Articles | Volume 19, issue 7
https://doi.org/10.5194/hess-19-3273-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3273-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Early warning of drought in Europe using the monthly ensemble system from ECMWF
C. Lavaysse
CORRESPONDING AUTHOR
European Commission, Joint Research Centre, Ispra (Va), Italy
European Commission, Joint Research Centre, Ispra (Va), Italy
F. Pappenberger
European Centre for Medium-range Weather Forecasts, Reading, UK
Related authors
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3606, https://doi.org/10.5194/egusphere-2024-3606, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropical waves structure the atmosphere. Four types of tropical waves (ER, Kelvin, MRG-TD1, and MRG-TD2) are studied using filters, satellite measurements, and in situ data from the Clouds-Atmosphere Dynamics-Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Cheikh Modou Noreyni Fall, Christophe Lavaysse, Mamadou Simina Drame, Geremy Panthou, and Amadou Thierno Gaye
Nat. Hazards Earth Syst. Sci., 21, 1051–1069, https://doi.org/10.5194/nhess-21-1051-2021, https://doi.org/10.5194/nhess-21-1051-2021, 2021
Short summary
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Christophe Lavaysse, Jürgen Vogt, Andrea Toreti, Marco L. Carrera, and Florian Pappenberger
Nat. Hazards Earth Syst. Sci., 18, 3297–3309, https://doi.org/10.5194/nhess-18-3297-2018, https://doi.org/10.5194/nhess-18-3297-2018, 2018
Short summary
Short summary
Forecasting droughts in Europe 1 month in advance would provide valuable information for decision makers. However, these extreme events are still difficult to predict. In this study, we develop forecasts based on predictors using the geopotential anomalies, generally more predictable than precipitation, derived from the ECMWF model. Results show that this approach outperforms the prediction using precipitation, especially in winter and in northern Europe, where 65 % of droughts are predicted.
Christophe Lavaysse, Carmelo Cammalleri, Alessandro Dosio, Gerard van der Schrier, Andrea Toreti, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 18, 91–104, https://doi.org/10.5194/nhess-18-91-2018, https://doi.org/10.5194/nhess-18-91-2018, 2018
Short summary
Short summary
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. Providing a robust operational system to monitor extreme-temperature anomalies in Europe, developed and validated in this study, is thus of prime importance. This work exposes the methodology and the climatology of these events. It also discusses the associated uncertainties according to the datasets and the methods used.
Peter Knippertz, Andreas H. Fink, Adrien Deroubaix, Eleanor Morris, Flore Tocquer, Mat J. Evans, Cyrille Flamant, Marco Gaetani, Christophe Lavaysse, Celine Mari, John H. Marsham, Rémi Meynadier, Abalo Affo-Dogo, Titike Bahaga, Fabien Brosse, Konrad Deetz, Ridha Guebsi, Issaou Latifou, Marlon Maranan, Philip D. Rosenberg, and Andreas Schlueter
Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017, https://doi.org/10.5194/acp-17-10893-2017, 2017
Short summary
Short summary
In June–July 2016 DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa), a large, EU-funded European–African project, organised an international field campaign in densely populated southern West Africa, including measurements from ground sites, research aircraft, weather balloons and urban sites. This paper gives an overview of the atmospheric evolution during this period focusing on meteorological (precipitation, cloudiness, winds) and composition (gases, particles) aspects.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3606, https://doi.org/10.5194/egusphere-2024-3606, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tropical waves structure the atmosphere. Four types of tropical waves (ER, Kelvin, MRG-TD1, and MRG-TD2) are studied using filters, satellite measurements, and in situ data from the Clouds-Atmosphere Dynamics-Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2081, https://doi.org/10.5194/egusphere-2024-2081, 2024
Short summary
Short summary
We compared spatio-temporal forecast performances of three popular machine learning approaches that learned processes of water and energy exchange on the earth surface from a large physical model. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the Globe. We found that all approaches deliver highly accurate predictions until long time horizons, implying their usefulness to advance land surface forecasting when data is available.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242, https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
Short summary
Heatwaves are an increasing risk to African communities. This hazard can have a negative impact on peoples lives and in some cases results in their death. This study shows new information about heatwave characteristics through a list of heatwave events that have been reported for the African continent from 1980 until 2020. Case studies are useful helps to inform the development of early warning systems and forecasting, which is an urgent priority and needs significant improvement.
