered Yukon River, Biogeochemistry, 107, 187–206,
https://doi.org/10.1007/s10533-010-9545-z, 2012.
Hao, Y., Wang, Y., Huang, X., Cui, X., Zhou, X., Wang, S., Niu, H., and
Jiang, G.: Seasonal and interannual variation in water vapor and energy
exchange over a typical steppe in Inner Mongolia, China, Agr. Forest
Meteorol., 146, 57–69, https://doi.org/10.1016/j.agrformet.2007.05.005, 2007.
Harrison, J. A., Caraco, N., and Seitzinger, S. P.: Global patterns and
sources of dissolved organic matter export to the coastal zone: Results from
a spatially explicit, global model, Global Biogeochem. Cy., 19, GB4S04,
https://doi.org/10.1029/2005GB002480, 2005.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnology and Oceanography, 53, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Jerlov, N. G.: Optical Oceanography, Oceanography Series, Elsevier, Amsterdam, 1968.
Jiang, R., Hatano, R., Zhao, Y., Kuramochi, K., Hayakawa, A., Woli, K. P.,
and Shimizu, M.: Factors controlling nitrogen and dissolved organic carbon
exports across timescales in two watersheds with different land uses,
Hydrol. Process., 28, 5105–5121, https://doi.org/10.1002/hyp.9996, 2014.
Kitidis, V., Stubbins, A. P., Uher, G., Upstill Goddard, R. C., Law, C. S.,
and Woodward, E. M. S.: Variability of chromophoric organic matter in
surface waters of the Atlantic Ocean, Deep-Sea Res. Pt. II, 53, 1666–1684, 2006.
Kowalczuk, P. A., Stedmon, C., and Markager, S.: Modeling absorption by CDOM
in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101,
1–11, https://doi.org/10.1016/j.marchem.2005.12.005, 2006.
Leps, J. and Smilauer, P.: Multivariate Analysis of Ecological Data using
CANOCO 5, Cambridge University Press, New York, 2003.
Li, G., Liu, J., Ma, Y., Zhao, R., Hu, S., Li, Y., Wei, H., and Xie, H.:
Distribution and spectral characteristics of chromophoric dissolved organic
matter in a coastal bay in northern China, J. Environ. Sci., 26, 1585–1595,
https://doi.org/10.1016/j.jes.2014.05.025, 2014.
Lorenz, M. O.: Methods of Measuring the Concentration of Wealth, Publ. Am. Stat.
Assoc., 9, 209–219, 1905.
Mavi, M. S., Sanderman, J., Chittleborough, D. J., Cox, J. W., and
Marschner, P.: Sorption of dissolved organic matter in salt-affected soils:
Effect of salinity, sodicity and texture, Sci. Total Environ., 435, 337–344,
https://doi.org/10.1016/j.scitotenv.2012.07.009, 2012.
Miller, W. L.: Photochemical principles and experimental considerations,
Aquatic Humic Substances: Ecology and Biogeochemistry, Springer, Berlin, 1998.
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M.,
Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa,
J., Keller, B., Kopacek, J., and Vesely, J.: Dissolved organic carbon trends
resulting from changes in atmospheric deposition chemistry, Nature, 450,
537–540, https://doi.org/10.1038/nature06316, 2007.
Mopper, K. and Kieber, D. J.: Chapter 9 – Photochemistry and the Cycling of
Carbon, Sulfur, Nitrogen and Phosphorus, in: Biogeochemistry of Marine
Dissolved Organic Matter, edited by: Carlson, D. A. H. A., Academic Press,
San Diego, 455–507, 2002.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol.
Oceanogr., 22, 709–722, https://doi.org/10.4319/lo.1977.22.4.0709, 1977.
Nelson, N. B. and Siegel, D. A.: The Global Distribution and Dynamics of
Chromophoric Dissolved Organic Matter, Annu. Rev. Mar. Sci., 5, 447–476,
https://doi.org/10.1146/annurev-marine-120710-100751, 2013.
