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Abstract. River systems in remote environments are of-

ten challenging to monitor and understand where traditional

gauging apparatus are difficult to install or where safety con-

cerns prohibit field measurements. In such cases, remote

sensing, especially terrestrial time-lapse imaging platforms,

offer a means to better understand these fluvial systems. One

such environment is found at the proglacial Isortoq River

in southwestern Greenland, a river with a constantly shift-

ing floodplain and remote Arctic location that make gaug-

ing and in situ measurements all but impossible. In order to

derive relevant hydraulic parameters for this river, two true

color (RGB) cameras were installed in July 2011, and these

cameras collected over 10 000 half hourly time-lapse images

of the river by September of 2012. Existing approaches for

extracting hydraulic parameters from RGB imagery require

manual or supervised classification of images into water and

non-water areas, a task that was impractical for the volume of

data in this study. As such, automated image filters were de-

veloped that removed images with environmental obstacles

(e.g., shadows, sun glint, snow) from the processing stream.

Further image filtering was accomplished via a novel auto-

mated histogram similarity filtering process. This similarity

filtering allowed successful (mean accuracy 79.6 %) super-

vised classification of filtered images from training data col-

lected from just 10 % of those images. Effective width, a hy-

draulic parameter highly correlated with discharge in braided

rivers, was extracted from these classified images, producing

a hydrograph proxy for the Isortoq River between 2011 and

2012. This hydrograph proxy shows agreement with historic

flooding observed in other parts of Greenland in July 2012

and offers promise that the imaging platform and processing

methodology presented here will be useful for future moni-

toring studies of remote rivers.

1 Introduction

Proglacial streams and rivers along land-terminating edges

of the Greenland Ice Sheet are among the world’s most dif-

ficult fluvial systems to study in the field, owing to their re-

moteness, harsh climate, and braided morphology. Discharge

variations in large proglacial rivers are of particular scien-

tific interest, as these systems typically derive water from the

interior ablation surface of the Greenland Ice Sheet and are

thus useful for inferring runoff mass losses from the ice sheet

(Rennermalm et al., 2013; Smith et al., 2015). However, their

high sediment loads, unstable banks, and dynamic braided

channels present challenges to traditional in situ river gaug-

ing techniques, and long term hydrographs for these rivers

are rare. While not unique to Greenland, these challenges are

particularly evident there, with more than 100 large ( > 1 km

width) braided rivers exiting the ice sheet with no observa-

tions of discharge whatsoever.

Where in situ methods are impractical, remotely sensed

imagery offers an increasingly viable option for obtaining

scientifically useful estimates of river discharge in remote

or otherwise inaccessible areas (Smith, 1997; Ashmore and

Sauks, 2006; Durand et al., 2010; Gleason and Smith, 2014).

Braided rivers in particular typically display a power-law

relationship between floodplain inundation area (which can

be remotely sensed) and discharge, which has been ex-

ploited using satellites, aerial imagery, and terrestrial time-
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lapse photography (Smith et al., 1996; Smith, 1997; Chan-

dler et al., 2002; Ashmore and Sauks, 2006; Egozi and Ash-

more, 2008; Smith and Pavelsky, 2008; Bertoldi et al., 2009;

Hundey and Ashmore, 2009; Bertoldi et al., 2010; Bird et

al., 2010; Ashmore et al., 2011; Welber et al., 2012; Williams

et al., 2013; Young et al., 2015).

Regardless of the technology used, each remotely sensed

image must first be classified into areas of water and non-

water, a task for which numerous methodologies exist. In

satellite remote sensing, near-infrared wavelength image

bands can reliably detect open water surfaces. However,

satellite imagery often lacks the required spatial and tempo-

ral resolution to adequately capture hydrologic phenomena,

especially for smaller rivers. This has led to the use of non-

metric, true color (RGB) digital camera imagery to capture

water surfaces as an inexpensive and image-on-demand al-

ternative to satellite and airborne platforms, especially for

braided rivers. To calculate hydraulic parameters (e.g., ef-

fective width, braiding index, sinuosity, or bed slope eleva-

tion), these studies have commonly classified water surfaces

within images either manually or by supervised classification

(Egozi and Ashmore, 2008; Bertoldi et al., 2009; Hundey and

Ashmore, 2009; Ashmore et al., 2011; Welber et al., 2012).