Florian Pappenberger, Florence Rabier, and Fabio Venuti
Nat. Hazards Earth Syst. Sci., 21, 2163–2167, https://doi.org/10.5194/nhess-21-2163-2021, https://doi.org/10.5194/nhess-21-2163-2021, 2021
Short summary
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Cheikh Modou Noreyni Fall, Christophe Lavaysse, Mamadou Simina Drame, Geremy Panthou, and Amadou Thierno Gaye
Nat. Hazards Earth Syst. Sci., 21, 1051–1069, https://doi.org/10.5194/nhess-21-1051-2021, https://doi.org/10.5194/nhess-21-1051-2021, 2021
Short summary
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020, https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary
Short summary
The paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rainfed agricultural systems while considering drought hazard indicators, exposure and expert-weighted vulnerability indicators. We identify global patterns of drought risk and, by disaggregating risk into its underlying components and factors, provide entry points for risk reduction.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Christophe Lavaysse, Jürgen Vogt, Andrea Toreti, Marco L. Carrera, and Florian Pappenberger
Nat. Hazards Earth Syst. Sci., 18, 3297–3309, https://doi.org/10.5194/nhess-18-3297-2018, https://doi.org/10.5194/nhess-18-3297-2018, 2018
Short summary
Short summary
Forecasting droughts in Europe 1 month in advance would provide valuable information for decision makers. However, these extreme events are still difficult to predict. In this study, we develop forecasts based on predictors using the geopotential anomalies, generally more predictable than precipitation, derived from the ECMWF model. Results show that this approach outperforms the prediction using precipitation, especially in winter and in northern Europe, where 65 % of droughts are predicted.
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-2018, https://doi.org/10.5194/gmd-11-3327-2018, 2018
Short summary
Short summary
Global overviews of upcoming flood and drought events are key for many applications from agriculture to disaster risk reduction. Seasonal forecasts are designed to provide early indications of such events weeks or even months in advance. This paper introduces GloFAS-Seasonal, the first operational global-scale seasonal hydro-meteorological forecasting system producing openly available forecasts of high and low river flow out to 4 months ahead.
Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, https://doi.org/10.5194/hess-22-2057-2018, 2018
Short summary
Short summary
This paper presents a new operational forecasting system (driven by atmospheric forecasts), predicting river flow in European rivers for the next 7 months. For the first month only, these river flow forecasts are, on average, better than predictions that do not make use of atmospheric forecasts. Overall, this forecasting system can predict whether abnormally high or low river flows will occur in the next 7 months in many parts of Europe, and could be valuable for various applications.
Christophe Lavaysse, Carmelo Cammalleri, Alessandro Dosio, Gerard van der Schrier, Andrea Toreti, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 18, 91–104, https://doi.org/10.5194/nhess-18-91-2018, https://doi.org/10.5194/nhess-18-91-2018, 2018
Short summary
Short summary
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. Providing a robust operational system to monitor extreme-temperature anomalies in Europe, developed and validated in this study, is thus of prime importance. This work exposes the methodology and the climatology of these events. It also discusses the associated uncertainties according to the datasets and the methods used.
Carmelo Cammalleri, Jürgen V. Vogt, Bernard Bisselink, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 6329–6343, https://doi.org/10.5194/hess-21-6329-2017, https://doi.org/10.5194/hess-21-6329-2017, 2017
Short summary
Short summary
Drought can affect large regions of the world, implying the need for a global monitoring tool. For the JRC Global Drought Observatory (GDO,
http://edo.jrc.ec.europa.eu/gdo/), 3 soil moisture anomaly datasets have been compared, in order to evaluate their consistency. The analysis performed on five macro-regions (North America, Europe, India, southern Africa and Australia) suggests the need to combine these different data sources in order to obtain robust assessments over a variety of conditions.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Peter Knippertz, Andreas H. Fink, Adrien Deroubaix, Eleanor Morris, Flore Tocquer, Mat J. Evans, Cyrille Flamant, Marco Gaetani, Christophe Lavaysse, Celine Mari, John H. Marsham, Rémi Meynadier, Abalo Affo-Dogo, Titike Bahaga, Fabien Brosse, Konrad Deetz, Ridha Guebsi, Issaou Latifou, Marlon Maranan, Philip D. Rosenberg, and Andreas Schlueter
Atmos. Chem. Phys., 17, 10893–10918, https://doi.org/10.5194/acp-17-10893-2017, https://doi.org/10.5194/acp-17-10893-2017, 2017
Short summary
Short summary
In June–July 2016 DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa), a large, EU-funded European–African project, organised an international field campaign in densely populated southern West Africa, including measurements from ground sites, research aircraft, weather balloons and urban sites. This paper gives an overview of the atmospheric evolution during this period focusing on meteorological (precipitation, cloudiness, winds) and composition (gases, particles) aspects.
