Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-877-2015
https://doi.org/10.5194/hess-19-877-2015
Research article
 | Highlight paper
 | 
12 Feb 2015
Research article | Highlight paper |  | 12 Feb 2015

Global trends in extreme precipitation: climate models versus observations

B. Asadieh and N. Y. Krakauer

Related authors

Global change in streamflow extremes under climate change over the 21st century
Behzad Asadieh and Nir Y. Krakauer
Hydrol. Earth Syst. Sci., 21, 5863–5874, https://doi.org/10.5194/hess-21-5863-2017,https://doi.org/10.5194/hess-21-5863-2017, 2017
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Mathematical applications
Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022,https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Integrating process-related information into an artificial neural network for root-zone soil moisture prediction
Roiya Souissi, Mehrez Zribi, Chiara Corbari, Marco Mancini, Sekhar Muddu, Sat Kumar Tomer, Deepti B. Upadhyaya, and Ahmad Al Bitar
Hydrol. Earth Syst. Sci., 26, 3263–3297, https://doi.org/10.5194/hess-26-3263-2022,https://doi.org/10.5194/hess-26-3263-2022, 2022
Short summary
Coherence of global hydroclimate classification systems
Kathryn L. McCurley Pisarello and James W. Jawitz
Hydrol. Earth Syst. Sci., 25, 6173–6183, https://doi.org/10.5194/hess-25-6173-2021,https://doi.org/10.5194/hess-25-6173-2021, 2021
Short summary
Design flood estimation for global river networks based on machine learning models
Gang Zhao, Paul Bates, Jeffrey Neal, and Bo Pang
Hydrol. Earth Syst. Sci., 25, 5981–5999, https://doi.org/10.5194/hess-25-5981-2021,https://doi.org/10.5194/hess-25-5981-2021, 2021
Short summary
Attributing correlation skill of dynamical GCM precipitation forecasts to statistical ENSO teleconnection using a set-theory-based approach
Tongtiegang Zhao, Haoling Chen, Quanxi Shao, Tongbi Tu, Yu Tian, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 5717–5732, https://doi.org/10.5194/hess-25-5717-2021,https://doi.org/10.5194/hess-25-5717-2021, 2021
Short summary

Cited articles

Allan, R. P. and Soden, B. J.: Atmospheric warming and the amplification of precipitation extremes, Science, 321, 1481–1484, https://doi.org/10.1126/science.1160787, 2008.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Angeles, M. E., Gonzalez, J. E., Iii, J. E., Hern, L., National, R., and Ridge, O.: Predictions of future climate change in the Caribbean region using global general circulation models, Int. J. Climatol., 27, 555–569, https://doi.org/10.1002/joc.1416, 2007.
Campbell, J. D., Taylor, M. A., Stephenson, T. S., Watson, R. A., and Whyte, F. S.: Future climate of the Caribbean from a regional climate model, Int. J. Climatol., 31, 1866–1878, https://doi.org/10.1002/joc.2200, 2011.
Download
Short summary
We present a systematic comparison of changes in historical extreme precipitation in station observations (HadEX2) and 15 climate models from the CMIP5 (as the largest and most recent sets of available observational and modeled data sets), on global and continental scales for 1901-2010, using both parametric (linear regression) and non-parametric (the Mann-Kendall as well as Sen’s slope estimator) methods, taking care to sample observations and models spatially and temporally in comparable ways.