Niu, C., Zhang, Y. L., Zhou, Y. Q., Shi, K., Liu, X. H., and Qin, B. Q.: The
Potential Applications of Real-Time Monitoring of Water Quality in a Large
Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic
Matter Fluorescence Sensor, Sensors, 14, 11580–11594, https://doi.org/10.3390/s140711580, 2014.
Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., and Benner, R.: Production of
refractory dissolved organic matter by bacteria, Science, 292, 917–920,
https://doi.org/10.1126/science.1057627, 2001.
Organelli, E., Bricaud, A., Antoine, D., and Matsuoka, A.: Seasonal dynamics
of light absorption by chromophoric dissolved organic matter (CDOM) in the
NW Mediterranean Sea (BOUSSOLE site), Deep-Sea Res. Pt. I, 91, 72–85,
https://doi.org/10.1016/j.dsr.2014.05.003, 2014.
Ortega-Retuerta, E., Reche, I., Pulido-Villena, E., Agusti, S., and Duarte,
C. M.: Distribution and photoreactivity of chromophoric dissolved organic
matter in the Antarctic Peninsula (Southern Ocean), Mar. Chem., 118, 129–139,
https://doi.org/10.1016/j.marchem.2009.11.008, 2010.
Osburn, C. L., Wigdahl, C. R., Fritz, S. C., and Saros, J. E.: Dissolved
organic matter composition and photoreactivity in prairie lakes of the
U.S. Great Plains, Limnol. Oceanogr., 56, 2371–2390, https://doi.org/10.4319/lo.2011.56.6.2371, 2011.
Para, J., Coble, P. G., Charriere, B., Tedetti, M., Fontana, C., and
Sempere, R.: Fluorescence and absorption properties of chromophoric
dissolved organic matter (CDOM) in coastal surface waters of the
northwestern Mediterranean Sea, influence of the Rhone River,
Biogeosciences, 7, 4083–4103, https://doi.org/10.5194/bg-7-4083-2010, 2010.
Parslow, J. S., Clementson, L. A., Turnbull, A. R., and McKenzie, D. C.:
Bio-optical characteristics of oceans around Australia, Ocean optics XIV
conference papers, Proceedings, Hawaii, 1998.
Phong, D. D., Lee, Y., Shin, K. H., and Hur, J.: Spatial variability in
chromophoric dissolved organic matter for an artificial coastal lake
(Shiwha) and the upstream catchments at two different seasons, Environ. Sci.
Pollut. Res., 21, 7678–7688, https://doi.org/10.1007/s11356-014-2704-3, 2014.
Prieur, L. and Sathyendranath, S.: An optical classification of coastal and
oceanic waters based on the specific spectral absorption curves of
phytoplankton pigments, dissolved organic matter, and other particulate
materials, Limnol. Oceanogr., 26, 671–689, 1981.
Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K.,
Peterson, B. J., Striegl, R. G., Aiken, G. R., and Gurtovaya, T. Y.: Flux
and age of dissolved organic carbon exported to the Arctic Ocean: A carbon
isotopic study of the five largest arctic rivers, Global Biogeochem. Cy.,
21, GB4011, https://doi.org/10.1029/2007gb002934, 2007.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Duerr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide
emissions from inland waters, Nature, 503, 355–359, https://doi.org/10.1038/nature12760, 2013.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea water, Interscience Publishers, New York, 1963.
Riera, J. L., Schindler, J. E., and Kratz, T. K.: Seasonal dynamics of
carbon dioxide and methane in two clear-water lakes and two bog lakes in
northern Wisconsin, USA, Can. J. Fish. Aquat. Sci., 56, 265–274,
https://doi.org/10.1139/cjfas-56-2-265, 1999.