Erin Coughlan de Perez, Elisabeth Stephens, Konstantinos Bischiniotis, Maarten van Aalst, Bart van den Hurk, Simon Mason, Hannah Nissan, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, https://doi.org/10.5194/hess-21-4517-2017, 2017
Short summary
Short summary
Disaster managers would like to use seasonal forecasts to anticipate flooding months in advance. However, current seasonal forecasts give information on rainfall instead of flooding. Here, we find that the number of extreme events, rather than total rainfall, is most related to flooding in different regions of Africa. We recommend several forecast adjustments and research opportunities that would improve flood information at the seasonal timescale in different regions.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
Erin Coughlan de Perez, Bart van den Hurk, Maarten K. van Aalst, Irene Amuron, Deus Bamanya, Tristan Hauser, Brenden Jongma, Ana Lopez, Simon Mason, Janot Mendler de Suarez, Florian Pappenberger, Alexandra Rueth, Elisabeth Stephens, Pablo Suarez, Jurjen Wagemaker, and Ervin Zsoter
Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, https://doi.org/10.5194/hess-20-3549-2016, 2016
Short summary
Short summary
Many flood disaster impacts could be avoided by preventative action; however, early action is not guaranteed. This article demonstrates the design of a new system of forecast-based financing, which automatically triggers action when a flood forecast arrives, before a potential disaster. We establish "action triggers" for northern Uganda based on a global flood forecasting system, verifying these forecasts and assessing the uncertainties inherent in setting a trigger in a data-scarce location.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
Jon Olav Skøien, Konrad Bogner, Peter Salamon, Paul Smith, and Florian Pappenberger
Proc. IAHS, 373, 109–114, https://doi.org/10.5194/piahs-373-109-2016, https://doi.org/10.5194/piahs-373-109-2016, 2016
V. Thiemig, B. Bisselink, F. Pappenberger, and J. Thielen
Hydrol. Earth Syst. Sci., 19, 3365–3385, https://doi.org/10.5194/hess-19-3365-2015, https://doi.org/10.5194/hess-19-3365-2015, 2015
J. Spinoni, G. Naumann, and J. Vogt
Adv. Sci. Res., 12, 179–186, https://doi.org/10.5194/asr-12-179-2015, https://doi.org/10.5194/asr-12-179-2015, 2015
Short summary
Short summary
This paper investigates meteorological droughts in Europe for the periods 1981-2010, 2041-2070 and 2071-2100 under a moderate emissions scenario. SPI and SPEI are used to analyze drought frequency, duration, severity, and intensity. Results show that southern Europe is likely to be hit by longer, more frequent, severe, and intense droughts in the near future (2041-2070) and even more in the far future (2071-2100), while less severe and fewer drought events are likely to occur in northern Europe.
R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and X. Wang
Nat. Hazards Earth Syst. Sci., 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015, https://doi.org/10.5194/nhess-15-1407-2015, 2015
Short summary
Short summary
We have developed a global database of daily, gridded Fire Weather Index System calculations beginning in 1980. Input data and two different estimates of precipitation from rain gauges were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications. This data set can be used for analyzing historical relationships between fire weather and fire activity, and in identifying large-scale atmosphere–ocean controls on fire weather.
