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Abstract. Data assimilation techniques have received grow-1 Introduction
ing attention due to their capability to improve predic-

t!oln. Among v?rlous data asr?lmllat;(on teChn'qus’,SlqulenData assimilation is a way to integrate information from a va-
tia ,I’\/Ionte Carlo (_SM?) mgt ods, nOWrT af] parr1t|ce "b_riety of sources to improve prediction accuracy, taking into
ters”, are a Bayesian learning process that has the capabils,njgeration of the uncertainty in both a measurement sys-

ity to handle non-linear and non-Gaussian state-space Moqgy anqd 4 prediction model. There have been considerable
els. In this paper, we propose an improved particle filter-

) : ! . X dvances in hydrologic data assimilation for streamflow pre-
ing approach to consider different response times of 'mema[?/iction (e.g. Kitanidis and Bras, 1980; Georgakakos, 1986:

state variables in a hydrologic model. The proposed metho rugt et al., 2006; Clark et al., 2008; Seo et al., 2003
adopts a lagged filtering approach to aggregate model réy,ngy ~ siate-space filtering methods based on variations of

sponse until the uncertainty of each hydrologic process i§ne kaiman filter (KF) approach have been proposed and
propagated. The regularization with an additional move stef, e mented because of their potential ability to explicitly

pased on the Markov chain Monte Carlo (MCM_C) methods handle uncertainties in hydrologic predictions. However, the
is also wpplgmented to preserve ;ample dlversr[y' under thEF(F approaches for a non-linear system such as the extended
lagged filtering approach. A distributed hydrologic model,  5iman filter (EKF) have limitations in practical applica-
water and energy transfer processes (WEP), is implementegl,, 6 1o their instability for strong non-linearity and the

for the sequential data assimilation through the updating thigh computational cost of model derivative equations, es-
state variables. The lagged regularized particle filter (LRPF)

h il i icle fil Ipecially for high-dimensional state-vector problems such as
and't e sequentia 'mPO”a”C‘? resampling (SIR) particle filte spatially distributed models. To cope with the drawbacks of
are implemented for hindcasting of streamflow at the Katsur

%EKF, the ensemble Kalman filter (EnKF) was introduced by

catchment, Japan. Control state variables for filtering are SOilEvensen (1994). The EnKF is computationally efficient be-

moisture content and overland flow. Streamflow measure. ;se it has no need for model covariance estimation, but it is

ments are used for data assimilation. LRPF shows consisten; pased on the assumption that all probability distributions
forecasts _regardless of the process noise ass'umpuon, Wh'tﬂvolved are Gaussian. Further reviews of Kalman filter-
SIR has different values of optimal process noise and ShOWﬁased applications for hydrologic models are shown in Vrugt

sensitive variation of confidential intervals, depending on theet al. (2006), Moradkhani et al. (2005b), Moradkhani (2008)
process noise. Improvement of LRPF forecasts compared tQ 4 Evensen (2009) ' ' '

SIR is particularly found for rapidly varied high flows due o o )
to preservation of sample diversity from the kernel, even if Another approach to data assimilation is variational assim-
particle impoverishment takes place. ilation (VAR), which has ac.hleved. w_ldespread application in
weather and oceanographic prediction models. In hydrologic
investigations, VAR is implemented for estimating spatial

Correspondence tdS. J. Noh soil-moisture distributions by Reichle et al. (2001) and for
BY (seongjin.noh@gmail.com) assimilating potential evaporation and real-time observations
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of streamflow and precipitation to improve streamflow fore- _

casts by Seo et al. (2003, 2009). Although variational meth-  Weights

ods are more computationally efficient than KF-based meth- O i (a)
ods, the derivation of the adjoint model needed for min-

imisation of a cost function is difficult, especially in the oO——
case of non-linear, high dimensional hydrological applica-
tions (e.g. Liu and Gupta, 2007). o— o ) -

Among data assimilation techniques, the sequential Monte
Carlo (SMC) methods, known as particle filters, are a ©
Bayesian learning process in which the propagation of al O———
uncertainties is carried out by a suitable selection of ran-
domly generated particles without any assumptions being
made about the nature of the distributions (Gordon et al., Kernel
1993; Musso et al., 2001; Arulampalam et al., 2002; JO-particles Particles
hansen, 2009). Unlike the various Kalman filter-based meth-
ods that are basically limited to the linear correction step andrig. 1. The concept of discrete and continuous approximation of
the assumption of Gaussian distribution errors, SMC meth-particle density:(a) weighted empirical measure, afi) regular-
ods have the advantage of being applicable to non-Gaussiaaed measure by kernel. Adapted from Musso et al. (2001).
state-space models. The application of these powerful and
versatile methods has been increasing in various areas, in-
cluding pattern recognition, target tracking, financial analy- In this paper, we apply particle filters for a distributed
sis, and robotics. hydrologic model in support of short-term hydrologic fore-

