Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2963-2015
https://doi.org/10.5194/hess-19-2963-2015
Technical note
 | 
26 Jun 2015
Technical note |  | 26 Jun 2015

Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river

C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu

Related authors

Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021,https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023,https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023,https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022,https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary

Cited articles

Ashmore, P. and Sauks, E.: Prediction of discharge from water surface width in a braided river with implications for at-a-station hydraulic geometry, Water Resour. Res., 42, W03406, https://doi.org/10.1029/2005wr003993, 2006.
Ashmore, P., Bertoldi, W., and Gardner, J. T.: Active width of gravel-bed braided rivers, Earth Surf. Proc. Land., 36, 1510–1521, https://doi.org/10.1002/esp.2182, 2011.
Bertoldi, W., Zanoni, L., and Tubino, M.: Planform dynamics of braided streams, Earth Surf. Proc. Land., 34, 547–557, https://doi.org/10.1002/esp.1755, 2009.
Bertoldi, W., Zanoni, L., and Tubino, M.: Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: the Tagliamento River (Italy), Geomorphology, 114, 348–360, https://doi.org/10.1016/j.geomorph.2009.07.017, 2010.
Bird, S., Hogan, D., and Schwab, J.: Photogrammetric monitoring of small streams under a riparian forest canopy, Earth Surf. Proc. Land., 35, 952–970, 2010.
Download
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.