Another parameter estimation approach relies on water sur-

face delineation from automatically generated DEMs con-

structed from stereo imagery and other data sources (Chan-

dler et al., 2002; Ashmore and Sauks, 2006; Bird et al., 2010;

Bertoldi et al., 2010). Additionally, Young et al. (2015) re-

cently demonstrated the effectiveness of calculating water

stage change at a station from terrestrial photogrammetry,

which they combined with assumptions of channel geome-

try and roughness to calculate river discharge via Manning’s

equation. This approach is highly effective, but limited to

situations where bathymetry is known or channel geometry

may be simply described. Finally, structure-from-motion, a

technique that leverages multiple vantage points of the same

scene to reconstruct topography, has also been successfully

leveraged to calculate floodplain geometry and water surface

elevation, but is again impractical for long term monitoring

with large data volumes (e.g., Fonstad et al., 2013; Javernick

et al., 2014).

While each of these studies successfully calculated hydro-

logic parameters from remotely sensed images, their manual

or time-intensive approaches are impractical for large data

volumes. This is especially an issue for long term hydrologic

monitoring sorely needed in many remote rivers, as using the

image platform and processing developed by Ashmore and

Sauks (2006) and Welber et al. (2012), for instance, could

easily generate tens of thousands of images per year. Auto-

mated DEM generation methods would seem a ready alterna-

tive, yet these require numerous fixed targets of known posi-

tion to persist from image to image, which are seldom found

or are difficult to install on dynamic braided river systems

owing to their constantly shifting morphology. If such image

platforms are to be viable for long term monitoring studies,

a systematic procedure for automatic image quality selection

and classification, preferably for RGB image data, is needed.

To that end, this paper proposes a semi-automated pro-

cessing stream designed to classify and extract hydraulic pa-

rameters of interest from large volumes of RGB image data

collected from a fixed terrestrial platform, and demonstrates

its efficacy in a remote Greenlandic river. Automated filters

are developed that remove obstacles to image classification

based on easily calculated environmental variables, and an

image similarity filter is developed that allows supervised

classification of many images from minimal training data.

Here, these filtering and classification techniques are em-

ployed to extract effective width (We, inundation area divided

by reach length), a hydraulic parameter that has been shown

to be highly correlated with discharge in braided rivers and

has been successfully extracted from remotely sensed data

in proglacial environments (Smith et al., 1996; Smith, 1997;

Ashhmore and Sauks, 2006; Smith and Pavelsky, 2008; Ash-

more et al., 2011). To evaluate the robustness of the extrac-

tion, we assess image classification accuracy using manually

generated ground truth data.

2 Data

This study was conducted on the proglacial Isortoq River

in southwestern Greenland. The Isortoq, one of the largest

braided rivers draining the Greenland ice sheet, issues from

the Issunguata Sermia glacier terminus with discharge dom-

inated by meltwater outflow from the ablating ice surface

(Smith et al., 2015). In July 2011, two Nikon D200 model

RGB cameras (focal lengths of 24 and 50 mm) were installed

250 m above a reach of the Isortoq braid plain approximately

3.1 km downstream of the ice edge. The camera system was

identical to that developed by the Extreme Ice Survey project

(www.extremeicesurvey.org) for use in severe Arctic condi-

tions. In addition to the cameras, a modified battery pack

and electronic controller were housed inside a weatherproof

case with an abrasion-resistant viewing window. The case

was mounted on a survey tripod and powered by a 12 V gel

battery recharged by solar panel. The cameras were oriented

so as to image sections of the braid plain of approximately

1.5km× 2.0km and 2.0km× 2.3km, respectively (Fig. 1),

and captured one image every 30 min when light conditions

permitted.