In recent years, these methods have received considerabf@sting. A lagged particle filtering approach is proposed
attention in hydrology and earth sciences (e.g. Moradkhanfo consider different response times of internal states in a
et al., 2005a; Weert and El Serafy, 2006; Zhou et al., 2006distributed hydrologic model. The regularized particle fil-
van Delft et al., 2009; van Leeuwen, 2009; Karssenbergter with the Markov chain Monte Carlo (MCMC) move step
et al., 2010). Since their first introduction to the rainfall- is also adopted to improve sample diversity under the lagged
runoff model of Moradkhani et al. (2005a), Weert and El filtering approach. A process-based distributed hydrologic
Serafy (2006) compared ensemble Kalman filtering and parmodel, WEP (Jia and Tamai, 1998; Jia et al., 2001, 2009),
ticle filtering for state updating of hydrological conceptual is implemented for sequential data assimilation through state
rainfall-runoff models. The SMC methods have also beenupdating of internal hydrologic variables. Particle filtering
applied to parameter estimation and uncertainty analysis ofs parallelized and implemented in the multi-core computing
hydrological models. Smith et al. (2008) evaluate struc-€nvironment via an open message passing interface (MPI).
tural inadequacy in hydrologic models, Qin et al. (2009) es- The paper is organized thus: Sect. 2 outlines the Bayesian
timate both soil moisture and model parameters, and Ringéiltering theory and particle filters. In Sect. 3, a lagged filter-
et al. (2010) implement hydrogeophysical parameter estimaing approach is introduced with an additional regularization
tion. Uncertainty of a distributed hydrological model is an- step to reflect different responses of internal processes in se-
alyzed by Salamon and Feyen (2009, 2010), and dual stateguential data assimilation. Section 4 presents the case study
parameter updating of a conceptual hydrologic model is ap+esults, demonstrating the applicability of the proposed par-
plied to flood forecasting by Noh et al. (2011). The diversity ticle filtering approach. The lagged regularized particle filter
of assimilated data and models has been increasing; a sno@:RPF) and the sequential importance resampling (SIR) par-
water equivalent prediction model (Leisenring and Morad-ticle filter are evaluated for hindcasting of streamflow in the
khani, 2010) and assimilation with remote sensing-derivedKatsura River catchment using the WEP model. Section 5
water stages (Montanari et al., 2009) have been investigategsummarizes the results and conclusions.

However, the framework to deal with the delayed response,

which originates from different time scales of hydrologic

processes, routing and spatial heterogeneity of catchmer2 Method of particle filters

characteristics, and forcing data, especially in a distributed

hydrologic model, has not been thoroughly addressed in hyin this section, we briefly describe the theory of Bayesian

drologic data assimilation. Furthermore, alternative methoddiltering and sequential Monte Carlo (SMC) filtering for its

proposed in the literature to mitigate loss of sample diversitysuboptimal solution in non-linear and non-Gaussian cases.

(e.g. Musso et al., 2001; Arulampalam et al., 2002), whichWe describe several variants of SMC filters, including se-

may cause collapse of the filtering system, have not beemjuential importance resampling (SIR) and regularized parti-

studied in hydrology. cle filter (RPF), which are based on sequential importance
sampling (SIS). Detailed descriptions of sequential Monte

Density estimate

(b)
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Fig. 2. A single cycle of a regularized particle filter.

Carlo methods can be found in Arulampalam et al. (2002)wherex;'C and w}< denote the-th posterior state (“particle”)
and Moradkhani et al. (2005a). and its weight, respectively, ardd-) denotes the Dirac delta
function. Since it is usually impossible to sample from the
2.1 Bayesian filtering theory and basic particle filtering  trye posterior PDF, an alternative is to sample from a pro-
methods posal distribution, also called importance density, denoted by

. ) L . q(xklyw). After several steps of computation, the recursive
To define the problem of the Bayesian filtering, consider aweight updating can be derived as:

general dynamic state-space model, which is described as:

X = fxp1. 0. m) + o @ ~ N©O, Wp) 1) wp o wp_y —
q(xk|xk—l’ J’k)

— ! ~ . . . . e
i = h(xe, 0') + i v ~ N@© Vi) @ The choice of importance density is one of the most criti-
wherex; e R is then, dimensional vector denoting the Cal issues in the design of SMC methods. The most popular
system state attime The operatoyf: R"x — R expresses ~ choice is the transitional prior:
the system transition in response to the forcing data ( i ) ( i) )

. XX, 1, = X, |x;,_q1)- 5

(e.g. rainfall, weather data) and parameters: R — Ry 4 €¥i-1 Vi P\Fil¥is ©)
express the measurement function, having parametess By substituting Eqg. (5) into Eqg. (4), the weight updating
andv; represent the model error and the measurement errohecomes:
respectively, andv; andV represent the covariance of the _; ~ -
erropr ’ ’ P wp & w’iflp(y"lx;c)' ©)

In the Bayesian recursive estimation, if the system andThe sequential importance sampling (SIS) algorithm shown
measurement models are non-linear and non-Gaussian, it sbove is a Monte Carlo filter that forms the basis for most
not possible to construct the posterior probability density SMC filters. A common problem with the SIS algorithm is
function (PDF) of the current statg given the measurement the degeneracy phenomenon, in which after a few iterations,
yix ={y;, i =1, ...k} analytically. When the analytic solu- all but one particle will have negligible weight. A suitable
tion is intractable, an optimal solution can be approximatedmeasure of the degeneracy is the effective samplersige

p(yilx}) P(xi;lx};_l)_

4

by SMC filters. estimated as (Kong et al., 1994):

Sequential Monte Carlo (SMC) filters are a set of 1
simulation-based methods that provide a flexible approactteff = — VA (7)
to computing posterior distribution without any assumptions i=1 (wk)

being made about the nature of the distributions. The ket the weights is uniform (i.ew! =1/ fori=1, ...,n), then
idea of SMC filters is based on point mass (“particle”) repre-, .=, If all but one particle have 0 weight, thems = 1.
sentations of probability densities with associated weights: The ratio of the effective particle numbeyao is estimated

no _ as follows:
Xkly1x) = wy, §(xx — x’) 3 Neff
P (xkly1x) ; k ( kX @) e = % ®)
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Fig. 3. Particle traces in the regularization step under the lagged filtering approach.

