
Hydrol. Earth Syst. Sci., 16, 3461–3473, 2012
www.hydrol-earth-syst-sci.net/16/3461/2012/
doi:10.5194/hess-16-3461-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Land cover and water yield: inference problems
when comparing catchments with mixed land cover

A. I. J. M. van Dijk 1,2, J. L. Peña-Arancibia2, and L. A. (Sampurno) Bruijnzeel3

1Fenner School for Environment & Society, Australian National University, Canberra, Australia
2CSIRO Land and Water, Canberra, Australia
3VU University, Amsterdam, The Netherlands

Correspondence to:A. I. J. M. van Dijk (albert.vandijk@anu.edu.au)

Received: 8 April 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 26 April 2011
Revised: 10 July 2012 – Accepted: 2 September 2012 – Published: 26 September 2012

Abstract. Controlled experiments provide strong evidence
that changing land cover (e.g. deforestation or afforestation)
can affect mean catchment streamflow (Q). By contrast, a
similarly strong influence has not been found in studies that
interpretQ from multiple catchments with mixed land cover.
One possible reason is that there are methodological issues
with the way in which the Budyko framework was used in the
latter type studies. We examined this usingQ data observed
in 278 Australian catchments and by making inferences from
syntheticQ data simulated by a hydrological process model
(the Australian Water Resources Assessment system Land-
scape model). The previous contrasting findings could be re-
produced. In the synthetic experiment, the land cover influ-
ence was still present but not accurately detected with the
Budyko- framework. Likely sources of interpretation bias
demonstrated include: (i) noise in land cover, precipitation
and Q data; (ii) additional catchment climate characteris-
tics more important than land cover; and (iii) covariance be-
tweenQ and catchment attributes. These methodological is-
sues caution against the use of a Budyko framework to quan-
tify a land cover influence inQ data from mixed land-cover
catchments. Importantly, however, our findings do not rule
out that there may also be physical processes that modify
the influence of land cover in mixed land-cover catchments.
Process model simulations suggested that lateral water re-
distribution between vegetation types and recirculation of
intercepted rainfall may be important.

1 Introduction

1.1 Background

There is strong experimental evidence that changing land
cover (e.g. deforestation or afforestation) can affect the lo-
cal water balance. Such an influence has been detected at
various scales, from site water balance and atmospheric wa-
ter flux studies to small catchments undergoing change (see
review by e.g. van Dijk and Keenan, 2007 and references
therein). Controlled catchment experiments have demon-
strated a change in mean catchment streamflow or (synony-
mously) water yield (Q) after land cover change (typically
forest planting or logging; Bosch and Hewlett, 1982; Brui-
jnzeel, 1990, 2004; Andréassian, 2004; Brown et al., 2005;
Farley et al., 2005). They appear to provide clear evidence
that land cover characteristics affectQ, although this influ-
ence is moderated by a range of climate and catchment char-
acteristics as well as vegetation attributes beyond broad land
cover class alone (Andréassian, 2004; Bruijnzeel, 2004; van
Dijk and Keenan, 2007). These conclusions could be corrob-
orated by analysis of collated longer termQ estimates from
multiple catchments, provided only catchments with (near
complete) forest cover and herbaceous cover were selected
(Holmes and Sinclair, 1986; Turner, 1991; Zhang et al., 1999,
2001). The collated data were still dominated by small exper-
imental catchments, however, and such experiments are not
without their challenges (discussed further on).

Subsequent studies have attempted to detect a similar
land cover influence by statistically analysingQ from many
catchments with mixed land cover. In such data sets, climate
is the primary reason for variation in response and therefore
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needs to be controlled for several studies do this by fitting
an additive formulation of a Budyko model1 (Budyko, 1974)
that explicitly represents two (e.g. forest and herbaceous) or
a small number of land cover types (Zhang et al., 2004; van
Dijk et al., 2007; Oudin et al., 2008; Donohue et al., 2010;
Peel et al., 2010). Such an approach has been described as
a top-down analysis (sensu Klemeš, 1983; Sivapalan et al.,
2003). In the following formula:

Qj =

∑
i

FCi,jf (Pj ,Pj ,wi), (1)

whereQj , Pj , and PEj are the long-term (e.g.> 10 yr) av-
erageQ, precipitation and potential evaporation2 (in mm
per time unit) for catchmentj , FCi,j is the fractional cover
of land cover typei in catchmentj , andwi a dimension-
less model parameter that characterises the hydrological be-
haviour of land cover classi and may be interpreted as a
measure of the efficiency with which vegetation accesses
and uses stored water. The influence of land cover is sub-
sequently determined by finding thewi values that minimise
the root mean square error (RMSE) between observed and
estimatedQ, and interpreting the found parameter values.
The cited studies performed such an analysis using collated
data for 221 (Donohue et al., 2010) to 1508 (Oudin et al.,
2008) catchments. They report either a much smaller land
cover influence than found in controlled experiments (Zhang
et al., 2004; van Dijk et al., 2007; Oudin et al., 2008; Dono-
hue et al., 2010; Peel et al., 2010); no statistically significant
influence (Zhang et al., 2004; van Dijk et al., 2007; Oudin et
al., 2008; Peel et al., 2010); or even an influence opposite to
that which might be anticipated – at least for some land cover
classes (Oudin et al., 2008; Peel et al., 2010) or climate types
(van Dijk et al., 2007; Peel et al., 2010).

