Articles | Volume 18, issue 12
https://doi.org/10.5194/hess-18-5345-2014
https://doi.org/10.5194/hess-18-5345-2014
Research article
 | 
19 Dec 2014
Research article |  | 19 Dec 2014

Identification of catchment functional units by time series of thermal remote sensing images

B. Müller, M. Bernhardt, and K. Schulz

Related authors

Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020,https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
PAttern REtrieval or deNegation Testing Scheme (PARENTS) v.1.0 – Identifying the degree of presence of given patterns in spatial time series
Benjamin Müller, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-563,https://doi.org/10.5194/hess-2019-563, 2019
Manuscript not accepted for further review
Short summary
Estimating spatially distributed soil texture using time series of thermal remote sensing – a case study in central Europe
Benjamin Müller, Matthias Bernhardt, Conrad Jackisch, and Karsten Schulz
Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016,https://doi.org/10.5194/hess-20-3765-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Remote Sensing and GIS
Monitoring the extreme flood events in the Yangtze River basin based on GRACE and GRACE-FO satellite data
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022,https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022,https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022,https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022,https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Watershed zonation through hillslope clustering for tractably quantifying above- and below-ground watershed heterogeneity and functions
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022,https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary

Cited articles

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment Part I: Model development, J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Asner, G. P., Scurlock, J. M. O., and Hicke, J. A.: Global synthesis of leaf area index observations: implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12, 191–205, https://doi.org/10.1046/j.1466-822X.2003.00026.x, 2003.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of catchment hydrology, Hydrological Sciences Bulletin, 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bolle, H.-J., Feddes, R. A., and Kalma, J. D. (Eds.): Exchange processes at the land surface for a range of space and time scales, in: Proceedings of Symposium J3.1, Joint Scientific Assembly of IAMAP and IAHS, Yokohama, Japan, 11–23 July 1993, 626 pp., 1993.
CAOS: CAOS – Catchments as Organised Systems, available at: http://www.caos-project.de (last access: 22 May 2014), 2014.
Download
Short summary
We present a method to define hydrological landscape units by a time series of thermal infrared satellite data. Land surface temperature is calculated for 28 images in 12 years for a catchment in Luxembourg. Pattern measures show spatio-temporal persistency; principle component analysis extracts relevant patterns. Functional units represent similar behaving entities based on a representative set of images. Resulting classification and patterns are discussed regarding potential applications.