The maximum ofu4iip is 1 when the weights are uniform. at every iteration, this filter may lead to a sudden loss of di-
Small nrat0 indicates a severe degeneracy and vice versaversity in particles and is sensitive to outliers (Ristic et al.,
nratio IS Used as an indicator of degeneracy in this study be2004).
cause it can be used easily regardless of the particle number.

The degeneracy phenomenon can be reduced by perforn#-2 Regularized particle filter
ing the resampling step whenever a significant degeneracy is . ) ,
observed. Thus, the SIR patrticle filter is derived from the SISThe positive effects OT the resarr)pllng sFep are to automati-
algorithm by performing the resampling step at every time in_cally concentrate particles in regions of interest of the state-

dex. The idea of resampling is simply that particles with very space and to reduce pa_rticle d_egeneracy. Hoyvever, the par-
low weights are abandoned, while multiple copies of parti-t'des resampled from high weights are statistically selected

cles are kept with the uniformly weighted meas{xg n-1y, many times. This leads to another problem, known as sam-

which still approximates the posterior PDFx|yy;) (van ple |mp9ver|shment, which means a loss of @versny among
Leeuwen, 2009). the particles because the resultant sample will contain many

Resampling is one of the key issues in the SMC filters, anore_peated points (Ristic et al., 2004). Some systematic tech-

various resampling approaches have been introduced in the dues have been proposed to solve the problem of sam-

literature, such as multinomial resampling, residual resam_pIe impoverishment. An alternative solution is to introduce

pling, stratified resampling, and systematic resampling. Athemregula\slz:mo_lrjhsterp WTer?Zthde sarr:;plle flirl?provsg'S:hTegt be(;
comparative analysis and review of resampling approache (r)”es Iserize E' N fetheguma irie IEI? tricbeti ne ( i)tsd V?;E
can be found in Douc et al. (2005) and van Leeuwen (2009)O eguiarization ot the empirical distribution associate

Systematic resampling, also known as stochastic univers 0e01part_|rcrluee rs]i/g’.tr?r%gas'ggégi léir:se.lsgi;hgﬁag\ﬂ%ss?hgt d‘i‘_’
sampling, is often preferred due to its computational simplic- ) nt ! ging !

ity and good empirical performance. It has also been showncrete a_ppro.X|mat|on of postengr d|str|bl_mon toa co_ntmupus
pproximation, so the resampling step is changed into simu-

that systematic resampling has the lowest sampling noise" ! . D .
(Kitagawa, 1996). Hence, we use systematic resampling fo ating an absolutely continuous distribution, hence producing
' ' a new particle system with different particle locations. The

all particle filtering cases in this study. It is worth notin . . L i
P 9 y g hconcept of discrete and continuous approximation of particle

that there are several choices in resampling methods, andtéz itvis illustrated in Fia. 1. If th ioht trated
proper method may be different, depending on the charactelecnS!Y IS llustratedin Fig. 1. € weights are concentrate

istics of hydrologic models. See Weert and El Serafy (2006),On the Iimiteq nur_nber of particles, the .resa.mpling in the dis-
Rings et al. (2010), and Salamon and Feyen (2009) for resid_crete approximation (e.g. the SIR patrticle filter) may lead to
’ poor representation of the posterior density, while a con-

ual resampling; see also Salamon and Feyen (2010) antﬂ imation i larized . th
Moradkhani et al. (2005a) for systematic resampling. Al- INUoUS approximation In regularizéd measure Improves the

though the SIR method has the advantage that the importanc%'vers'ty in the resampling step.
weights are easily evaluated, because resampling is applied

Hydrol. Earth Syst. Sci., 15, 3233251, 2011 www.hydrol-earth-syst-sci.net/15/3237/2011/
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Fig. 4. The flow diagram of regularized particle filter with MCMC move step in the lagged filtering approach.

In RPF, posterior particles are drawn from the
approximation

p(xklyia) ~ ) wi Ki (xk - xi) ©)
i=1

where

s = () @

is the rescaled kernel densi&/(-), & > 0 is the bandwidth,
andn, is the dimension of the state vecter The kernel
density is a symmetric probability density function ®¥+,
such that

K >0 /K(x)dx:l /xK(x)dx:O (12)

/ Ix)? K (x) dx < oo.

The kernelK (-) and bandwidth: are chosen to minimise

posterior density and the corresponding regularized weighted
empirical measure in Eqg. (9), which is defined as

MISE(p) = E[ [lalse) = plaelya)? dxk} (12)

wherep(-|-) denotes the approximation fa(x |J’1:k) given
by the right-hand side of Eq. (9). In the special case of
equally weighted samples)’ =1/n for i =1, ...,n, the op-
timal choice of the kernel is the Epanechnikov kernel,

BEZ (1 |xl?) i fxl < 1

2 cp,
Kopt = (13)

0 otherwise

wherec,, is the volume of the unit sphere $¥+. It is worth
noting that the use of kernel approximation becomes increas-
ingly less appropriate as, (dimensionality of the state) in-
creases. The optimal bandwidth with unit covariance matrix
is

the mean integrated square error (MISE) between the true

www.hydrol-earth-syst-sci.net/15/3237/2011/
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Table 1. Simulation periods and observed flow.

