Articles | Volume 20, issue 3
Hydrol. Earth Syst. Sci., 20, 1211–1223, 2016
https://doi.org/10.5194/hess-20-1211-2016
Hydrol. Earth Syst. Sci., 20, 1211–1223, 2016
https://doi.org/10.5194/hess-20-1211-2016
Research article
21 Mar 2016
Research article | 21 Mar 2016

Creating long-term gridded fields of reference evapotranspiration in Alpine terrain based on a recalibrated Hargreaves method

Klaus Haslinger and Annett Bartsch

Related authors

The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Simon Kainz, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2022-567,https://doi.org/10.5194/egusphere-2022-567, 2022
Short summary
Contradictory signal in future surface water availability in Austria: increase on average vs. higher probability of droughts
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
EGUsphere, https://doi.org/10.5194/egusphere-2022-191,https://doi.org/10.5194/egusphere-2022-191, 2022
Short summary
An inventory of Alpine drought impact reports to explore past droughts in a mountain region
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021,https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
The European 2015 drought from a climatological perspective
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017,https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary
A three-pillar approach to assessing climate impacts on low flows
Gregor Laaha, Juraj Parajka, Alberto Viglione, Daniel Koffler, Klaus Haslinger, Wolfgang Schöner, Judith Zehetgruber, and Günter Blöschl
Hydrol. Earth Syst. Sci., 20, 3967–3985, https://doi.org/10.5194/hess-20-3967-2016,https://doi.org/10.5194/hess-20-3967-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022,https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022,https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary

Cited articles

Aguilar, C. and Polo, M. J.: Generating reference evapotranspiration surfaces from the Hargreavesn equation at watershed scale, Hydrol. Earth Syst. Sci., 15, 2495–2508, https://doi.org/10.5194/hess-15-2495-2011, 2011.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Rome, 15 pp., 1998.
Bautista, F., Bautista, D., and Delgado-Carranza, C.: Calibrating the equations of Hargreaves and Thornthwaite to estimate the potential evapotranspiration in semi-arid and subhumid tropical climates for regional applications, Atmósfera, 22, 331–348, 2009.
Bindi, M. and Miglietta, F.: Estimating daily global radiation from air temperature and rainfall measurements, Climatic Change, 1, 117–124, 1991.
Bormann, H.: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations, Climatic Change, 104, 729–753, 2011.
Download
Short summary
Gridded fields of daily max. and min. temperatures for the Austrian domain are used to calculate ET0 based on a re-calibrated Hargreaves method. Newly derived, station-based calibration parameters, with Penman–Monteith ET0 as a reference, show a distinct altitude and seasonal dependence. Theses features are used to interpolate the new calibration values in space and time onto the temperature grids. The ET0 is then calculated based on the entire gridded temperature data starting back in 1961.