Articles | Volume 17, issue 12
https://doi.org/10.5194/hess-17-4743-2013
https://doi.org/10.5194/hess-17-4743-2013
Research article
 | 
03 Dec 2013
Research article |  | 03 Dec 2013

Using the Storm Water Management Model to predict urban headwater stream hydrological response to climate and land cover change

J. Y. Wu, J. R. Thompson, R. K. Kolka, K. J. Franz, and T. W. Stewart

Related authors

Linking economic and social factors to peak flows in an agricultural watershed using socio-hydrologic modeling
David Dziubanski, Kristie J. Franz, and William Gutowski
Hydrol. Earth Syst. Sci., 24, 2873–2894, https://doi.org/10.5194/hess-24-2873-2020,https://doi.org/10.5194/hess-24-2873-2020, 2020
Short summary
Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization
X. Comas, N. Terry, L. Slater, M. Warren, R. Kolka, A. Kristiyono, N. Sudiana, D. Nurjaman, and T. Darusman
Biogeosciences, 12, 2995–3007, https://doi.org/10.5194/bg-12-2995-2015,https://doi.org/10.5194/bg-12-2995-2015, 2015
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022,https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022,https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022,https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021,https://doi.org/10.5194/hess-25-5917-2021, 2021
Short summary
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858, https://doi.org/10.5194/hess-25-5839-2021,https://doi.org/10.5194/hess-25-5839-2021, 2021
Short summary

Cited articles

Anderson, D. G.: Effects of urban development on floods in Northern Virginia, United States Government Printing Office, Washington, DC, 1970.
Arnold, C. L. and Gibbons, C. J.: Impervious surface coverage – The emergence of a key environmental indicator, J. Am. Plann. Assoc., 62, 243–258, 1996.
Baker, D. B., Richards, R. P., Loftus, T. T., and Kramer, J. W.: A new flashiness index: Characteristics and applications to midwestern rivers and streams, J. Am. Water Resour. As., 40, 503–522, 2004.
Bicknell, B. R., Imhoff, J. C., Kittle, Jr., J. L., Donigian, Jr., A. S., and Johanson, R. C.: Hydrological Simulation Program – Fortran, User's manual for version 11. EPA/600/R-97/080, US Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 1997.
Black, R. W., Moran, P. W., and Frankforter, J. D.: Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams, Environ. Monit. Assess., 175, 397–417, 2011.
Download