Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1211-2016
https://doi.org/10.5194/hess-20-1211-2016
Research article
 | 
21 Mar 2016
Research article |  | 21 Mar 2016

Creating long-term gridded fields of reference evapotranspiration in Alpine terrain based on a recalibrated Hargreaves method

Klaus Haslinger and Annett Bartsch

Related authors

Apparent contradiction in the projected climatic water balance for Austria: wetter conditions on average versus higher probability of meteorological droughts
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
Nat. Hazards Earth Syst. Sci., 23, 2749–2768, https://doi.org/10.5194/nhess-23-2749-2023,https://doi.org/10.5194/nhess-23-2749-2023, 2023
Short summary
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023,https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
An inventory of Alpine drought impact reports to explore past droughts in a mountain region
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021,https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
The European 2015 drought from a climatological perspective
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017,https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary
A three-pillar approach to assessing climate impacts on low flows
Gregor Laaha, Juraj Parajka, Alberto Viglione, Daniel Koffler, Klaus Haslinger, Wolfgang Schöner, Judith Zehetgruber, and Günter Blöschl
Hydrol. Earth Syst. Sci., 20, 3967–3985, https://doi.org/10.5194/hess-20-3967-2016,https://doi.org/10.5194/hess-20-3967-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024,https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024,https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Global total precipitable water variations and trends over the period 1958–2021
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024,https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024,https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024,https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary

Cited articles

Aguilar, C. and Polo, M. J.: Generating reference evapotranspiration surfaces from the Hargreavesn equation at watershed scale, Hydrol. Earth Syst. Sci., 15, 2495–2508, https://doi.org/10.5194/hess-15-2495-2011, 2011.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, 15 pp., 1998.
Bautista, F., Bautista, D., and Delgado-Carranza, C.: Calibrating the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications, Atmósfera, 22, 331–348, 2009.
Bindi, M. and Miglietta, F.: Estimating daily global radiation from air temperature and rainfall measurements, Climatic Change, 1, 117–124, 1991.
Bormann, H.: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations, Climatic Change, 104, 729–753, 2011.
Download
Short summary
Gridded fields of daily max. and min. temperatures for the Austrian domain are used to calculate ET0 based on a re-calibrated Hargreaves method. Newly derived, station-based calibration parameters, with Penman–Monteith ET0 as a reference, show a distinct altitude and seasonal dependence. Theses features are used to interpolate the new calibration values in space and time onto the temperature grids. The ET0 is then calculated based on the entire gridded temperature data starting back in 1961.