Articles | Volume 16, issue 9
https://doi.org/10.5194/hess-16-3461-2012
https://doi.org/10.5194/hess-16-3461-2012
Research article
 | 
26 Sep 2012
Research article |  | 26 Sep 2012

Land cover and water yield: inference problems when comparing catchments with mixed land cover

A. I. J. M. van Dijk, J. L. Peña-Arancibia, and L. A. (Sampurno) Bruijnzeel

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Monthly new water fractions and their relationships with climate and catchment properties across Alpine rivers
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024,https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024,https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024,https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
On the regional-scale variability in flow duration curves in Peninsular India
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024,https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023,https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary

Cited articles

Andréassian, V.: Waters and forests: from historical controversy to scientific debate, J. Hydrol., 291, 1–27, 2004.
Austin, J., Zhang, L., Jones, R. N., Durack, P., Dawes, W., and Hairsine, P.: Climate change impact on water and salt balances: an assessment of the impact of climate change on catchment salt and water balances in the Murray-Darling Basin, Australia, Climatic Change, 100, 607–631, 2010.
Beven, K., Young, P., Romanowicz, R., O'Connell, E., Ewen, J., O'Donnell, G. M., Holman I., Posthumus, H., Morris, J., Hollis, J., Rose, S., Lamb, R., and Archer, D.: Analysis of historical data sets to look for impacts of land use and management change on flood generation, R{&}D Technical Report FD2120/TR, UK Department for Environment, Food and Rural Affairs, London, 84 pp., 2008.
Bosch, J. R. and Hewlett, J. D.: A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration, J. Hydrol., 55, 3–22, 1982.
Brown, A. E., Zhang, L., McMahon, T., Western, A., and Vertessy, R.: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, J. Hydrol., 310, 28–61, 2005.
Download