Camera data collection commenced on 22 July 2011, and

over 10 000 images were retrieved from the cameras by

10 September 2012, covering most of two melt seasons. The

camera setup proved robust: the light sensor operated prop-

erly, the position of the cameras remained unchanged, and

the batteries powering the cameras were still functional af-

ter the 1 year collection period for the wide focus camera.

However, a presumed Arctic fox chewed through the cables

connecting the battery to the camera for the more narrowly

focused platform and halted data collection only 2 months
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Figure 1. Figure 1 shows example images taken on 17 July 2012 of

the Isortoq River by the two camera systems as well as the cameras

themselves (foreground and background, panel a). The Issunguata

Sermia Glacier is seen in the background, and nearly all water in

this river is derived from its melting terminus. Only the wide fo-

cus camera (c) has a continuous data record from 2011 to 2012,

as a presumed Arctic fox severed the wiring on the narrow focus

camera (b). The yellow polygon in the wide focus image shows the

target reach for We extraction, covering an area of approximately

1000m× 2000m.

after installation. Therefore, all analyses presented in this pa-

per refer to the wide focus camera, which remained contin-

uously operable throughout the study period 22 July 2011–

10 September 2012.

3 Methods

Classifying the RGB image data into water and non-water

areas to extract We presented several technical challenges

for the 10 327 images that were collected by the wide fo-

cus camera from July 2011 to September 2012. Existing ap-

proaches for hydraulic parameter extraction from RGB data

require either manual or supervised classification of water

within each image and are thus inappropriate for the large

data volumes generated in this study. Unsupervised classi-

fication techniques provide a straightforward alternative for

large time-lapse camera data sets, yet also present additional

challenges as the images collected here are extremely diverse

and differing soil moisture in the braid plain gives the ap-

pearance of multiple classes of output. Environmental fac-

tors such as time-varying solar angles, blowing sand, dense

fog, shadowing, snow and rain on the camera lens, and acute

sun glint from water surface are especially prevalent in the

Isortoq image data. These factors were all addressed, and We

accurately extracted, by the processing workflow described

below and presented in Fig. 2.

3.1 Environmental filtering

The first task for extracting We was to filter the large

amount of image data into those images that were most eas-

ily classified into water and non-water areas by eliminat-

ing images containing the environmental obstacles described

above. Once images are classified, water area (and therefore

We) may be calculated. Several filters were developed to re-

move these poor quality images. First, images acquired dur-

ing periods of non-flow (before and after melt season activ-

ity) were culled. Next, images with shadowing were culled

by calculating the zenith and azimuth angles of the sun rel-

ative to the river plain. Through visual inspection of the im-

age time series, zenith angles less than 65◦ and azimuth an-

gles between 245 and 290 and between 70 and 100◦ were

found to produce shadows created by steep valley walls that

prevented accurate classification (note valley walls, Figs. 1

and 2). Next, images that exhibited excessive sun glinting

were removed. Sun glint was defined as when an image ex-

hibited either a ratio of the 95th brightness percentile to the

5th brightness percentile greater than 1.8 or contained more

than 1 % of pixels with a brightness value greater than 215.

This filter was necessary, as sun glint was observed both on

open water and saturated sand, making distinction between

these very different fluvial environments difficult (Fig. 2).

Successful application of these winter, shadow, and sun glint

filters culled 9487 images from the image time series, leaving

840 images free of environmental obstacles that still captured

every day of the two melt seasons.