It might seem surprising that land cover change would
have a marked effect on the water balance of a catch-
ment when it has homogeneous land cover, but not
when it has mixed land cover. Some possible physical
and methodological causes have been suggested. Physical
explanations include:

1. Catchment size.The nature of controlled experiments
puts a limit to the size of catchments that can be manipu-
lated and the majority of experiments have been carried
out on catchments smaller than 1 km2 (see e.g. tabulated
data in Andŕeassian, 2004; Brown et al., 2005). Con-
versely, data sets of real-world catchments with mixed
land cover tend to have average catchment sizes in the
order of hundreds to thousands km2 (see respective
studies listed earlier). A known issue with small catch-
ments is the risk of ungauged subterranean transfers

1Defined here as any rational function that embodies the same
conceptual model as the original (see various examples in e.g.
Oudin et al., 2008).

2 In evaporation we include all evaporation and transpiration
fluxes.

(e.g. Bruijnzeel, 1990), which could lead to overestima-
tion of the influence of land cover change onQ. Con-
versely, while land surface-atmosphere feedbacks per-
haps can safely be ignored for small catchments, that
may not be the case for large catchments, where land
cover certainly influences overall evaporative energy
and may even modulate precipitation (for discussion see
Donohue et al., 2007; van Dijk and Keenan, 2007).

2. Catchment hydrological processes.As catchment ex-
periments require small and well defined watersheds,
they may be expected to have greater relief in compari-
son to larger catchments. Greater relief may mean shal-
lower soils, less infiltration and therefore more storm
flow, a more efficient surface drainage network, and
lesser evaporation losses from streams, wetlands and
groundwater-using vegetation (van Dijk et al., 2007).

3. Land cover characteristics. Experimental catchments
may be expected to have a more idealised and homoge-
nous vegetation cover and fewer activities and structures
designed to reduce storm runoff. In afforestation stud-
ies, the selection of suitable catchments may have cre-
ated a bias towards low-complexity land cover, whereas
land cover after clearing is unlikely to be representa-
tive of established agricultural landscapes. Large mixed
land-cover catchments may include surface runoff inter-
cepting features (e.g. hillside farm dams, tree belts) and
unaccounted surface water or groundwater use (Calder,
2007; van Dijk et al., 2007). In addition, forest clear-
ing in experimental studies may be associated with soil
disturbance, which may enhanceQ generation for rea-
sons that are not directly attributable to land cover per
se (Bruijnzeel, 2004). The consequence may be that the
contrast in hydrological response between forest and
herbaceous vegetation may be greater in experimen-
tal catchments than in non-experimental catchments.
Finally, depending on the configuration of vegetation
types within a catchment, forests may intercept and use
lateral flows of water from herbaceous vegetation (fur-
ther discussed in Sect. 4.2)

There are also some potential methodological issues:

4. Other overriding climate and terrain factors.Several
studies have reported difficulty in detecting changes
in the streamflow response of individual catchments
as they undergo land use or land cover change, in
large part because of the influence of climate variability
(e.g. Beven et al., 2008; Peña-Arancibia et al., 2012).
Confident detection and attribution of land cover influ-
ence requires that other factors are considered and con-
trolled for Budyko theory controls for the two most im-
portant determinants of the long-term water balance,P

and PE. One might question whether the Budyko frame-
work is sufficiently powerful to evaluate effects in addi-
tion to P and PE alone, and if so, whether indeed land
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cover is the next most important variable. Additional
factors potentially equally or more important than land
cover include the phase difference between seasonalP

and PE patterns (Budyko, 1974; Milly, 1994) and other
aspects of their temporal behaviour (e.g. rainfall inten-
sity). Depending on their covariance with land cover,
these attributes may attenuate or enhance any land cover
influence onQ.

5. Covariance between land cover and climate. Covari-
ance between land cover and climate is commonly
present in collated catchment data sets due to the cor-
relation between natural biomes and climate, and be-
cause of the role of landscape and climate in land use
and land cover change decisions. For example, catch-
ments with considerable remnant and plantation forests
will usually be found more commonly in regions with
greater relief, usually associated with greaterP and
lower PE than their lowland counterparts. Applying an
additive response model to a data set with covariance
between candidate predictors makes erroneous results
more likely. Van Dijk et al. (2007) attempted to con-
trol for this effect and demonstrated that it influenced
the results, but was probably not the only cause for the
counterintuitive results they obtained.

6. Measurement error. Studies analysing data from small
catchments have not been able to detect a significant
change in stream flow when land cover is changed in
less than 15–20 % of a catchment (Bosch and Hewlett,
1982; but see Trimble et al., 1987; Stednick, 1996). Ar-
guably, this can be attributed to the influence of mea-
surement noise on the analysis. Statistically, therefore it
might be expected that it is harder to detect a land cover
influence in large catchments with land cover mixtures
than it is for catchments with homogeneous land cover.
Using additive Budyko models requires estimates not
only of Q, but also of catchment averageP , PE and
fractional cover (FC) of the land cover classes of inter-
est. Errors will occur in each of these and may affect the
analysis results, even more so if errors are not random.
For example, Oudin et al. (2008) speculated that sys-
tematic precipitation measurement errors affected their
analysis.

1.2 Objective

In this study, we aim to test the hypothesis that method-
ological issues with the use of a Budyko framework to in-
terpret collated data from multiple mixed land-cover catch-
ments may explain why a land cover influence has not been
detected. To test this, we usedQ observations from 278 non-
experimental Australian catchments, the Zhang formulation
of the Budyko model (Zhang et al., 2001), and a bottom-
up dynamic hydrological process model with explicit repre-
sentation of vegetation characteristics (AWRA-L). Synthetic

experiments were performed in which the Budyko model
was used to analyse process model simulations for the 278
catchments. To paraphrase, we use the more complex model
(AWRA-L) to create a virtual laboratory. We then perform a
virtual experiment and use the Budyko model as an analytical
tool to interpret the results. If our experiment can reproduce
both a land cover influence for individual catchments as well
as the lack of influence found in the type of multi-catchment
studies described in the introduction, then this would support
our hypothesis.