Simulation period Max. observed flow Data availability at each location

atKatsura (Ms™1) Katsura Kameoka
1 Jun-31 Jul 2007 336.9 (@] X
1 Aug-30 Oct 2004 2276.7 (0] (0]
1 Jun-31 Aug 2003 361.6 (6] (0]

v¥¥ Precipitation } | | Shortwave 11| Longwave
Radiation Radiation

e

Water Body Soil-Vegetation Inpervious
Group Group Area Group ]
|
|
Irterception Transpiration
Layer T Ae], -
|
: heat —
Surface Y Depression  fluxes -
Runoff VRS Iilyy Laer 4 ¢l =9
I = Top Soil Layer ¥
g« v| Suction |- ) WUL
£ If])ilflsion * |Infiltration 2 Soil Layer
& ¥ s ;
| 5 3rd Soil Layer GWP
I

Fig. 6. A schematic view of WEP model structure. Adapted from

Jia et al. (2009).
Fig. 5. The Katsura River catchment. ( )

1 1999). The key idea is that a resampled particle is moved
hopt = A - nm¥t with 149 {0 a new state, according to Eq. (15), onlyik o, where
1 u~U[0, 1] and« is the acceptance probability. Otherwise,
A= [3 Cn_xl(”x + 4 (2 m"X]m_ the move is rejected.

RPF differs from SIR only in additional regularization steps min {1, M if P(yk|xi) #0
when sample impoverishment happens. The key stepis & = P(yelxy) g : (16)

" . , otherwise
X, = X + hopt Dy €' (15)

In Eq. (16),a becomes 1.0 when the likelihood of new par-
wherex}': is a new particle generated from kernel density, ticle is greater than that of the previous particle. That means
Dy is estimated frong;, which is the empirical covariance that the MCMC move step contributes to screening bad par-
matrix such thab; D! =L, ande’ is the random noise from ticles in the regularization step, thus ensuring that particles
the kernel. Note that the calculation of the empirical covari- asymptotically approximate samples from the posterior.
ance matrix_ is carried out prior to the resampling and is A single cycle of RPF with the MCMC move step is il-
therefore a function of both the, andwi. The theoretical lustrated in Fig. 2. The basic procedure of RPF is the same
disadvantage of RPF is that its samples are no longer guaramvith SIR before resampling. After the resampling step, en-
teed to asymptotically approximate those from the posteriortirely new samples are drawn from the continuous kernel. If a
This can be mitigated by including the Markov chain Monte new particle is rejected in the MCMC move step, the particle
Carlo (MCMC) move step (Gilks and Berzuini, 2001) based resampled before regularization is used. Therefore, the effi-
on the Metropolis-Hastings algorithm (Robert and Casella,ciency of RPF depends on how many particles are preserved

Hydrol. Earth Syst. Sci., 15, 3233251, 2011 www.hydrol-earth-syst-sci.net/15/3237/2011/
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in the MCMC move step. Although this approach is fre- (a) 2007, Katsura, deterministic

quently found to improve performance with a less rigorous 50 LA B (N AR L R i it B !
deviation, RPF has not been introduced in hydrologic dataz 20
assimilation.

:
300 H 40

Discharge (m3
Rainfall (mm/hour)

3 Particle filter with lag time approach

Many hydrological processes operate — in response to precip: = a4 s = 28 1201
. e . Time (hour)
itation — at similar length scales, but the time scales are de-
Iay_ed (Bloschl and Sivapalan, 1995). In a disFributed hydro- (b) 2007, Katsura, LRPF, lead time=6 (hours)
logic model, there are many types of state variables, and eacl so LR e 0 sas b0 aua e b R no
variable interacts with others based on different time scales._,,, o0
For example, in catchment modelling, internal state variablesz
may refer to two-dimensional distribution of soil moisture »
content, evapotranspiration, and overland flow; and an ob- £ 2 60
servable state may refer to streamflow flux at the monitoring & 10 ! 80
sites. There is a time lag until the changes of soil moisture o |
distribution affect infiltration and sub-surface/surface runoff 1 241 481 721 961 1201
processes and generated runoff is routed as streamflow intc Time (hour)
the measurement site. Hydrologic components in a hydro-
logic model have usually different time scales, which need to
be considered in the data assimilation process.
As stated by Salamon and Feyen (2010), this response timeZ x
is usually greater than the high-frequency discharge mea—%300 ! 40
surements. One simple approach is to use delayed updatg200 60
ing, which utilizes longer time intervals before updating state 2 o0 A o
variables. However, delayed updating leads to omitting large {
quantities of measurement information, and a fixed delay as-  ° | ot ss1 ) ) ot | 100
sumption may result in inappropriate estimation, because a Time (hour)
response time always changes, depending on the current spa-
tial distributions of the state and forcing variables. Further-Fig. 7. Observed versus 6-h-lead forecasts at the Katsura station via
more, when system behaviour is relatively fast (e.g. hourlyLRPF and SIR (1 June-31 July 20073) a deterministic modelling
based hydrologic or hydraulic modelling cases), delayed up<case;(b) LRPF; and(c) SIR. The blue line and area represent the
dating may lead to missing proper timing of assimilation. Méan va!ue and 90 % confidentigl .int.ervals, rgspectively. A gray
That can make it hard to implement sequential data assimgashed line represents a _determlnlstlc modelling case. The black
. . . . . dots represent observed discharge.
ilation techniques into hydrologic modelling. Thus, we pro-
pose a new lagged particle filtering approach based on the
regularized particle filter, not only for considering different
catchment responses, but also for using whole measuremeat the time stefs — j + 1 are resampled simultaneously with
information for data assimilation. those at the current time step. (5) If the effective particle
Figure 3 shows an example of a newly proposed laggechumbernes is less than the thresholdd < nihr), the regu-
particle filtering approach with RPF. Herk,is the current larization step is executed from the time skep j with new
time step, and; is the lag time required for responses of particle members generated from kernel. (6) When each par-
internal state variables to be transmitted into the observiicle arrives in the current time stépacceptance probability
able variables. Note that it is better to set the lag time « is calculated according to the lagged likelihood, as shown
large enough to cover plausible ranges because the systeim Eq. (16). If a particle is rejected: & o), state variables
response is time-variant. before regularization will be used without kernel perturba-
The assimilation window of the lagged filtering is defined tion. (7) For the next time step+ 1, simulation starts from
from k — j to k time step. The procedure of the lagged fil- time stepk — j +1 and follows the same procedure as from
tering is as follows: (1) to have prediction at the time step 1) to 6). In this way, sequential data assimilation procedure
simulation starts from the time stép- j. (2) When particles is implemented at every time step without loss of measure-
arrive at the current timé, the lagged weights are estimated ment information. Compared to conventional particle filter-
according to the measurement. (3) Resampling is executethg, an additional procedure needed in the lagged regular-
according to the lagged weights. Note that state variableszed particle filtering is only that state variables at the time

