Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 17, issue 2
Hydrol. Earth Syst. Sci., 17, 565–578, 2013
https://doi.org/10.5194/hess-17-565-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 565–578, 2013
https://doi.org/10.5194/hess-17-565-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Feb 2013

Research article | 08 Feb 2013

An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

J. A. Velázquez et al.

Related authors

Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps
Fabian Willibald, Sven Kotlarski, Adrienne Grêt-Regamey, and Ralf Ludwig
The Cryosphere, 14, 2909–2924, https://doi.org/10.5194/tc-14-2909-2020,https://doi.org/10.5194/tc-14-2909-2020, 2020
Short summary
Return levels of sub-daily extreme precipitation over Europe
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-145,https://doi.org/10.5194/essd-2020-145, 2020
Preprint under review for ESSD
Short summary
Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe
Andrea Böhnisch, Ralf Ludwig, and Martin Leduc
Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020,https://doi.org/10.5194/esd-11-617-2020, 2020
Short summary
Comparing internal variabilities in three regional single model initial-condition large ensembles (SMILE) over Europe
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-67,https://doi.org/10.5194/esd-2019-67, 2019
Revised manuscript accepted for ESD
Short summary
The European Climate Research Alliance (ECRA): Collaboration from bottom-up
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019,https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019,https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019,https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary

Cited articles

Bae, D.-H., Jung, I.-W., and Lettenmaier, D. P.: Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea, J. Hydrol., 401, 90–105, 2011.
Beven, K.: Rainfall-Runoff modelling, The primer, John Wiley & Sons Ltd., West Sussex, England, 2001.
Beven, K.: Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process, Hydrol. Earth Syst. Sci., 11, 460–467, https://doi.org/10.5194/hess-11-460-2007, 2007.
Bisson, J. L. and Roberge, F.: Prévisions des apports naturels: expérience d'Hydro-Québec, in: Proc., Workshop on Flow Predictions, Institute of Electrical and Electronics Engineers IEEE, Toronto, Canada, November 1983.
Blöschl, G. and Montanari, A.: Climate change impacts – throwing the dice?, Hydrol. Process., 24, 374–381, https://doi.org/10.1002/hyp.7574, 2010.
Publications Copernicus
Download
Citation