It is emphasised that we do not aim to prove that the
methodological issues described are the single most impor-
tant cause for the discrepancies arising from the discussed
application of the Budyko model. Their presence certainly
does not rule out the plausibility and presence of additional
methodological or physical explanations. Several such expla-
nations were mentioned and are further explored in the dis-
cussion (Sect. 4.2).

Strictly speaking, we are only able to test our hypothe-
sis for the specified combination of catchment data, Budyko
model formulation and process model. Moreover, we use
models in our synthetic experiment as a plausible but not nec-
essarily highly accurate representation of reality. This type of
synthetic study is not unique but somewhat uncommon in the
hydrological literature, and therefore we briefly discuss some
caveats as to what arenot our objectives.

Firstly, we do not aim to validate or falsify the dynamic
process model (AWRA-L) we used in this experiment. We
also do not aim to prove that the model structure and param-
eter values used here are the best possible description of re-
ality, or better than any other model(s). Any model can only
ever be a flawed and simplified abstraction of reality (e.g.,
Oreskes et al., 1994). Here we use the AWRA-L model be-
cause it is comparatively simple, because we understand it
sufficiently well to interpret its behaviour and, most impor-
tantly, because it is able to reproduce two key features also
observed in real data sets, as discussed in further detail be-
low. Any other model able to meet this criterion should have
been suitable for the experiment.

Secondly, we do not propose that we can use the more
complex process model to prove a land cover influence;
rather we show that it can reproduce such an influence in
conditions were it has been observed as well as reproduce its
absence in conditions were it has not. Proving the existence
of a land cover influence is neither necessary (we refer to the
empirical evidence discussed) nor possible (a model funda-
mentally cannot provide proof of a real-world phenomenon,
at best only a plausible explanation). We will discuss this
point in more detail further on.

Finally, we do not seek to falsify Budyko type models
as a useful and predictive theory, or question the useful-
ness of top-down analysis as a paradigm. We focus here on
only one very specific application: whether analysing col-
lated data from mixed land-cover catchments by fitting a
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Fig. 1. Location of the 278 Australian catchments for which streamflow data were used in the 767 
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Fig. 1.Location of the 278 Australian catchments for which stream-
flow data were used in the analysis.

form of the Budyko model is able to accurately detect land
cover influence.

2 Methods

2.1 Data

The Q data used here were identical to the data used by
van Dijk and Warren (2010), which is a subset of 278 out
of around 326 records used in previous studies (Guerschman
et al., 2008, 2009; van Dijk, 2010a, c) and very similar in
composition to Australian catchment data used in other stud-
ies (e.g. Zhang et al., 2004; Peel et al., 2010). Catchment
boundaries were derived from a 9′′ resolution digital eleva-
tion model (Fig. 1) and catchments with major water regu-
lation infrastructure were excluded. The 278 catchments that
were selected had data for at least five (not necessarily con-
secutive) years between 1990 and 2006 (median 16 yr). The
woody vegetation cover fraction was mapped on the basis of
Landsat Thematic Mapper imagery for 2004 and daily pre-
cipitation and Priestley-Taylor PE was interpolated at 0.05◦

resolution from station data (Jeffrey et al., 2001). Catchment
areas varied from 23–1937 (median 278) km2, tree cover
from 0–90 % (median 25 %),P from 404–3138 (median 836)
mm yr−1, PE from 766–2096 (median 1265) mm yr−1, and
Qobs from 4–1937 (median 114) mm yr−1.

2.2 Budyko model

Oudin et al. (2008) tested five different Budyko model for-
mulations and found little difference in their explanatory
power, and all formulations have a very similar functional
form. We chose the model of Zhang et al. (2001) because it
was used successfully in previous studies to detect land cover

influence in a globalQ data set of (mostly small) catchments
with homogeneous land cover. For a single land cover class,
the model can be written as

Q =
P

1+
P
PE + w

(PE
P

)2
. (2)

For a catchment with a two land cover classes, forest and
herbaceous vegetation, Eq. (2) can be rewritten as (cf. Eq. 1)

Q = FC (forest)
P

1+
P
PE + w(forest)

(PE
P

)2

+FC (herbaceous)
P

1+
P
PE + w(herbaceous)

(PE
P

)2
.

. (3)

2.3 Dynamic model

The dynamical model used is the Australian Water Resources
Assessment system Landscape hydrology (AWRA-L) model
(version 0.5; van Dijk, 2010b; van Dijk and Renzullo, 2011;
van Dijk et al., 2012). AWRA-L can be considered a hybrid
between a simplified grid-based land surface model and a
non-spatial catchment model applied to individual grid cells.
Where possible process equations were selected from litera-
ture and selected through comparison against observations.
Prior estimates of all parameters were derived from liter-
ature and analyses carried out as part of model develop-
ment. Full technical details on the model can be found in van
Dijk (2010b) but some salient aspects are summarised here.
The configuration used here considers two hydrological re-
sponse units (HRUs): deep-rooted tall vegetation (forest) and
shallow-rooted short vegetation (herbaceous). The water bal-
ance of a top soil, shallow soil and deep soil compartment are
simulated for each HRU individually and have 30, 200 and
1000 mm plant available water storage, respectively. Ground-
water and surface water dynamics are simulated at catchment
scale. Minimum meteorological inputs are gridded daily to-
tal precipitation and incoming short-wave radiation, and day-
time temperature. Maximum evaporation and transpiration
given atmosphere and vegetation conditions are estimated us-
ing the Penman-Monteith model (Monteith, 1965). Actual
transpiration is calculated as the lesser of maximum tran-
spiration and maximum root water uptake given soil water
availability. Rainfall interception is estimated separately us-
ing a variable canopy density version of the event-based Gash
model (Gash, 1979; van Dijk et al., 2001a, b) to account for
observed high rainfall evaporation rates (for discussion see
e.g. van Dijk and Keenan, 2007). The influence of vegetation
on the water balance occurs in a number of ways: compared
to short vegetation, forest vegetation is parameterised to have
lower albedo, greater aerodynamic conductance, greater wet
canopy evaporation rates, lower maximum stomatal conduc-
tance, thicker leaves, access to deep soil and ground water,
and adjust less rapidly to changes in water availability.
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Van Dijk and Warren (2010) evaluated AWRA-L with the
configuration and parameterisation used here against a range
of in situ and satellite observations of water balance com-
ponents and vegetation dynamics. This included evaluation
againstQobs from the catchments used in this analysis, as
well as flux tower latent heat flux observations at four sites
across Australia, including both forest and herbaceous sites
(van Dijk and Warren, 2010). Latent heat flux patterns for
dry canopy conditions were reproduced well. Comparison of
total latent heat flux was difficult due to the large uncertainty
in rainfall interception evaporation estimated from the flux
tower measurements. Streamflow records were reproduced
well, that is, with an accuracy that was commensurate to that
achieved by other rainfall-runoff models with a similar cali-
bration approach.