1
300 40

arge (m
Rainfall (mm/hour)

100

(c) 2007, Katsura, SIR, lead time=6 (hours)
500 bl A | YF* L L T 1 T

20

Rainfall (mm/hour)
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stepk — j + 1 should be stored and resampled according to (a) 2004, Katsura, deterministic
lagged weights. _ T y T ”[ = VY —° -
Lagged weightuwj,q, and lagged likelihoodL,,, can be 22500 ; % E
calculated through various methods, including the aggrega-g 2o -
tion of the past weight. However, in this study, the weight g 5% 60 =
and likelihood at the last time ste(w;, L;'c).are simplyused £ o ] i & E
as lagged weight and likelihood, respectively. Note that the o A AJLMJ 100
use of weights without aggregation can show better results in 1241 481 721 %61 1201 1441 1681 1521 2161
cases of short-term forecasting. Time (hour)
Figure 4 summarises one cycle of the algorithm of RPF R -
with the Markov chain Monte Carlo (MCMC) move step un- 3500 ANIALS\AS S Ty — 0
der the lagged filtering approach. The procedure connectecg **° ' T W 20 §
with the dashed line means the regularization step. It isE**" o §
worth mentioning that the regularization step can be executed® ., o =
not just in the sample impoverishment, but also in the parti- § 1000 £
cle collapse case, which means all particles have negligible® s L \ 0 g
weights that fall outside the measurement PDF. In this case,  ° = o o 0 o oo v o o
the regularization step is used effectively for re-initialization Time (hour)
of the particle system.
P Y (c) 2004, Katsura, SIR, lead time=6 (hours)
| e T OTT T T
4  Implementation %mo 20 g
- 40
4.1 Study area i}izzz . g
& 1,000 4.:"
The SMC methods are applied to the Katsura River catch-2 s L | %08
ment (Fig. 5) to show the applicability of the proposed par- 0 b 100
241 481 721 961 1201 1441 1681 1921 2161

ticle filtering approach. This catchment is located in Kyoto,
Japan, and covers an area of 1106KB887 kn? at the Kat-
sura station) (see Fig. 5). Topography in the catchment isig. 8. Observed versus 6-h-lead forecasts at the Katsura station
characterized by a mountainous upstream in the north andia LRPF and SIR (1 August—30 October 2004)) a deterministic

a flatter plain in the south. The elevation in the catchmentmodelling case{b) LRPF; and(c) SIR. The blue line and area rep-
ranges from 4 to 1158 m, with an average of about 325 mresent the mean value and 90 % confidential intervals, respectively.
The land use consists of forest (76.7 %), agricultural ared gray dashed line represents gdeterministic modelling case. The
(9.3%), residential area (7.5 %), water body (2.0%), pub-Plack dots represent observed discharge.

lic area (2.7 %), vacant land (1.2 %), and road (0.6 %), re-
spectively. There are 13 rainfall observation stations, 1 me- . : o . .
teorological observation station, and 4 river flow observa-g”d' Runoff routing on slopes and in rivers is carried out by

tion stations. Annual precipitation and temperature are abouiﬂpplylng a.one-dimensional kinematical wave approach from
1422 mm and 162in Kyoto city (2001~ 2010). Precip- upstream to downstream. The WEP model has been applied

itation is concentrated in the summer season from May toin sev_eral watersheds in J_apan, Kprea, a.nd China with differ-
September. The Hiyoshi dam is located upstream. The conent climate and geographic conditions (Jia et al., 2001, 2009;

trolled outflow record from the dam reservoir is given as K|mhet aI.,dZ?OS; Qinetal, 2008).'d luti d an hourl
inflow to the hydrologic model, and the model simulates The model setup uses 250 m grid resolution and an hourly

rainfall-runoff processes for the downstream of the dam. time step. We use hourly observed rainfall from 13 obser-
vation stations organized by the Ministry of Land, Infras-

4.2 Hydrological model and particle filtering tructure, Transport and Tourism in Japatt://www1.river.
go.jp) and hourly observed meteorological data including
The hydrologic model used is the water and energy transferir temperature, relative humidity, wind speed, and dura-
processes (WEP) model, which was developed for simulatingion of sunlight from the Kyoto station, which is organized
spatially variable water and energy processes in catchmentsy Japan Meteorological Agendlttp://www.jma.go.jp/jma/
with complex land covers (Jia and Tamai, 1998; Jia et al.,index.htm). The nearest neighbour interpolation method is
2001). State variables of WEP include soil moisture content,used for representation of spatial distribution of rainfall.
surface runoff, groundwater tables, discharge and water stage An SRTM 90 m digital elevation map (DEM) is adopted
in rivers, heat flux components, etc. (Fig. 6). The spatial cal-(http://srtm.csi.cgiar.organd converted to 250 m resolution.
culation unit of the WEP model is a square or rectangularSoil distribution is obtained from the website of the Food