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
A. C. Spessa, R. D. Field, F. Pappenberger, A. Langner, S. Englhart, U. Weber, T. Stockdale, F. Siegert, J. W. Kaiser, and J. Moore
Nat. Hazards Earth Syst. Sci., 15, 429–442, https://doi.org/10.5194/nhess-15-429-2015, https://doi.org/10.5194/nhess-15-429-2015, 2015
G. Balsamo, C. Albergel, A. Beljaars, S. Boussetta, E. Brun, H. Cloke, D. Dee, E. Dutra, J. Muñoz-Sabater, F. Pappenberger, P. de Rosnay, T. Stockdale, and F. Vitart
Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, https://doi.org/10.5194/hess-19-389-2015, 2015
Short summary
Short summary
ERA-Interim/Land is a global land surface reanalysis covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim and a precipitation bias correction based on GPCP. A selection of verification results show the added value in representing the terrestrial water cycle and its main land surface storages and fluxes.
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
P. Trambauer, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 2925–2942, https://doi.org/10.5194/hess-18-2925-2014, https://doi.org/10.5194/hess-18-2925-2014, 2014
E. Dutra, F. Wetterhall, F. Di Giuseppe, G. Naumann, P. Barbosa, J. Vogt, W. Pozzi, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2657–2667, https://doi.org/10.5194/hess-18-2657-2014, https://doi.org/10.5194/hess-18-2657-2014, 2014
E. Dutra, W. Pozzi, F. Wetterhall, F. Di Giuseppe, L. Magnusson, G. Naumann, P. Barbosa, J. Vogt, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2669–2678, https://doi.org/10.5194/hess-18-2669-2014, https://doi.org/10.5194/hess-18-2669-2014, 2014
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014, https://doi.org/10.5194/hess-18-2305-2014, 2014
L. Alfieri, F. Pappenberger, and F. Wetterhall
Nat. Hazards Earth Syst. Sci., 14, 1505–1515, https://doi.org/10.5194/nhess-14-1505-2014, https://doi.org/10.5194/nhess-14-1505-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
G. Naumann, P. Barbosa, L. Garrote, A. Iglesias, and J. Vogt
Hydrol. Earth Syst. Sci., 18, 1591–1604, https://doi.org/10.5194/hess-18-1591-2014, https://doi.org/10.5194/hess-18-1591-2014, 2014
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
E. Mwangi, F. Wetterhall, E. Dutra, F. Di Giuseppe, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 611–620, https://doi.org/10.5194/hess-18-611-2014, https://doi.org/10.5194/hess-18-611-2014, 2014
P. Trambauer, E. Dutra, S. Maskey, M. Werner, F. Pappenberger, L. P. H. van Beek, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 18, 193–212, https://doi.org/10.5194/hess-18-193-2014, https://doi.org/10.5194/hess-18-193-2014, 2014
F. Wetterhall, F. Pappenberger, L. Alfieri, H. L. Cloke, J. Thielen-del Pozo, S. Balabanova, J. Daňhelka, A. Vogelbacher, P. Salamon, I. Carrasco, A. J. Cabrera-Tordera, M. Corzo-Toscano, M. Garcia-Padilla, R. J. Garcia-Sanchez, C. Ardilouze, S. Jurela, B. Terek, A. Csik, J. Casey, G. Stankūnavičius, V. Ceres, E. Sprokkereef, J. Stam, E. Anghel, D. Vladikovic, C. Alionte Eklund, N. Hjerdt, H. Djerv, F. Holmberg, J. Nilsson, K. Nyström, M. Sušnik, M. Hazlinger, and M. Holubecka
Hydrol. Earth Syst. Sci., 17, 4389–4399, https://doi.org/10.5194/hess-17-4389-2013, https://doi.org/10.5194/hess-17-4389-2013, 2013
E. Dutra, F. Di Giuseppe, F. Wetterhall, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 2359–2373, https://doi.org/10.5194/hess-17-2359-2013, https://doi.org/10.5194/hess-17-2359-2013, 2013
M. H. Ramos, S. J. van Andel, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013, https://doi.org/10.5194/hess-17-2219-2013, 2013
L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, https://doi.org/10.5194/hess-17-1161-2013, 2013
J. Spinoni, T. Antofie, P. Barbosa, Z. Bihari, M. Lakatos, S. Szalai, T. Szentimrey, and J. Vogt
Adv. Sci. Res., 10, 21–32, https://doi.org/10.5194/asr-10-21-2013, https://doi.org/10.5194/asr-10-21-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell life cycles with a copula-based approach
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and variable infiltration capacity
Distribution, trends and drivers of flash droughts in the United Kingdom
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
What Are the Key Soil Hydrological Processes to Control Soil Moisture Memory?
