Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 16, issue 2
Hydrol. Earth Syst. Sci., 16, 451–455, 2012
https://doi.org/10.5194/hess-16-451-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 16, 451–455, 2012
https://doi.org/10.5194/hess-16-451-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.

Technical note 13 Feb 2012

Technical note | 13 Feb 2012

Technical Note: Analytical sensitivity analysis of a two parameter recursive digital baseflow separation filter

K. Eckhardt

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019,https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019,https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary
Technical note: Analytical sensitivity analysis and uncertainty estimation of baseflow index calculated by a two-component hydrograph separation method with conductivity as a tracer
Weifei Yang, Changlai Xiao, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 23, 1103–1112, https://doi.org/10.5194/hess-23-1103-2019,https://doi.org/10.5194/hess-23-1103-2019, 2019
Short summary
Understanding the water cycle over the upper Tarim Basin: retrospecting the estimated discharge bias to atmospheric variables and model structure
Xudong Zhou, Jan Polcher, Tao Yang, Yukiko Hirabayashi, and Trung Nguyen-Quang
Hydrol. Earth Syst. Sci., 22, 6087–6108, https://doi.org/10.5194/hess-22-6087-2018,https://doi.org/10.5194/hess-22-6087-2018, 2018
Short summary

Cited articles

Boughton, W. C.: A hydrograph-based model for estimating the water yield of ungauged catchments. Hydrology and Water Resources Symposium, Institution of Engineers Australia, Newcastle, 317–324, 1993.
Chapman, T. G. and Maxwell, A. I.: Baseflow separation – Comparison of numerical methods with tracer experiments, Hydrological and Water Resources Symposium, Institution of Engineers Australia, Hobart, 539–545, 1996.
Eckhardt, K.: How to construct recursive digital filters for baseflow separation, Hydrol. Process., 19, 507–515, 2005.
Eckhardt, K.: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods, J. Hydrol., 352, 168–173, 2008.
Furey, P. and Gupta, V. K.: A physically based filter for separating base flow from streamflow time series, Water Resour. Res., 37, 2709–2722, 2001.
Publications Copernicus
Download
Citation