Time (hour)
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and Agriculture Organization of the United Natiorstp: (a) 2003, Katsura, deterministic
. . A 500 T a N T v T 0
Iwww.fao.org/nr/land/soils/ep/ Physical property of soil is L Sl L T I O S D L R
derived from soil texture information using the ROSETTA . 3
model (Schaap et al., 2001). However, the saturated hy-;f;300 i 40 g
draulic conductivity of several soils is roughly adjusted for & 200 : i 0 =
the data period of 2007, since soil property estimated from £ ,,, : WA 0 £
large-scale soil maps varies greatly. For other parametersre =k NN \.N 100 =
lated to aquifers and vegetation, we apply parameter range: 1 241 4s1 721 %1 1201 1441 1681 1921 2161
from the earlier studies mentioned above. No flux bound- Tiie (hour)
ary condition is specified at the catchment boundary for the _
groundwater flow. Artifical water use is approximately es- o -, T e 'Tfrs."'ﬁfrmfﬁ ',,ead;'mefs%hf’ u .
timated as 3rhs~! and subtracted directly from simulated _, . f w S
H 1 - 'l e
discharge at th.e Kats_,ura station. . . E o : “ %
Ensemble simulation of 192 particles is conducted on a & £
multi-processing computer (96 cores in the supercomputing £ ©E
system of Kyoto University) via parallel-computing tech- &1 80 s
niques of open message passing interface (MRip(//www. o Dl 100
_ . The ara”el ro rammln COde |S ert_ 1 241 481 721 961 1201 1441 1681 1921 2161
open r_npl.orQI. p p 9 9 Time (hour)
ten using a single-program multiple-data (SPMD) approach,
which means the same modelling procedure with different (c) 2003, Katsura, SIR, lead time=6 (hours)
state variables. A master process aggregates particle statis 5% RN IO A M BRI B SN MR LI
tics and controls resampling/regularization steps. Messagez 4o | 20 3
passing commands of MPI is used effectively to transfer spa-gm 40 §
tially distributed state variables from one particle to another &, o =
in the resampling step. 2 0 1 o E
4.3 Process and measurement error models o = 100
1 241 481 721 961 1201 1441 1681 1921 2161
Time (hour)

Particle filters perform suboptimal estimation of the system

states by considering the uncertainty in both the measurerig. 9. Observed versus 6-h-lead forecasts at the Katsura station
ment and modelling systems. Therefore, the choice of the ervia LRPF and SIR (1 June-31 August 2008%) a deterministic

ror models is crucial to obtaining a better estimation (Weertmodelling case(b) LRPF; and(c) SIR. The blue line and area rep-
and El Serafy, 2006). Another important point is to choosingresent the mean value and 90 % confidential intervals, respectively.
hidden state variables for filtering. Since there are numer-A gray dashed line represents a deterministic modelling case. The
ous state variables in a distributed hydrologic model, it is Plack dots represent observed discharge.

not practical to consider the uncertainty of all state variables

with a limited number of particles. Therefore, it is necessary ] ] ]

to choose a limited number of state variables, which proces®f the soil moisture contenbsoi, is added to the aggregated
error of the modelling system is aggregated in, and is easilystate variable;_; as:

updated by observable variables. In this study, we select soil,

moisture content and overland flow in each grid as hiddenS = Sk-1 + Wsoil,- (18)
state variables and streamflows at the Katsura station as an . assumed as Gaussian distributho(0, o2, ) havin
observable variable for data assimilation. Global multipliers iotgkteroscedastic standard deviation as: ' soily 9
are introduced to perturb state variables stochastically and ef '
fectively. In the case of soil moisture content, the total soil

Y Osoil, = soil Sk—1 + PBsoil- (19)

moisture depth at the previous time stigp 1 is aggregated

for three soil layers within the catchment as: In the abovegsoil andBsoil are adaptable parameters that can

3 m be obtained from sensitivity analysis. Although proper tun-

Sk_1 = § 2 oL dt a7 ing of these adaptable parameters is important, their optimum
J . . . . .

=1 j=1 value changes according to different data periods, which is

another source of uncertainty in data assimilation. We will
where 95. and dj. are the volumetric soil moisture content discuss the effects of adaptable parameters, espeaially
(m®m~3) and the soil depth (m) in each layer, ahdndm on two different particle filters later. The value g4y is set
represent the number of soil layers and the total number ofs 50 mm for the whole simulation. When the process error
grids within the catchment, respectively. Then, process nois@f soil moisture contentsj, is generated for each particle,
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Fig. 10. Observed versus 6-h-lead forecasts at the Katsura station via LRPF and SIR for varying parameter values of the process error
variance gggjl (11 to 17 July 2007). The blue line and area represent the mean value and 90 % confidential intervals, respectively. A gray
dashed line represents a deterministic modelling case. The black dots represent observed discharge.

the perturbed states of soil moistu.éjaare calculated using non-linearity of the distributed hydrologic model can allevi-

multiplicative factory, as follows: ate loss of spatial diversity in the pertubation process, which
N is one of the disadvantages of global multipliers. For exam-

Vs = Sk (20) ple, even if the same noise is applied, the spatial pattern of
Sk-1 state variables can become different due to antecedent soil