2.4 Experiments

2.4.1 Can previous contrasting findings be reproduced
and reconciled with the process model?

We did two tests to see whether we could reproduce the
contrasting findings of published analyses ofQ from ho-
mogenous experimental and from multiple non-experimental
mixed land-cover catchments, respectively. First, we fitted
the two parameter Zhang model (Eq. 3) by minimising the
standard error of estimate (SEE) againstQobs from the 278
catchments (using Solver in Microsoft ExcelTM). We inter-
preted the derivedw(forest) andw(herbaceous) parameter
values and implied land cover to assess whether we obtained
the same contrasting findings as previous studies.

Next, we investigated whether the AWRA-L could rec-
oncile these contrasting findings, which means meeting two
conditions. First, the model needed to reproduce the observed
Q from the 278 catchments as well as, or better than, the
calibrated two-parameter Zhang model, as judged by sev-
eral measures of agreement (Table 1). Second, the model
needed to be in agreement with the results of experimen-
tal catchment studies of land cover change impacts onQ.
One test of this would be to reproduceQ changes observed
in an actual paired catchment experiment, but unfortunately
we did not have access to daily streamflow and meteorolog-
ical data for a number of such experiments, and one exam-
ple would have a very limited statistical significance. Instead,
we used AWRA-L to simulateQ from the 278 catchments
under conditions of full forest and full herbaceous cover,
respectively. We compared the resulting water balance es-
timates with the empirical relationships for the respective
land cover type reported by Zhang et al. (2001), who pro-
pose two alternative models to estimateQ. The first method
(Zhang-A) is to use Eq. (3) with values ofw(forest) = 2.0 and
w(herbaceous) = 0.5, with PE estimated using the Priestley–
Taylor formula and a standard land cover with assumed
albedo and aerodynamic conductance. The second method
(Zhang-B) is to use the same approach, but substitute PE by

values of 1410 and 1100 mm yr−1 for forest and herbaceous
cover, respectively. The latter reduces the physical realism
of the model, but provides a convenient alternative to where
PE estimates are not readily available, and has been shown
to agree well with other empirical relationships (Holmes and
Sinclair, 1986; Turner, 1991) and data from catchments with
homogeneous land cover (Zhang et al., 2001; Brown et al.,
2005). These so-called Zhang curves have been widely used
to estimate the impact of conversion between forest and non-
forest cover onQ in scenario studies and policy reports
(e.g. Austin et al., 2010; Brown et al., 2007; Dawes et al.,
2004; Sun et al., 2006; van Dijk et al., 2006), and as such
were considered a relevant point of reference. The vast ma-
jority of such reports assume that land cover impact is lin-
early proportional to the area of land cover change.

The prominent use of the Zhang curves in policy devel-
opment puts further onus on understanding the apparent dis-
crepancies between the results from the two experimental de-
signs discussed. We emphasise that our objective does not
require that the process model explains more variation than
the Zhang models in one or both cases; equal or similar per-
formance would be sufficient. The critical difference is that
fitting the Zhang models typically leads to two substantially
different parameter sets, essentially producing two mutually
contradictory models in the respective applications. By con-
trast, the process model uses one parameter set only for both
cases and therefore by definition produces internally consis-
tent results. The process model parameters were estimated
a priori rather than optimised, which is not essential but ar-
guably preferable.

In summary, if the tests described above would be success-
ful, we would be able to conclude that previous contrastive
findings can be reproduced, and appear to be at least partly
due to methodological problems. To put it differently: if the
same process model with identical parameters can repro-
duce both (1) the land cover influence expected for individual
catchments, and (2) the observedQ from mixed catchments,
then the fact that two different parameter sets are required
in the case of the Zhang model suggests a methodological
problem with that particular inference approach.

The subsequent analyses were designed to try and analyse
three potential methodological problems, viz. measurement
errors, an overriding influence of other environmental fac-
tors, and covariance between land cover and climate.

2.4.2 Are measurement errors responsible?

One feasible explanation for the reduced or absent land cover
impact inferred from catchments with mixed land cover is
the possible impact of data error:P , PE,Q and forest cover
fraction (FC) are all prone to measurement and estimation
error. This could affect values for the two Zhang model pa-
rameters that were optimised. To test for this, we performed
a synthetic experiment in which noise was added to theQ es-
timates produced by the process model (Qsim), for the case
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with actual, mixed land cover (we did not use the actually
observedQ as this already contains measurement noise, with
unknown characteristics). First, a simulated measurement er-
ror with an absolute average of 10 % was added to all 278
original values of FC and meanP , PE andQsim. The er-
rors were drawn independently for each variable and each
catchment. For FC an error was added that was drawn from
a normal (Gaussian) distribution with mean of zero and stan-
dard deviation of 0.1; the result was limited within the range
0 to 1. The values ofP , PE andQsim were multiplied with
a factor drawn from a normal distribution with mean of one
and standard deviation of 0.1. Next, the two Zhang model
parameters were optimised to the resulting noisy FC,P, PE
andQsim values for all 278 catchments combined. This ex-
periment was repeated 3000 times, each time with a sample
of 278 catchments. The resulting 3000 pairs ofw values were
compared to those fitted to the original FC,P , PE andQsim
values (i.e. without noise added), to assess whether the sim-
ulated measurement noise led to parameter values suggestive
of a smaller than predicted land cover influence.

