Articles | Volume 19, issue 9
Research article
11 Sep 2015
Research article |  | 11 Sep 2015

Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

F. Todisco, L. Brocca, L. F. Termite, and W. Wagner

Related authors

An inter-comparison of approaches and frameworks to quantify irrigation from satellite data
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci. Discuss.,,, 2023
Revised manuscript under review for HESS
Short summary
Regional data sets of high-resolution (1 and 6 km) irrigation estimates from space
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575,,, 2023
Short summary
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190,,, 2023
Short summary
Sentinel-1 based analysis of the Pakistan Flood in 2022
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
EGUsphere,,, 2022
Short summary
Challenges and benefits of quantifying irrigation through the assimilation of Sentinel-1 backscatter observations into Noah-MP
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706,,, 2022
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Modelling approaches
Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation
Yanglin Guo and Chao Ma
Hydrol. Earth Syst. Sci., 27, 1667–1682,,, 2023
Short summary
Recession discharge from compartmentalized bedrock hillslopes
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405,,, 2022
Short summary
Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai–Tibet Plateau
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208,,, 2022
Short summary
On the similarity of hillslope hydrologic function: a clustering approach based on groundwater changes
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823,,, 2022
Short summary
Spatiotemporal changes in flow hydraulic characteristics and soil loss during gully headcut erosion under controlled conditions
Mingming Guo, Zhuoxin Chen, Wenlong Wang, Tianchao Wang, Qianhua Shi, Hongliang Kang, Man Zhao, and Lanqian Feng
Hydrol. Earth Syst. Sci., 25, 4473–4494,,, 2021
Short summary

Cited articles

Akaike, H.: New look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19, 716–723, 1974.
Bagarello, V. and Ferro, V.: Plot-scale measurement of soil erosion at the experimental area of Sparacia (southern Italy), Hydrol. Process., 18, 141–157, 2004.
Bagarello, V., Di Piazza, G. V., Ferro, V., and Giordano, G.: Predicting unit soil loss in Sicily, south Italy, Hydrol. Process., 22, 586–595, 2008.
Bagarello, V., Ferro, V., and Giordano, G.: Testing alternative erosivity indices to predict event soil loss from bare plots in southern Italy, Hydrol. Process., 24, 789–797, 2010.
Bagarello, V., Di Stefano, C., Ferro, V., Kinnell, P. I. A., Pampalone, V., Porto, P., and Todisco, F.: Predicting soil loss on moderate scope using an empirical model for sediment concentration, J. Hydrol., 400, 267–273, 2011.
Short summary
We developed a new formulation of USLE, named Soil Moisture for Erosion (SM4E), that directly incorporates soil moisture information. SM4E is applied here by using modeled data and satellite observations obtained from the Advanced SCATterometer (ASCAT). SM4E is found to outperform USLE and USLE-MM models in silty–clay soil in central Italy. Through satellite data, there is the potential of applying SM4E for large-scale monitoring and quantification of the soil erosion process.