éj- — 6;\ 21) moisture and the non-linear system response for that. Sim-

ilar noise definition for soil moisture has been applied for
In the above equations, if perturbed soil moisture at each gricstate updating of a distributed hydrologic model in the study
and layer,d!, becomes greater or smaller than the physicalof Kim et al. (2007).

limitation, 6% is adjusted at its maximum (i.e. porosity) or
minimum (i.e. wilting point). It is also worth noting that
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Fig. 11. Observed versus forecasts of varying lead times at 3 g:gglggg—zg:tggg
the Katsura station via LRPF and SIR wigfygj of 0.05 (11 to v LRPF, alpha_soil=0.09
. . . . + . 2 LRPF, alpha_soil=0.07
17 July 2007):(a) the lagged regularization particle filter (LRPF); —LRPF. alpha_s0il=0.05
and(b) the SIR particle filter. The blue lines represent forecasts of —LRPF, alpha_soil=0.03
varying lead times. A gray dashed line represents a deterministic 07 = deterministic
modelling case. The black dots represent observed discharge. 1 3 5 7 9 1 13 15 17 19 21 23

Lead time (hour)

I- Fig. 12. Nash-Sutcliffe model efficiency for varying parameter val-
ues of the process error varianegej. The red lines represent the
lagged regularized particle filter. The dashed lines represent the SIR

. particle filter. A dotted line represents a deterministic modelling
dov; = (1 + woy,) qov, (22)  case.

The perturbation of overland flow is also applied in a mu
tiplicative way as:

wheregoy; andgoy, are overland flow with and without pro-
cess noisavgy, , respectively, which is assumed as a Gaussiarand Feyen, 2010). The standard deviation of the measure-
distribution N (O, ogvk). The standard deviation of overland ment error is chosen as:
flow noiseoyqy, is parameterized as follows:
Oobs, = Cobs Yk + Bobs (24)

— exp(—Ysimy_, /Bov) . .
Ooy, = Coy 10PVEHTIsme/Pov (23)  InEq. (24),a0psis set as 0.1, which means 10 % of the mea-

) ) surement error, and the constant coefficigytis applied as
whereaoy andfov are adaptable parameters with settings of 5 13 51 g consider uncertainty in periods of low flow such

_1 . . PP
-10 and 5ms 5 respgctlvely, as'obtalned from sensitivity 55 artificial water use and dam reservoir control. The uncer-
analysis. ysim, _,is the simulated discharge of data assimila- y5inty of forcing data is not considered in this study to make

tion at the previous time stepoy is the constant coefficent. i eagy to evaluate the difference of each particle filter. Fif-
The value okoy is estimated through the sensitivity analysis een percent of perturbation from the uniform distribution is
and set as 0.02 for the whole simulation. This formulation applied for the initial soil moisture condition.

was originally proposed by Seo et al. (2009) to enhance the

forecast in periods of low flow. Equation (23) specifies pro- 4 4 Results and discussion

gressively smaller uncertainty if the simulated flow falls be-

low the thresholdgoy (m®s1). We adopt this error formu-  We implement two kinds of particle filters, SIR and lagged

lation because an error of overland flow routing is expectedRPF (LRPF), for the hindcasting of streamflow using the

to decline in low flow periods. WEP model. The resampling step is implemented in both
The measurement error of the discharge is assumed as3IR and LRPF. An additional regularization step is executed

Gaussian distributiodv (0, Uozbsk) similar to previous studies only in LRPF when sample impoverishment occurs or the

(Georgakakos, 1986; Weert and El Serafy, 2006; Salamornsemble mean falls outside 20 % of the observed discharge.

www.hydrol-earth-syst-sci.net/15/3237/2011/ Hydrol. Earth Syst. Sci., 15, 32512011



3248 S. J. Noh et al.: Applying sequential Monte Carlo methods into a distributed hydrologic model
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Fig. 13. Nash-Sutcliffe model efficiency for varying parameter values of the process error vatigggel he red lines represent the lagged
regularized particle filter. The dashed lines represent the SIR particle filter. A dotted line represents a deterministic modelling case.

Simulation periods and observation are shown in Table 1. Various ranges of proccess noisgej, are simulated for
Hourly observed discharges at the Katsura station are useeach particle filter to assess the effects of process noise on
for the data assimilation, and observation at the Kameokahe forecast. The mean and 90 % confidential intervals of
station is used for comparison. A five-day warm-up period is6-h-lead forecasts for varying parameter valuexgfy are
added before the data assimilation starts. illustrated in Fig. 10. In the case of SIR, confidential intervals
Deterministic simulation results and 6-h-lead forecasts ofof forecast widen rapidly, and the ensemble mean becomes
each particle filter at the Katsura station for the years 2007 unstable when the value @y increases. On the other hand,
2004, and 2003 are shown in Figs. 7, 8, and 9, respectivelythose of LRPF show stable results regardless of the process
The lag time of 8h is applied in LRPF. The applied val- noise.
ues ofagej are 0.05 for 2007 and 0.03 for 2004 and 2003. Figure 11 illustrates streamflow forecast of varying lead
The forecasted streamflow via two particle filters shown intimes at the Katsura station via LRPF and SIR. Two particle
Figs. 7 and 9 indicates good conformity between observatiorfilters show different patterns, especially in the rising limb of
and simulation, while the deterministic modelling shows sig- the hydrograph from 1000 to 1010 time step. When the lead
nificant underestimation, especially in the high flood regime.time becomes shorter, forecasts via LRPF show better results
Ninety percent of confidential intervals of SIR are larger thancompared to SIR. Conversely, two particle filters show sim-
those of LRPF, although the same error assumption is usedlar forecasts from 1050 to 1180 time step, and the varying
Compared with results of other years, the differences of conpattern is relatively smooth. When the observed flows change
fidential intervals between two filters are small in the yearsharply, even if the heteroscedastic error assumption is ap-
of 2004, shown in Fig. 8, since the deterministic modelling plied, the process error becomes too small in a moment for
results show better agreement with observation, relativelythe prior distribution to cover the observation distribution,
Elapsed simulation time for the year of 2007 is about 11 hwhich leads to sample impoverishment. In the case of LRPF,
in SIR and 16 h in LRPF for a 2-month period simulation new particles, generated from the kernel and selected in the
with 24-h-lead forecast at every time step, respectively. lagged time window, mitigate the loss of sample diversity,
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Table 2. Statistics of streamflow forecasts with varying lead timeg,{=0.03).

