Articles | Volume 19, issue 11
https://doi.org/10.5194/hess-19-4547-2015
https://doi.org/10.5194/hess-19-4547-2015
Research article
 | 
16 Nov 2015
Research article |  | 16 Nov 2015

Climate response to Amazon forest replacement by heterogeneous crop cover

A. M. Badger and P. A. Dirmeyer

Related authors

Implementation of multi-layer snow scheme in seasonal forecast system and its impact on model climatological bias
Eunkyo Seo and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1066,https://doi.org/10.5194/egusphere-2024-1066, 2024
Short summary
Influence of lower-tropospheric moisture on local soil moisture–precipitation feedback over the US Southern Great Plains
Gaoyun Wang, Rong Fu, Yizhou Zhuang, Paul A. Dirmeyer, Joseph A. Santanello, Guiling Wang, Kun Yang, and Kaighin McColl
Atmos. Chem. Phys., 24, 3857–3868, https://doi.org/10.5194/acp-24-3857-2024,https://doi.org/10.5194/acp-24-3857-2024, 2024
Short summary
Accurate assessment of land–atmosphere coupling in climate models requires high-frequency data output
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024,https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary

Cited articles

Badger, A. M. and Dirmeyer, P. A.: Remote Tropical and Sub-tropical Responses to Amazon Deforestation, Clim. Dynam., 1–10, https://doi.org/10.1007/s00382-015-2752-5, online first, 2015.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008a.
Bonan, G. B.: Ecological Climatology: Concepts and Applications, 2nd Edn., Cambridge University Press, New York, USA, 2008b.
Costa, M. H. and Foley, J. A.: Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia, J. Climate, 13, 18–34, https://doi.org/10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2, 2000.
Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A., and Rocha, E. J. P.: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion, Geophys. Res. Lett., 34, L07706, https://doi.org/10.1029/2007GL029271, 2007.
Download
Short summary
This study expands upon previous Amazon deforestation modeling studies by using realistic heterogeneous crop cover as replacement vegetation and diagnoses the changes in land-atmosphere coupling due to land use change. With the use of an interactive crop model, the impact that irrigation has on land-atmosphere coupling when using crops as a replacement vegetation is analyzed. This study also provides documentation on the development of tropical crops for CLM4.5.
Share