2.4.3 Are additional environmental factors responsible?

The premise of the Budyko framework is that meanPand PE
are the main determinants ofQ. Beyond this, however, other
climate factors or terrain factors may be more important than
land cover category. To investigate this possibility, we used
the Zhang model to analyse the AWRA-L simulations for the
forest and herbaceous scenarios. For each catchment, we cal-
culated the model parameter (w) value corresponding to the
Q simulated for each land cover scenario (i.e. full forest or
full herbaceous cover) using the following inverted model
form (cf. Eq. 2):

P
Qsim(scenario) −

P
PE − 1(PE

P

)2
. (4)

For each land cover category, we attempted to find catch-
ment attributes that could explain the variance in inferred
w values. We used the same step-wise regression approach
used in earlier analyses of the sameQ data (van Dijk, 2010a,
c). In summary, candidate predictors were selected from a
range of catchment attributes based on the parametric and
non-parametric (ranked) correlation coefficients (r and r∗,
respectively). Linear, logarithmic, exponential and power re-
gression equations were calculated for all potential predic-
tors, and the most powerful one was selected. The resid-
ual variance was calculated and the same procedure was re-
peated. The catchment attribute data available included mea-
sures of catchment morphology (catchment size, mean slope,
flatness); soil characteristics (saturated hydraulic conductiv-
ity, dominant texture class value, plant available water con-
tent, clay content, solum thickness); climate indices (mean
P , mean PE, humidity indexP /PE, remotely sensed ac-
tual evapotranspiration, average monthly excess precipita-

tion); and land cover characteristics (fraction woody vegeta-
tion, fractions non-agricultural land, grazing land, horticul-
ture, and broad acre cropping, remotely sensed vegetation
greenness). Full details on data sources and catchment cli-
mate, terrain and land cover attributes can be found in van
Dijk (2010a, c).

2.5 Is covariance between land cover and climate
responsible?

Our catchment data set shows modest covariance between
forest cover (FC) andP /PE (r = 0.44). Earlier analyses
showed that this type of covariance can affect the ability to
accurately determine land cover influence (see van Dijk et
al., 2007, for a detailed example). We performed a further
synthetic experiment using the AWRA-L model to test the
magnitude of this problem:

1. Each of the 278 catchments was assigned a new vir-
tual land cover by randomly drawing a new value for
FC from a normal distribution with the same mean and
standard deviation as the observed FC values (0.284 and
±0.224, respectively). Values were truncated to remain
within the range 0 and 1.

2. For each catchment, the AWRA-L model was run with
the new FC values and the original meteorological in-
puts.

3. The two Zhang model parameters were fitted to the re-
sulting 278Qsim values.

The experiment was repeated 3000 times (each time with all
278 catchments), and the results were analysed to determine
whether there was a relationship between any (randomly in-
troduced) covariance between the FC andP /PE values on
the one hand, and the inferred land cover influence on the
other.

3 Results

3.1 Previous contrasting findings can be reproduced
and reconciled by the process model

Indicators of the agreement betweenQ observed in the
278 catchments and values estimated by the optimised two-
parameter Zhang model (Eq. 3) and the AWRA-L model
are listed in Table 1. For comparison, the performance
of the originally proposed Zhang-A and Zhang-B models
and an optimised Zhang model (Eq. 2) are also shown.
This comparison is important, as these two models incor-
porate the response ofQ to land cover change as inferred
from experimental catchment studies and widely used in
scenario analysis.

Calibrating the Zhang model parameters led to an im-
provement in model performance and reduction in bias, when
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Table 1.Performance indicators of the original Zhang et al. (2001)
models (Zhang-A and Zhang-B; see text for explanation), the Zhang
model with one and two calibrated parameters, respectively, and the
AWRA-L with prior parameter estimates. Al metrics relate to the
agreement between modelled and observed mean annual streamflow
(Q, mm per year) for all catchments (N = 278). SEE = standard error
of estimate, MAE = mean absolute error, and Bias = mean bias (all
in mm yr−1); Rel. Bias = mean of absolute values of percentage bias
and FOM=fraction of values overestimated by model (in %).

SEE MAE Bias Rel. Bias FOM

Zhang-A 119 97 79 44 % 91 %
Zhang-B 136 114 86 47 % 86 %
Zhang – 2 parameter 84 54 4 2 % 62 %
Zhang – 1 parameter 84 54 4 2 % 62 %
AWRA-L 78 50 1 1 % 54 %

compared to the original models. However, reducing the
Zhang model to a one-parameter model (that is, making
the model insensitive to land cover), did not degrade model
performance (optimised values werew(forest) = 1.91 and
w(herbaceous) = 1.98 versusw = 1.95, respectively). These
results support previously published result that fitting a
Budyko model to observations from non-experimental catch-
ments does not show the predicted land cover influence, in
contrast with results based on experimental catchments. In
other words, we were able to reproduce previous contrasting
findings and reconcile them.