Rochelle-Newall, E. J. and Fisher, T. R.: Production of chromophoric
dissolved organic matter fluorescence in marine and estuarine environments:
an investigation into the role of phytoplankton, Mar. Chem., 77, 7–21,
https://doi.org/10.1016/s0304-4203(01)00072-x, 2002.
Sieczko, A. and Peduzzi, P.: Origin, enzymatic response and fate of
dissolved organic matter during flood and non-flood conditions in a
river-floodplain system of the Danube (Austria), Aquat. Sci., 76, 115–129,
https://doi.org/10.1007/s00027-013-0318-3, 2014.
Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M. J.:
Independence and interdependencies among global ocean color properties:
Reassessing the bio-optical assumption, J. Geophys. Res.-Oceans, 110,
C07011, https://doi.org/10.1029/2004jc002527, 2005.
Song, K. S., Li, L., Tedesco, L. P., Li, S., Duan, H. T., Liu, D. W., Hall,
B. E., Du, J., Li, Z. C., Shi, K., and Zhao, Y.: Remote estimation of
chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model,
Remote Sens. Environ., 136, 342–357, https://doi.org/10.1016/j.rse.2013.05.017, 2013a.
Song, K. S., Zang, S. Y., Zhao, Y., Li, L., Du, J., Zhang, N. N., Wang, X.
D., Shao, T. T., Guan, Y., and Liu, L.: Spatiotemporal characterization of
dissolved carbon for inland waters in semi-humid/semi-arid region, China,
Hydrol. Earth Syst. Sci., 17, 4269–4281, https://doi.org/10.5194/hess-17-4269-2013, 2013b.
Song, K. S., Li, L., Tedesco, L. P., Li, S., Hall, B. E., and Du, J.: Remote
quantification of phycocyanin in potable water sources through an adaptive
model, ISPRS J. Photogramm. Remote Sens., 95, 68–80, https://doi.org/10.1016/j.isprsjprs.2014.06.008, 2014.
Spencer, R. G. M., Aiken, G. R., Wickland, K. P., Striegl, R. G., and
Hernes, P. J.: Seasonal and spatial variability in dissolved organic matter
quantity and composition from the Yukon River basin, Alaska, Global
Biogeochem. Cy., 22, GB4002, https://doi.org/10.1029/2008gb003231, 2008.
Spencer, R. G. M., Stubbins, A., Hernes, P. J., Baker, A., Mopper, K.,
Aufdenkampe, A. K., Dyda, R. Y., Mwamba, V. L., Mangangu, A. M.,
Wabakanghanzi, J. N., and Six, J.: Photochemical degradation of dissolved
organic matter and dissolved lignin phenols from the Congo River, J.
Geophys. Res.-Biogeo., 114, G03010, https://doi.org/10.1029/2009jg000968, 2009.
Spencer, R. G. M., Hernes, P. J., Ruf, R., Baker, A., Dyda, R. Y., Stubbins,
A., and Six, J.: Temporal controls on dissolved organic matter and lignin
biogeochemistry in a pristine tropical river, Democratic Republic of Congo,
J. Geophys. Res.-Biogeo., 115, G03013, https://doi.org/10.1029/2009jg001180, 2010.
Spencer, R. G. M., Butler, K. D., and Aiken, G. R.: Dissolved organic carbon
and chromophoric dissolved organic matter properties of rivers in the USA,
J. Geophys. Res.-Biogeo., 117, G03001, https://doi.org/10.1029/2011jg001928, 2012.
Spencer, R. G. M., Guo, W., Raymond, P. A., Dittmar, T., Hood, E., Fellman,
J., and Stubbins, A.: Source and biolability of ancient dissolved organic
matter in glacier and lake ecosystems on the Tibetan Plateau, Geochim.
Cosmochim. Acta, 142, 64–74, https://doi.org/10.1016/j.gca.2014.08.006, 2014.
Stedmon, C. A., Markager, S., and Kaas, H.: Optical properties and
signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal
waters, Estuar. Coast. Shelf Sci., 51, 267–278, https://doi.org/10.1006/ecss.2000.0645, 2000.
Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z.,
and Guo, Q.: Rapid loss of lakes on the Mongolian Plateau, Proc. Natl. Acad.
Sci., 112, 2281–2286, https://doi.org/10.1073/pnas.1411748112, 2015.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G.,
Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen,
P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L.,
McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y.,
Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay,
A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs
as regulators of carbon cycling and climate, Limnol. Oceanogr., 54,
2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
Vodacek, A., Blough, N. V., DeGrandpre, M. D., Peltzer, E. T., and Nelson,
R. K.: Seasonal variation of CDOM and DOC in the Middle Atlantic Bight:
Terrestrial inputs and photooxidation, Limnol. Oceanogr., 42, 674–686, 1997.
Waiser, M. J. and Robarts, R. D.: Changes in composition and reactivity of
allochthonous DOM in a prairie saline lake, Limnol. Oceanogr., 45, 763–774, 2000.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R.,
and Mopper, K.: Evaluation of specific ultraviolet absorbance as an
indicator of the chemical composition and reactivity of dissolved organic
carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003.
Worrall, F. and Burt, T.: Time series analysis of long-term river dissolved
organic carbon records, Hydrol. Process., 18, 893–911, https://doi.org/10.1002/hyp.1321, 2004.
Xie, H., Aubry, C., Zhang, Y., and Song, G.: Chromophoric dissolved organic
matter (CDOM) in first-year sea ice in the western Canadian Arctic, Mar.
Chem., 165, 25–35, https://doi.org/10.1016/j.marchem.2014.07.007, 2014.
Yacobi, Y. Z., Alberts, J. J., Takacs, M., and Mcelvaine, M.: Absorption
spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers:
the impact of molecular size distribution, J. Limnol., 62, 41–46, 2003.
Zhang, Y. L., Qin, B. Q., Zhang, L., Zhu, G. W., and Chen, W. M.: Spectral
absorption and fluorescence of chromophoric dissolved organic matter in
shallow lakes in the middle and lower reaches of the Yangtze River, J.
Freshwater Ecol., 20, 451–459, https://doi.org/10.1080/02705060.2005.9664760, 2005.
Zhang, Y. L., Qin, B. Q., Zhu, G. W., Zhang, L., and Yang, L. Y.:
Chromophoric dissolved organic matter (CDOM) absorption characteristics in
relation to fluorescence in Lake Taihu, China, a large shallow subtropical
lake, Hydrobiologia, 581, 43–52, https://doi.org/10.1007/s10750-006-0520-6, 2007.
Zhang, Y. L., Zhang, E., Yin, Y., van Dijk, M. A., Feng, L., Shi, Z., Liu, M.,
and Qin, B.: Characteristics and sources of chromophoric dissolved organic
matter in lakes of the Yungui Plateau, China, differing in trophic state and
altitude, Limnol. Oceanogr., 55, 2645–2659, 2010.
Zheng, H., Gao, J., Teng, Y., Feng, C., and Tian, M.: Temporal Variations in
Soil Moisture for Three Typical Vegetation Types in Inner Mongolia, Northern
China, PLoS One, 10, e0118964, https://doi.org/10.1371/journal.pone.0118964, 2015.
Zhou, Y., Zhang, Y., Shi, K., Niu, C., Liu, X., and Duan, H.: Lake Taihu, a
large, shallow and eutrophic aquatic ecosystem in China serves as a sink for
chromophoric dissolved organic matter, J. Great Lakes Res., 41, 597–606,
https://doi.org/10.1016/j.jglr.2015.03.027, 2015.
Short summary
The study indicated that CDOM in rivers had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes in the Hulun Buir plateau, Northeast China. The autochthonous sources of CDOM in plateau waters were higher than in other freshwater rivers reported in the literature. Study of the optical–physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in plateau water environments.
The study indicated that CDOM in rivers had higher aromaticity, molecular weight, and vascular...