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Leveraging a Disdrometer Network to Develop a Probabilistic Precipitation Phase Model in Eastern Canada
Assessment of seasonal soil moisture forecasts over Central Mediterranean toward groundwater management
Potential for historically unprecedented Australian droughts from natural variability and climate change
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025, https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Short summary
Water resources are fundamental for the social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligate us to find new water resources. Fog harvesting (FH) emerges as a complementary resource in regions where it is abundant but untapped. This research proposes a model to estimate FH potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where FH could be a viable water source.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025, https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Short summary
We assess 63 gridded ground (G), satellite (S), and reanalysis (R) climate datasets. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; however, R outperformed G when underlying data had low station density. G outperformed S or R datasets, although better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025, https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Short summary
This study presents a new algorithm to model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and reconstruct storm cell life cycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential shape function for realistic rainfall patterns, enhancing its hydrological applicability.
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1969, https://doi.org/10.5194/egusphere-2024-1969, 2024
Short summary
Short summary
In this study, we present a detailed characterisation of flash drought in United Kingdom over the period 1969–2021.The spatiotemporal distribution of flash droughts is highly variable, with important regional and seasonal contrasts. In the UK, flash drought occurrence responds primarily to precipitation variability, although the atmospheric evaporative demand (AED) is important as a secondary driver. The atmospheric and oceanic conditions during flash droughts development were also analyzed.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-132, https://doi.org/10.5194/hess-2024-132, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and The Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Mohammad Ali Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1256, https://doi.org/10.5194/egusphere-2024-1256, 2024
Short summary
Short summary
This study investigates how key hydrological processes enhance soil water retention and release in land surface models, crucial for accurate weather and climate forecasting. Experiments show that soil hydraulics effectively sustain soil moisture. Additionally, allowing surface water ponding and improving soil permeability through macropores both enhance soil moisture persistency in the models.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-78, https://doi.org/10.5194/hess-2024-78, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Observations from a study site network in eastern Canada showed a temperature interval the overlapping probabilities for rain, snow or a mix of both. Models using random forest algorithms were developed to classify the precipitation phase using meteorological data to evaluate operational applications. They showed significantly improved phase classification compared to benchmarks, but misclassification led to costlier errors. However, accurate prediction of mixed phase remains a challenge.
Lorenzo Silvestri, Miriam Saraceni, Giulia Passadore, and Paolina Bongioannini Cerlini
EGUsphere, https://doi.org/10.5194/egusphere-2024-889, https://doi.org/10.5194/egusphere-2024-889, 2024
Short summary
Short summary
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for groundwater management in certain areas of the Central Mediterranean. In particular, they show significant correlation coefficients and forecast skill for the deepest soil moisture at 289 cm depth. Wet and dry events can be predicted 6 months in advance and, in general, dry events are better captured than wet events.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Cited articles
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A., Xavier, P., McLean, P., Colman, A., and Cusack, S.: The GloSea4 ensemble prediction system for seasonal forecasting, Mon. Weather Rev., 139, 1891–1910, 2011.
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, 2012.
Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related disasters a global reassessment, J. Environ. Develop., 16, 328–344, 2007.
Brier, G. W.: Verification of forecasts expressed in terms of probability, Mon. Weather Rev., 78, 1–3, 1950.
Buizza, R., Houtekamer, P., Pellerin, G., Toth, Z., Zhu, Y., and Wei, M.: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems, Mon. Weather Rev., 133, 1076–1097, 2005.
Cacciamani, C., Morgillo, A., Marchesi, S., and Pavan, V.: Monitoring and forecasting drought on a regional scale: Emilia-Romagna Region, in: Methods and Tools for Drought Analysis and Management, Springer, 29–48, 2007.
Doblas-Reyes, F., Weisheimer, A., Déqué, M., Keenlyside, N., McVean, M., Murphy, J., Rogel, P., Smith, D., and Palmer, T.: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts, Q. J. Roy. Meteor. Soc., 135, 1538–1559, 2009.
Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.: Seasonal forecasts of droughts in African basins using the Standardized Precipitation Index, Hydrol. Earth Syst. Sci., 17, 2359–2373, https://doi.org/10.5194/hess-17-2359-2013, 2013.