3.2 Similarity filtering

Even with these stringent filters, unsupervised classification

was still unable to delineate water surfaces with satisfac-

tory accuracy, and the number of images remaining was

still too large for supervised classification to be feasible. As

such, a semi-supervised classification approach was devel-

oped. To perform this classification, another image filtering

was needed to find images that were similar enough to one

another to share training data from a small sample of im-
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Figure 2. The processing steps required to extract We from raw

images are shown here. Every step until the final classification is

completely automated, allowing for a vast reduction in processing

time. Winter images were selected by a manual inspection of first

and last observed open water flow. Shadowing was defined as when

solar zenith angles were less than 65◦ or solar azimuth between

245 and 290 or 70 and 100◦, and sun glint was defined as a ratio

of pixel brightness and as a total pixel value threshold. The final

classification as shown the bottom panel has some obvious errors,

including speckling and some misclassifications of both water and

non-water. As Fig. 4 shows, these filters did not significantly affect

the temporality of the data, and about two-thirds of all days during

the two-melt-season study duration are represented.

ages in a supervised classification. The presence of dense

fog, blowing sand, or cloudiness changes the brightness val-

ues of the imagery, so even images collected with identical

solar geometry can be difficult to classify in an unsupervised

manner. A similarity filter was developed that selected im-

ages that not only had similar solar geometry, but also had

the same brightness and illumination and were all free of en-

vironmental obstacles not covered by the first filtering.

This similarity filtering was accomplished by calculating

and comparing the histograms of each of the red, green, and

blue bands for each image. Histograms of brightness val-

ues that fell into 100 bins evenly spaced from 0 to 255 (re-

flectance values) were calculated for each band of each im-

age. Using the same bins for each image ensured that cross

comparison of images would not be affected by stretching of

the image data. Once these histograms were generated, the

root mean square error (RMSE) between histogram counts

per bin was computed in a band-by-band pairwise permuta-

tion, giving a per-image and per-band indication of the simi-

larity of every image to each other image. The pairwise per-

mutation tests all possible image pairs for similarity. That is,

for any given image, the histogram bin count in each of its

RGB bands is compared against bin counts of every other

image and the RMSE (across all bins) of each comparison is

recorded. Then, the process is repeated for every other im-

age in the set, which yields (n2
− n)/2 RMSE values per

image, where n is the number of images. These band-by-

band RMSE values were then averaged to arrive at an overall

measure of image similarity, here termed an image’s simi-

larity index. This metric was used to identify the 20 % of

the images that were most similar to each other, resulting in

168 images that were collected at similar sun angles without

any environmental obstacles. Importantly, the similarity fil-

ter also produced images that contained four basic elements:

dark (non-sun lit, turbid) water, bright (sun lit or non-turbid)

water, dark (wet) sand, and bright (dry) sand (see Fig. 1c),

thus producing images easily classified from lumped train-

ing data – a process described next.

3.3 Georectification and classification

Once the final filtering of images was complete, images were

cropped to exclude the wide upstream floodplain and geo-

rectified into ground coordinates using a fourth-degree poly-

nomial transformation implemented in ENVI v4.8 (Fig. 2).

Eighty ground control points were manually extracted from

a 2 m panchromatic World View 2 image acquired on

23 September 2011 (paired with a camera image collected

10 min later) and used to define the basis for the transforma-

tion. This warping polynomial was subsequently applied to

all filtered images. After georectification, each image pixel

had dimensions of 1m× 1m, an appropriate resolution for

camera data collected at this scale. These georectified pixels

allowed calculation of water surface area, and thus We, from

the classified images.

To classify images into water and non-water areas for

We extraction, training data representing four classes (dark

water, bright water, dark sand, and bright sand) were man-

Hydrol. Earth Syst. Sci., 19, 2963–2969, 2015 www.hydrol-earth-syst-sci.net/19/2963/2015/



C. J. Gleason et al.: Time-lapse RGB imagery for a remote Greenlandic river 2967

ually collected from a random 10 % sample (16 images)

of the similarity filtered images. The RGB statistics gener-

ated from these training polygons were applied to all im-

ages passing the similarity filtering and used to train a maxi-

mum likelihood supervised classification method performed

in ENVI v4.8 for each image. This process requires that each

image has nearly identical RGB composition in order to be

successful, which was guaranteed by the similarity filtering.

4 Results and discussion

4.1 Image filtering

The environmental and similarity filters developed in this

study substantially reduced the number of images available

for We extraction from image collection to classification.