Table 1 also shows that, despite the lack of parameter op-
timisation, AWRA-L performs slightly better than the cali-
brated Zhang models. The AWRA-L predictions ofQ for the
same 278 catchments, but this time for a hypothetical sce-
nario of full forest and herbaceous cover, are compared to
the original Zhang-A and Zhang-B model in Fig. 2. AWRA-
L is able to reproduce the approximate differences between
forest and herbaceous catchments predicted by the original
Zhang models, although the forest scenario predictions agree
better with the Zhang-B model than with the Zhang-A model
(Fig. 2). It follows that the process model (1) can predictQ

from the 278 catchments with mixed land cover as well as (in
fact, slightly better than) a fitted Zhang model, and (2) sug-
gests a land cover influence of similar magnitude as that pre-
dicted by the original Zhang curves. Therefore, the process
model can reconcile the contrasting conclusions drawn from
experimental and mixed catchmentQ data that the Zhang
model cannot reconcile.

Further supporting this conclusion, the same results could
also be reproduced when process modelQ estimates were in-
terpreted using the Zhang model. If a one-parameter Zhang
model was fitted to the modelledQsim with hypothetical
full forest or herbaceous cover,w values 3.6 and 1.0 where
found, respectively – producing curves quite similar to the
original Zhang-A and Zhang-B models. However, when the
two-parameter Zhang model was fitted to theQsim obtained
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Fig. 2.Comparison of AWRA-L simulated mean streamflow for the
278 catchments for scenarios of forest cover (green triangles) and
herbaceous cover (orange circles) shown in two different ways. Also
shown are the two models proposed by Zhang et al. (2001): (top
panel) Zhang-A and (bottom panel) Zhang-B.

with actual FC values, the resulting values were much closer,
at 2.22 and 1.79, respectively, predicting only a very small
land cover influence (average forest water use is only 2 %
greater than herbaceous water use). This shows that pre-
vious contrasting findings can also be reproduced with the
syntheticQ data.

3.2 Measurement errors are at least partly responsible

The introduction of noise in the data led to higher average
optimisedw values than for the experiment without noise
added: 2.7 (range 0.6–9.4) for forest and 2.3 (1.3–9.2) for
herbaceous cover. Importantly, for 39 % of the 3000 repli-
cates, the optimisedw value for forest was actually lower
than for herbaceous cover. It follows that random errors in
the observations reduce the likelihood that land cover influ-
ence is detected, let alone accurately quantified.

3.3 Underlying climate factors may be responsible

The distribution ofw values calculated from simulatedQ for
individual catchments appeared approximately log-normally
distributed and therefore all values were log-transformed
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before step-wise regression analysis. The ratioP /PE itself
did not explain significant variance in either land cover sce-
nario (r2 < 0.04).

Somewhat unexpectedly, the most powerful predictor of
variation inw values varied between the forest and herba-
ceous cover scenarios. In the full forest cover scenario, PE
itself explained 45 % (r2) of the variance in log-transformed
w values (see Fig. 3a). Other predictors did not explain any of
the residual variance. In the full herbaceous cover scenario,
depth-weighted average event precipitation (DWAEP, calcu-
lated as the sum of squared daily rainfall totals divided by
total rainfall) explained 33 % of the variation (Fig. 3b). Al-
ternatively, mean event precipitation (total rainfall divided by
the number of rain days) explained 27 % of variation (instead
of, not in addition to the variation explained by DWAEP).
Both are indicators of the irregularity of rainfall distribution
(see van Dijk, 2010c for definitions). Other predictors did not
explain any of the residual variance.

It is concluded that other climate factors than only the ra-
tio P /PE may have considerable influence onQ and hence
affect fittedw values. We speculate that the explicit consider-
ation of temporal climate patterns may also be the main rea-
son why the (uncalibrated) process model was slightly more
skillful at reproducing observedQ from the 278 catchments
than the (calibrated) Zhang model.

3.4 There is structure in the data set that is at least
partly responsible

Using simulatedQ for randomly generated hypothetical for-
est cover fractions (N = 3000), Zhang model parameter val-
ues of 3.4± 0.7 (range 1.9–6.1) and 1.1± 0.1 (0.9–1.4) were
fitted for forest and herbaceous cover, respectively. These av-
erage values are relatively close to thew values of 3.6 and 1.0
fitted for the full forest and herbaceous cover scenarios (ex-
periment 1). In some experiments the optimised Zhang pa-
rameters were similar to the full cover ones, whereas in other
experiments they were very close to each other (Fig. 4a) (it
is noted thatw(herbaceous) never exceededw(forest), unlike
in the measurement error experiment). It would be tempting
to conclude that the covariance between FC andP /PE in the
original data set (r = 0.44) was the main cause for the under-
estimation of land cover influence. However, no relationship
was found between the fitted parameter pair and the covari-
ance between forest cover andP /PE that was introduced into
the data set (Fig. 4a). Nonetheless, our manipulation of the
data must have introduced another form of hidden structure
in the data that affected the optimised parameter values.
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Fig. 3. Relationship between the catchment variable that explained
most of the variance in (log-transformed) Zhang model parameter
(w) values inferred from the synthetic land cover experiment, (top
panel) potential evaporation (PE) for forest catchments and (bottom
panel) depth-weighted average event precipitation (DWAEP) for
herbaceous catchments.

4 Discussion

4.1 Methodological problems can explain previous
contrasting findings

Despite their simplicity, Budyko models have shown impres-
sive skill in predictingQ from P and PE alone, when com-
pared to more complex dynamic catchment models. Indeed
in comparison with the more complex AWRA-L model, the
Zhang model could achieve very similar performance in ex-
plaining the observedQ, albeit after parameter fitting. It was
this same fitting, however, that produced land cover param-
eter values that could not be reconciled with the results of
experimental catchment studies, thus reproducing previous
contrasting findings. We showed that the dynamic hydrologi-
cal process model could resolve this inconsistency, and there-
fore, that there appear to be methodological problems with
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the use of Budyko models as a detection method in this par-
ticular application.