Dutra, E., Pozzi, W., Wetterhall, F., Di Giuseppe, F., Magnusson, L., Naumann, G., Barbosa, P., Vogt, J., and Pappenberger, F.: Global meteorological drought – Part 2: Seasonal forecasts, Hydrol. Earth Syst. Sci., 18, 2669–2678, https://doi.org/10.5194/hess-18-2669-2014, 2014.
Edossa, D. C., Babel, M. S., and Gupta, A. D.: Drought analysis in the Awash river basin, Ethiopia, Water Resour. Manag., 24, 1441–1460, 2010.
Eshel, G., Cane, M. A., and Farrell, B. F.: Forecasting eastern Mediterranean droughts, Mon. Weather Rev., 128, 3618–3630, 2000.
Ferro, C. A. and Stephenson, D. B.: Extremal dependence indices: improved verification measures for deterministic forecasts of rare binary events, Weather Forecast., 26, 699–713, 2011.
Fraser, E. D., Simelton, E., Termansen, M., Gosling, S. N., and South, A.: "Vulnerability hotspots": integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought, Agr. Forest Meteorol., 170, 195–205, 2013.
Georgakakos, K. P., Seo, D.-J., Gupta, H., Schaake, J., and Butts, M. B.: Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, J. Hydrol., 298, 222–241, 2004.
Guttman, N. B.: Accepting the Standardized Precipitation Index: a calculation algorithm, J. Am. Water Resour. As., 35, 311–322, 1999.
Guy Merlin, G. and Kamga, F. M.: Computation of the Standardized Precipitation Index (SPI) and its use to assess drought occurrences in Cameroon over recent decades, J. Appl. Meteorol. Clim., 53, 2310–2324, 2014.
Hamill, T. M., Brennan, M. J., Brown, B., DeMaria, M., Rappaport, E. N., and Toth, Z.: NOAA's future ensemble-based hurricane forecast products, B. Am. Meteorol. Soc., 93, 209–220, 2012.
Haylock, M., Hofstra, N., Klein Tank, A., Klok, E., Jones, P., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
He, Y., Wetterhall, F., Cloke, H., Pappenberger, F., Wilson, M., Freer, J., and McGregor, G.: Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions, Meteorol. Appl., 16, 91–101, 2009.
Hogan, R. J., Ferro, C. A., Jolliffe, I. T., and Stephenson, D. B.: Equitability revisited: why the "equitable threat score" is not equitable, Weather Forecast., 25, 710–726, 2010.
Jolliffe, I. T. and Stephenson, D. B.: Forecast Verification, A Practtioners Guide in Atmospheric Science, John Wiley and Sons, Chichester, UK, 240 pp., 2003.
Khan, S., Gabriel, H., and Rana, T.: Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation areas, Irrig. Drain. Systems, 22, 159–177, 2008.
Kim, T.-W. and Valdés, J. B.: Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J. Hydrol. Eng., 8, 319–328, 2003.
Kingston, D. G., Stagge, J. H., Tallaksen, L. M., and Hannah, D. M.: European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J. Climate, 28, 505-516, 2015.
Lavaysse, C., Carrera, M., Bélair, S., Gagnon, N., Frenette, R., Charron, M., and Yau, M.: Impact of surface parameter uncertainties within the Canadian Regional Ensemble Prediction System, Mon. Weather Rev., 141, 1506–1526, 2013.
Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592, 2002.
Mason, I.: A model for assessment of weather forecasts, Aust. Meteorol. Mag., 30, 291–303, 1982.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, Am. Meteorol. Soc., 179–184, 1993.
Mishra, A. and Desai, V.: Drought forecasting using stochastic models, Stoch. Environ. Res. Risk A., 19, 326–339, 2005.
Mishra, A. and Desai, V.: Drought forecasting using feed-forward recursive neural network, Ecol. Model., 198, 127–138, 2006.
Mishra, A., Desai, V., and Singh, V.: Drought forecasting using a hybrid stochastic and neural network model, J. Hydrol. Eng., 12, 626–638, 2007.
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The ECMWF ensemble prediction system: methodology and validation, Q. J. Roy. Meteor. Soc., 122, 73–119, 1996.
Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., Magnusson, L., Mogensen, K., Palmer, T., and Vitart, F.: The new ECMWF seasonal forecast system (System 4), European Centre for Medium-Range Weather Forecasts, Reading, UK, 2011.