The automated environmental filtering removed 9487 im-

ages with sun glint, shadowing, or winter conditions, leav-

ing 840 images for further operations. The similarity filtering

further reduced the image pool to 168 images that were ulti-

mately passed to classification and We extraction. This is ob-

viously a large percentage of images removed, but this strin-

gent filtering left only very high quality images that were eas-

ily classified using the semi-supervised approach. However,

this high degree of culling still left images with daily (or bet-

ter) temporal resolution available for We extraction. If hourly

or better resolution images are needed, then the similarity fil-

tering would need to be performed on iterative batches of

images, as there are other groups of images similar to one

another that are not similar to all images as a whole that are

removed by the similarity filter. Each of these groups could

also be classified using their own lumped training data and

output classes determined by their composition. This would

extend the temporal coverage of the record, but since the sim-

ilarity filter we propose yielded near daily coverage of the

river, we felt this simplest case to be sufficient for the river

in this study and did not identify further groups of similar

images.

Water turbidity could have effected this successful filter-

ing. As sediment load and river velocities change, water

can appear darker or brighter, depending on river turbidity,

thus affecting our choice of two water classes (“dark” and

“bright”). In the Isortoq, the monitoring section is very close

to the glacial terminus (∼ 3.1 km), and as such the sediment

load is fairly constant, the river well mixed, and sediment

relatively unsorted, so “bright” water corresponds to sunlight

water, rather than less turbid water. Given these conditions,

the two classes do cover nearly all the turbidity values ob-

served in the Isortoq River after image similarity filtering. In

rivers with more variable turbidity or places where the bed is

visible at low flows, more water/non-water classes and dif-

ferent filters might be needed to adequately cover the range

of observed sediment loads.

4.2 Accuracy assessment

The semi-supervised classification described here proved an

effective and unbiased classification method. Figure 3 shows

the overall accuracy, user’s accuracy for water, and user’s

accuracy for non-water as a function of We from a random

sample of 56 images (33 % of filtered images). Accuracy

was assessed using approximately 500 semi-random, manu-

ally derived assessment points for each class (water and non-

water) per image. Of particular interest were both the over-

all accuracy (total number of correctly classified assessment

points divided by total number of assessment points, ∼ 500)

and the user’s accuracy for water and non-water (percent-

age of image pixels classified correctly as assessed by the

training data). These metrics provide an assessment of clas-

sification performance from the standpoint of each classified

image: the paradigm that speaks directly to the fidelity of ex-

tracted We. Accuracy assessment indicates that overall accu-

racy is acceptable (mean accuracy for the assessment sample

is 79.6 %), and neither overall accuracy (r =−0.11) nor wa-

ter user’s accuracy (r = 0.35) shows strong correlation with

We. This lack of correlation indicates that the classification of

water is not affected by the extent of water inundation in the

scene. There is a strong correlation (r =−0.79) between the

user’s accuracy of non-water pixels and We, but this negative

correlation is a reflection of the difficulty of classifying the

small number of non-water pixels remaining in scenes where

the braid plain was nearly completely flooded. The reason

for this successful classification was the similarity of filtered

images, which was guaranteed by the similarity index proce-

dure described above. After classification, We was calculated

as the area of classified water within a 1000 m reach located

where the image data provided complete bank-to-bank cov-

erage, indicated by the magenta polygons (dashed) in Fig. 2.

4.3 Extracted We hydrograph

The We hydrograph shown in Fig. 4 is a proxy for discharge

variations in the Isortoq River from 2011 to 2012. Gaps in the

date record indicate that there were no images that passed

filtering on those dates, even though images were acquired

half hourly. In the first melt season, there were 30 days with

missing data over a total melt season length of 49 days, but

this includes a 15-day gap in late August where there are no

data due to inclement weather. The second melt season has

better temporal coverage, with only 31 of 104 days missing.

This miss rate of about one-third would occur with or without

similarity filtering, as the majority of these data gaps are due

to rain, fog, and snow events that preclude classification by

any means: this is an issue for any high latitude camera-based

study. Despite these gaps, the data record still provides good

temporal coverage and allows analysis of the We hydrograph.