The synthetic experiments demonstrated that all method-
ological issues tested (measurement errors, the presence of
other important uncontrolled factors, structure in the catch-
ment data set) were plausible and can contribute to a failure
to accurately quantify land cover influence with the Budyko
model that was used. In all cases, underestimation of the land
cover influence was the most likely result. Desirable aspects
of Budyko models are their conceptual simplicity and the
minimal number of parameters. However, in qualifying the
principle of Occam’s Razor, Albert Einstein (1934) proposed
that “the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without hav-
ing to surrender the adequate representation of a single da-
tum of experience”. On the basis of our results we conclude
that, for the purpose at hand, Budyko models fail at the sec-
ond part of this statement; that is, they are too simple to ad-
equately quantify the influence of land cover in collatedQ

data from catchments with mixed land cover.
Although we only tested one particular Budyko model,

previous studies suggest that conclusions would likely have
been very similar if any other Budyko model had been used,
due to the identical conceptual structure and similar function
form (see e.g. Oudin et al., 2008). Moreover, we argue that
the methodological issues with heterogeneous data sets such
as the one we analysed are probably not limited to Budyko
models but likely to extend to similarly simple top down in-
ference methods.

There have been attempts to increase the predictive perfor-
mance of the Budyko models by including additional vari-
ables, often within a stochastic framework (e.g. Porporato et
al., 2004). Those not related to land cover include absolute
PE values (Peel et al., 2010), solar radiation, phase differ-
ences between the seasonalP and PE patterns (Donohue et
al., 2010), and the daily distribution of precipitation (see re-
view in Gerrits et al., 2009). Our results suggest that some of
these factors may indeed exert a similarly large or larger in-
fluence on catchment response than land cover. However, try-
ing to control for these additional factors introduces further
parameters and observed or estimated attributes with associ-
ated uncertainty. Ultimately such an approach must fall prey
to the very issue that top-down approaches aim to avoid, that
is, an underdetermined (or undetermined) problem in which
competing hypotheses create similar outcomes and therefore
cannot be tested conclusively.

This is obviously certainly not avoided by the use of dy-
namic process models. An advantage of such models, how-
ever, is that process assumptions can be made more explicit
and individually tested against different types of observa-
tions with different spatial and temporal characteristics. In
light of this, we question whether it is advisable to fit a sim-
plified hydrological model to collated heterogeneousQ data
such as the data analysed here. Arguably, it is more pertinent
to demonstrate that the observations can be explained satis-

factorily by a (more, but not unnecessarily complex) theory
and therefore are not falsified by experimental knowledge.
In this context, the Budyko framework may be a valuable
benchmark test, whose predictive power should be matched
or exceeded by any competing theory (cf. van Dijk and War-
ren, 2010). It is however perhaps less advisable as infer-
ence method to detect second order drivers in heterogeneous
data sets.

Strictly speaking, our results are only valid for one partic-
ular data set. However, all factors we investigated negatively
affected accurate quantification of the land cover influence.
We consider it inevitable that at least some of these prob-
lems will be encountered in anyQ data set from large catch-
ments with mixed land cover. Zhang et al. (2001) showed
that this need not prevent detection of land cover impacts in
data from catchments that represent extreme scenarios and
in controlled experiments. Paired catchment experiments in
particular are much more likely to adequately control for cli-
mate and terrain factors and thereby allow accurate quantifi-
cation of the land cover influence. Apart from experimen-
tal issues associated with such necessarily small-scale ex-
periments (e.g. subterranean leakage), a critical issue in the
extrapolation of the results from such experiments will be
the degree to which hydrological processes and land cover
characteristics are representative for those in larger, non-
experimental catchments (see van Dijk and Keenan, 2007
for a discussion). More elaborate process models may have
a role to play here, as the influence of such representational
errors can be investigated in model experiments.

4.2 Potential physical causes for reduced land cover
influence in catchments with mixed land cover

We did not set out to explore possible physical rather than
methodological causes for the inability to adequately detect
a land cover influence in previous Budyko model applica-
tions in multiple mixed land-cover catchments. They can cer-
tainly play a role. The AWRA-L model was not suitable to
explore all potential processes in-depth; for example, it can-
not simulate land surface-atmosphere feedbacks, and obser-
vations were not available to parameterise the impacts of hu-
man interferences (e.g. farm dams, roads and soil manage-
ment) and lateral water redistribution within hill slopes and
in the river system. Streamflow routing per se (that is, the ac-
cumulation and propagation of streamflow through the river
network) has no influence on long-term averageQ, but the
spatial redistribution of water in the landscape does create
a potential forQ to be reduced, e.g. by greater evaporation
from streams and riparian areas and the lateral redistribution
and subsequent evapotranspiration of surface and sub-surface
water at hill slope level. A simple model experiment was per-
formed to assess the possible magnitude of these processes
by (i) changing the AWRA-L model code to reroute all lat-
eral flows (surface, soil and groundwater) from the herba-
ceous to the forest landscape component; (ii) running the
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model across all catchments, varying the catchment fraction
of forest from 0–100 %; and (iii) comparing the resultantQ