Nurmi, P.: Recommendations on the verification of local weather forecasts, ECMWF Tech. Memo. 430, 18 pp., 2003.
Palmer, T. N.: Predicting uncertainty in forecasts of weather and climate, Rep. Prog. Phys., 63, 71, https://doi.org/10.1088/0034-4885/63/2/201, 2000.
Pereira, S. C., Carvalho, A. C., Ferreira, J., Nunes, J. P., Keizer, J. J., and Rocha, A.: Simulation of a persistent medium-term precipitation event over the western Iberian Peninsula, Hydrol. Earth Syst. Sci., 17, 3741–3758, https://doi.org/10.5194/hess-17-3741-2013, 2013.
Richardson, D., Bidlot, J., Ferranti, L., Haiden, T., Hewson, T., Janousek, M., Prates, F., and Vitart, F.: Evaluation of ECMWF forecasts, including 2012–2013 upgrades, Tech. rep., ECMWF Technical Memo, Reading, UK, 2013.
Singleton, A.: Forecasting drought in Europe with the Standardized Precipitation Index, Tech. rep., JRC Sctintific and Technical Reports, Italy, 2012.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate distributions for climatological drought indices (SPI and SPEI), Int. J. Climatol., https://doi.org/10.1002/joc.4267, in press, 2015.
Stockdale, T., Anderson, D., Alves, J., and Balmaseda, M.: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model, Nature, 392, 370–373, 1998.
Sunyer, M. A., Sørup, H. J. D., Christensen, O. B., Madsen, H., Rosbjerg, D., Mikkelsen, P. S., and Arnbjerg-Nielsen, K.: On the importance of observational data properties when assessing regional climate model performance of extreme precipitation, Hydrol. Earth Syst. Sci., 17, 4323–4337, https://doi.org/10.5194/hess-17-4323-2013, 2013.
Van den Besselaar, E., Haylock, M., Van der Schrier, G., and Klein Tank, A.: A European daily high-resolution observational gridded data set of sea level pressure, J. Geophys. Res.-Atmos., 116, D11110, https://doi.org/10.1029/2010JD015468, 2011.
Vicente-Serrano, S. M.: Differences in spatial patterns of drought on different time scales: an analysis of the Iberian Peninsula, Water Resour. Manag., 20, 37–60, 2006.
Vitart, F.: Monthly forecasting at ECMWF, Mon. Weather Rev., 132, 2761–2779, 2004.
Vitart, F.: Evolution of ECMWF sub-seasonal forecast skill scores, Q. J. Roy. Meteor. Soc., Part B, 114, 1889–1899, 2014.
Vitart, F., Buizza, R., Alonso Balmaseda, M., Balsamo, G., Bidlot, J.-R., Bonet, A., Fuentes, M., Hofstadler, A., Molteni, F., and Palmer, T. N.: The new VAREPS-monthly forecasting system: a first step towards seamless prediction, Q. J. Roy. Meteor. Soc., 134, 1789–1799, 2008.
Weigel, A. P., Baggenstos, D., Liniger, M. A., Vitart, F., and Appenzeller, C.: Probabilistic verification of monthly temperature forecasts, Mon. Weather Rev., 136, 5162–5182, 2008.
Weisheimer, A. and Palmer, T.: On the reliability of seasonal climate forecasts, J. R. Soc. Interface, 11, https://doi.org/10.1098/rsif.2013.1162, 2014.
Weisheimer, A., Corti, S., Palmer, T., and Vitart, F.: Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system, Philos. T. R. Soc. A, 372, https://doi.org/10.1098/rsta.2013.0290, 2014.
Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phenomenon: the role of definitions, Water Int., 10, 111–120, 1985.
WMO: Standardized Precipitation Index, User Guide, Tech. Rep. 1090, Geneva, Switzerland, 2012.
Short summary
This paper assesses the predictability of meteorological droughts over Europe 1 month in advance using ensemble prediction systems.
It has been shown that, on average and using the most relevant method, 40 % of droughts in Europe are correctly forecasted, with less than 25 % false alarms.
This study is a reference for other studies that are motivated to improving the drought forecasting.
This paper assesses the predictability of meteorological droughts over Europe 1 month in advance...