Articles | Volume 15, issue 10
Research article
25 Oct 2011
Research article |  | 25 Oct 2011

Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization

S. J. Noh, Y. Tachikawa, M. Shiiba, and S. Kim

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701,,, 2023
Short summary
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412,,, 2022
Short summary
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410,,, 2022
Short summary
Low-flow estimation beyond the mean – expectile loss and extreme gradient boosting for spatiotemporal low-flow prediction in Austria
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574,,, 2022
Short summary
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344,,, 2022
Short summary

Cited articles

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T. Signal Process., 50, 174–188, 2002.
Bloschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: a review, Hydrol. Process., 9, 251–290, 1995.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 2008.
Douc, R., Cappe, O., and Moulines, E.: Comparison of resampling schemes for particle filtering, in: Proceedings of the 4th International Symposium on Image and Signal Processing, 64–49, 2005.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, 1994.