Historic melting of the Greenland ice sheet occurred in

July of 2012 (Hall et al., 2013; Tedesco et al., 2013), co-

inciding with destruction of the Watson River bridge in the
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Figure 3. Accuracy assessment as a function of We from a 33 %

sample of post filtered images is presented here, with overall ac-

curacy (a), water user’s accuracy (b), and non-water user’s accu-

racy (c) all showing acceptable performance. Overall accuracy and

water user’s accuracy are not strongly correlated with We, suggest-

ing that the amount of water in the scene does not strongly influ-

ence the calculation of water area. Non-water accuracy, however, is

strongly affected by the amount of water in the scene, as the Isortoq

River occupies nearly the entire valley at high flow, making classi-

fication of a few scattered non-water pixels challenging.

town of Kangerlussuaq (Smith et al., 2015), located approx-

imately 15 km south of the Isortoq River. This flood event is

clearly evident in Fig. 4, as are the rising and falling limbs of

the hydrograph leading up to this event. Figure 4 also reveals

that the relative magnitude of We during this melt event was

an order of magnitude greater than We in low flow stages.

This shows that the Isortoq River behaves like other braided

rivers with non-cohesive bed material, as its width adjusts

rapidly to changing discharge. In addition, the peak We ob-

served here corresponds to almost complete floodplain oc-

cupation by the river, highlighting the difficulty of installing

traditional gauging equipment at this site. These variations

in We as the melt season progresses are detected even though

diurnal variations in We can be quite large: melting of the

Greenland ice sheet has a strong diurnal forcing reflected in

Fig. 4. Time of day effects are minimized via the similarity

filtering (which leaves images with similar solar geometry),

but measurable changes in We are evident despite this inso-

lation matching and are compounded by classification errors.

However, the filtering and classification procedures here ul-

timately yield We values that effectively capture both diur-

Figure 4. Successful image classification allowed for extraction of

We across two melt seasons from the wide angle camera and gives a

proxy for discharge in the braided Isortoq River. Twenty-two statis-

tical outliers, representing poorly classified images, were removed

before generating this figure. These We time series clearly show his-

toric flooding in Greenland in July 2012, as well as the abrupt start

of the 2012 melt season, and suggest that the camera platform and

semi-automated classification techniques advanced here are suffi-

cient for monitoring of this remote river.

nal and day-to-day variation in the Isortoq River. For the full

melt season captured in 2012, the We hydrograph has good

temporal coverage and diurnal variations are small enough so

that the larger trends in melting are clearly evident and align

with expected melt activity in that year.

5 Conclusions

This paper has demonstrated the efficacy of a fixed posi-

tion RGB time-lapse camera platform for hydraulic param-

eter extraction for a large proglacial braided river in a re-

mote area of Greenland. The operational camera delivered

over 10 000 half hourly images in just over 1 year of collec-

tion, and demonstrated remarkable climactic resilience in the

Greenlandic winter. The other camera, however, was lost to

a wildlife attack, pointing to the need for stronger housing

for all camera components. Such a platform is useful for ex-

traction of multiple hydraulic parameters, including effective

width (We), a proxy for discharge variations. To fully real-

ize this monitoring potential, the We variations extracted for

each image could be calibrated with a rating curve built from

intermittent field data.

The above accuracy assessments indicate that the semi-

supervised classification method produced accurate and un-
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biased results. An accurately delineated water surface is nec-

essary to preserve the fidelity of extracted hydraulic parame-

ters. The processing techniques described in this paper fall

short of completely automated processing, yet this paper

does present an analysis protocol that achieves a consistent

standard of classification from images that are automatically

selected for ease of classification. Furthermore, the similarity

filtering presented herein allows for supervised classification

of numerous images from minimal training data, enabling

long term hydrologic records to be maintained without oner-

ous manual classification of imagery or photogrammetrically

challenging DEM extraction.
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