estimates to those obtained in the case without redistribution
as a reference. The experiment is similar to that reported on
by Vertessy et al. (2002), and can be interpreted as a case in
which forest is preferentially located in the catchment val-
leys, maximising its potential streamflow impact by inter-
cepting and lateral flows from upslope areas with herbaceous
vegetation. The reference case (i.e. that used in all previous
experiments) can be interpreted as a case where any of the
hill slopes within a catchment are either fully with or without
forest, in which case the forest impact scales linearly with the
area under the forest. The results (Fig. 5) show that, accord-
ing to the model, a considerable departure from the reference
case is plausible, in line with previous modelling results re-
ported by Vertessy et al. (2002, their Fig. 3). Climate humid-
ity was a strong determinant of the relative influence of lat-
eral interactions; the strongest non-linear response was pre-
dicted for the driest catchments (top curve in Fig. 5), whereas
the wettest catchments showed an approximately linear re-
sponse (bottom curve). Importantly, the results predict that a
small fraction of forest can cause a disproportionate reduc-
tion in Q, which can indeed lead to an underestimation of
land cover influence from analysing mixed land-cover catch-
ments. It is noted that this model experiment likely overes-
timates the importance of land cover configuration. Firstly,
the scenario tested is extreme and in contrast with actual land
cover distribution in the catchments, which tend to have most
of the forested area on the less accessible and less produc-
tive hill slopes and tops. Secondly, we are not able to vali-
date the magnitude of the model-predicted fluxes against ex-
perimental data. Indeed, the potential effectiveness of deep-
rooted vegetation in intercepting lateral flows from upslope
has been speculated on and predicted with models several
times (e.g. Stirzaker et al., 2002) but so far rarely observed
in reality (e.g. McJannet et al., 2000; van Dijk et al., 2007).

An examination of the main model-predicted causes ofQ

change associated with land cover change may provide some
further insight into reasons why large catchments with mixed
land cover might behave differently from small, homogenous
(experimental) ones. The model predicts that the main cause
of the different hydrological response is the greater rainfall
interception loss from forest vegetation (Fig. 6). The differ-
ence represents around 10–15 % of rainfall; consistent with
the majority of published experiments (e.g. Roberts, 1999;
although much greater differences can occur under maritime
conditions, e.g. Schellekens et al., 1999; McJannet et al.,
2007). A priori it would seem plausible that that the asso-
ciated rapid return of moisture to the atmosphere may in-
fluence rainfall generation downwind (cf. D’Almeida et al.,
2007; Pielke et al., 2007; van Dijk and Keenan, 2007). If this
is indeed the case, then accurate prediction of the influence
of land cover change on the water balance of large catch-
ments may depend on the spatial distribution of precipitation
and how it is measured and represented in models. In other

Fig. 4. Zhang model parameter values fitted to synthetic mean
streamflow estimates for 278 catchments produced by AWRA-L
with random forest cover fractions assigned to each of the catch-
ments. Data points represent the results of 3000 replicate experi-
ments. (Top panel) Zhang model parameter data pairs fitted in each
experiment showing a well-defined relationship; (bottom panel) the
difference between log-transformed parameter values versus the
correlation between synthetic forest cover fraction (FC) and catch-
ment humidity (P /PE) introduced in the experiment, showing no
relationship (r = 0.11).

words, in sufficiently large catchments the rainfall intercep-
tion effect might be mitigated by rainfall recirculation.

Finally, it is emphasised that the interpretation of our
model results, and particularly those presented in this section,
are contingent on the algorithms, assumptions and parame-
terisations of the process model we used here. We believe it
very likely that the methodological problems with the infer-
ence method investigated here would be confirmed if other
realistic process model structures or parameter sets were
used. However, the predicted magnitude of the influence of
lateral interactions and the relative importance of rainfall
interception loss are likely to be more sensitive to model
structure and assumptions, and therefore more speculative.
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Fig. 5. The theoretical maximum influence of lateral water redistri-
bution, from herbaceous to forest areas, on mean streamflow (Q)

as predicted by the AWRA-L model for 278 Australian catchments.
The middle bold and two outer lines represent the catchments with
the median and most extreme responses, respectively.Q reduction
is shown relative to the difference between the 0 and 100 % forest
cover cases (in the absence of redistribution a linearly proportional
influence would be predicted).

5 Conclusions

Controlled experiments provide strong evidence that chang-
ing land cover (e.g. deforestation or afforestation) can af-
fect mean catchment streamflow (Q). By contrast, a similarly
strong influence has not been found in studies that interpret
Q from multiple catchments with mixed land cover. One pos-
sible reason is that there are methodological issues with the
way in which the Budyko framework was used in the latter
type studies. We examined this usingQ data observed in 278
Australian catchments and by making inferences from syn-
theticQ data simulated by a hydrological process model (the
Australian Water Resources Assessment system Landscape
model). We draw the following conclusions:

1. Carrying out synthetic experiments with the process
model, we could reproduce the absence of a detectable
influence in mixed land-cover catchments as well as the
presence of such an influence in individual catchments.
In other words, previous contrasting findings could be
reconciled.

2. Several potential methodological problems with the
Budyko framework based inference approach applied
in previous studies were investigated. The apparent ab-
sence of a detectable influence when comparing mixed
land-cover catchments could, at least partially, be ex-
plained by the three factors investigated, viz. (i) noise
in land cover, precipitation andQ data; (ii) additional
catchments climate characteristics more important than
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Fig. 6. Contribution of different evaporation terms to the increase
of mean streamflow after forest removal estimated by the AWRA-L
model, expressed as a percentage of rainfall. Values represent fluxes
averaged over three groups of catchments, intended to represent
(from left to right) water-limited (P /PE< 0.75), transitional, and
energy-limited (P /PE> 1.25) environments. Es = soil and open wa-
ter evaporation; Et = transpiration; Ei = rainfall interception losses.

land cover; and (iii) covariance betweenQ and catch-
ment attributes. Such methodological issues are likely
to be found in any heterogeneous streamflow data set.

3. In addition to these methodological issues, there are also
plausible physical causes for the failure to adequately
detect a land cover influence in catchments with mixed
land cover. This includes the lateral redistribution of wa-
ter from herbaceous to forest areas, and potential recir-
culation of rainfall intercepted by the forest canopy.
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