Articles | Volume 19, issue 9
https://doi.org/10.5194/hess-19-3845-2015
https://doi.org/10.5194/hess-19-3845-2015
Research article
 | 
11 Sep 2015
Research article |  | 11 Sep 2015

Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

F. Todisco, L. Brocca, L. F. Termite, and W. Wagner

Related authors

CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024,https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Soil moisture products consistency for operational drought monitoring in Europe
Jaime Gaona, Davide Bavera, Guido Fioravanti, Sebastian Hahn, Pietro Stradiotti, Paolo Filippucci, Stefania Camici, Luca Ciabatta, Hamidreza Mossaffa, Silvia Puca, Nicoletta Roberto, and Luca Brocca
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-182,https://doi.org/10.5194/hess-2024-182, 2024
Preprint under review for HESS
Short summary
The development of an operational system for estimating irrigation water use reveals socio-political dynamics in Ukraine
Jacopo Dari, Paolo Filippucci, and Luca Brocca
Hydrol. Earth Syst. Sci., 28, 2651–2659, https://doi.org/10.5194/hess-28-2651-2024,https://doi.org/10.5194/hess-28-2651-2024, 2024
Short summary
An inter-comparison of approaches and frameworks to quantify irrigation from satellite data
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024,https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
A PRELIMINARY COMPARISON OF TWO EXCLUSION MAPS FOR LARGE-SCALE FLOOD MAPPING USING SENTINEL-1 DATA
J. Zhao, F. Roth, B. Bauer-Marschallinger, W. Wagner, M. Chini, and X. X. Zhu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 911–918, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023, 2023

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Technical note: Monitoring discharge of mountain streams by retrieving image features with deep learning
Chenqi Fang, Genyu Yuan, Ziying Zheng, Qirui Zhong, and Kai Duan
Hydrol. Earth Syst. Sci., 28, 4085–4098, https://doi.org/10.5194/hess-28-4085-2024,https://doi.org/10.5194/hess-28-4085-2024, 2024
Short summary
Investigation of the functional relationship between antecedent rainfall and the probability of debris flow occurrence in Jiangjia Gully, China
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024,https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Understanding hydrologic controls of sloping soil response to precipitation through machine learning analysis applied to synthetic data
Daniel Camilo Roman Quintero, Pasquale Marino, Giovanni Francesco Santonastaso, and Roberto Greco
Hydrol. Earth Syst. Sci., 27, 4151–4172, https://doi.org/10.5194/hess-27-4151-2023,https://doi.org/10.5194/hess-27-4151-2023, 2023
Short summary
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682, https://doi.org/10.5194/hess-27-1667-2023,https://doi.org/10.5194/hess-27-1667-2023, 2023
Short summary

Cited articles

Akaike, H.: New look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19, 716–723, 1974.
Bagarello, V. and Ferro, V.: Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy), Hydrol. Process., 18, 141–157, 2004.
Bagarello, V., Di Piazza, G. V., Ferro, V., and Giordano, G.: Predicting unit soil loss in Sicily, south Italy, Hydrol. Process., 22, 586–595, 2008.
Bagarello, V., Ferro, V., and Giordano, G.: Testing alternative erosivity indices to predict event soil loss from bare plots in southern Italy, Hydrol. Process., 24, 789–797, 2010.
Bagarello, V., Di Stefano, C., Ferro, V., Kinnell, P. I. A., Pampalone, V., Porto, P., and Todisco, F.: Predicting soil loss on moderate scope using an empirical model for sediment concentration, J. Hydrol., 400, 267–273, 2011.
Download
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.