Year Method Lead time (hour)
1 3 6 12 24

NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR
2007 DET 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96
LRPF 0.98 7.9 0.99 0.95 115 0.98 0.93 13.6 0.97 0.91 16.1 0.95 0.88 18.3 0.94
SIR 0.96 101  0.98 0.95 122 0.97 0.93 13.7 0.97 0.91 15.6 0.96 0.88 18.2 0.95
2004 DET 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93
LRPF 0.89 48.1 0.95 0.85 575 0.92 0.86 55.4 0.93 0.84 58.8 0.93 0.83 61.4 0.92
SIR 0.87 53.2 0.93 0.85 56.8 0.92 0.85 56.9 0.93 0.84 59.7 0.92 0.83 61.1 0.92
2003 DET 0.70 269 0.98 0.70 269 0.98 0.70 269 0.98 0.70 26.9 0.98 0.70 269 0.98
LRPF 0.99 4.4 1.00 0.98 6.7 0.99 0.96 9.4 0.98 0.93 12.6 0.97 0.87 17.6 0.96
SIR 0.99 45 1.00 0.98 6.5 0.99 0.97 9.0 0.98 0.94 121 0.97 0.89 16.6 0.96

while the recovery of particle diversity needs more time stepsscores in both particle filters. In the case of 2004, LRPF
in the case of SIR. shows better forecasts within 4-h lead times, while SIR out-
Figure 12 shows the sensitivity of the lag time of LRPF performs for other lead times in 2004 and 2003. Since the
and process noise parametey;, for each particle filter are  H-Q relationship of Kameoka is made with limited data, the
estimated for varying lead times in the year of 2007 usingKameoka station appears to have larger uncertainty than does

Nash-Sutcliffe efficiency calculated as: Katsura. Due to the lack of data, more extensive comparison
is beyond the scope of this study. Nevertheless, we can ob-
Zszl(yk - ysimk)2 serve that the statistical stability of LRPF is superior to that
E=1- T -2 (25) of SIR in terms of confidention intervals and accuracy for un-
2= Ok = 9) certain process noisesggj (not shown), similar to the results

wherey is observationj is the mean of observatiopsim, is ~ 0f 2007 (Fig. 10).

the forecasted streamflow at the measurement site7'aed Table 2 shows statistics of streamflow forecasts with vary-
the total number of time steps. ing lead times at Katsura including NSE, root mean square

When the lag time is larger than 4h, the difference of €rror (RMSE) and correlation coefficient (COR) for a given
Nash-Sutcliffe efficiency (NSE) for varying lead times be- Process noisexoii=0.03). Statistics shown in Table 2 indi-
comes neg|igib|e7 as shown in F|g 12a. E|ght hours of thecate that LRPF is somewhat better than SIR eSDECia”y in the
lag time are applied to the other simulations by LRPF. NSEYears 2007 and 2004. The improvement by LRPF over SIR is
scores for varying lead times show different behaviours forlarger for shorter lead times and the high flows (not shown).
each particle filter (Fig. 12b). While NSE of LRPF shows a COR shows high values for both cases in overall periods. It
consistent behaviour regardless of error assumption, with alls Worth noting that SIR has different optimum values of pro-
the red lines overlapping along the lead time, that of SIRCESS noise for data periods, and thus it shows large variation
changes according to the values @f. Overall, LRPF of statistics depending on the process noise (not shown) as
shows improved NSE for any range efoi. NSE shows the patterns shown in Figs. 12 and 13.
rather significant differences between the two particle filters
when plotted for the high flows (not shown). ,

Figure 13 shows NSE of each particle filter for varying 5 Conclusions
lead times in the years 2004 and 2003. Overall, LRPF fore-a |agged particle filtering approach was proposed as a frame-
casts show less variation compared_ to SIR forecasts, excepiork to deal with the delayed response, which originates
the forecast of 2003 at Kameoka. Similarly to the year 2007from different time scales of hydrologic processes in a dis-
(Fig. 12b), NSE scores of SIR in 2004 and 2003 drop sharplytripyted hydrologic model. The regularized particle filter
when the process erragqj increases. Although NSE. Scores jth the MCMC move step was implemented to preserve
of LRPF show less change than does SIR, NSE differencegample diversity under the lagged filtering approach. As a
of LRPF of 2003 increase according to the lead time. Relaprocess-based distributed hydrologic model, WEP was im-
tively excessive perturbation in the regularization step for theplemented to illustrate the strength and weakness of the
smoothly varied flood events may be one potential reasoniagged regularized particle filter (LRPF) compared to SIR for
However, differences of NSE appear to be neglible within 8- ghort-term streamflow forecast.

h lead times. The forecasts at Kameoka show reduced NSE
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