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Abstract. Data assimilation techniques have received grow-
ing attention due to their capability to improve predic-
tion. Among various data assimilation techniques, sequen-
tial Monte Carlo (SMC) methods, known as “particle fil-
ters”, are a Bayesian learning process that has the capabil-
ity to handle non-linear and non-Gaussian state-space mod-
els. In this paper, we propose an improved particle filter-
ing approach to consider different response times of internal
state variables in a hydrologic model. The proposed method
adopts a lagged filtering approach to aggregate model re-
sponse until the uncertainty of each hydrologic process is
propagated. The regularization with an additional move step
based on the Markov chain Monte Carlo (MCMC) methods
is also implemented to preserve sample diversity under the
lagged filtering approach. A distributed hydrologic model,
water and energy transfer processes (WEP), is implemented
for the sequential data assimilation through the updating of
state variables. The lagged regularized particle filter (LRPF)
and the sequential importance resampling (SIR) particle filter
are implemented for hindcasting of streamflow at the Katsura
catchment, Japan. Control state variables for filtering are soil
moisture content and overland flow. Streamflow measure-
ments are used for data assimilation. LRPF shows consistent
forecasts regardless of the process noise assumption, while
SIR has different values of optimal process noise and shows
sensitive variation of confidential intervals, depending on the
process noise. Improvement of LRPF forecasts compared to
SIR is particularly found for rapidly varied high flows due
to preservation of sample diversity from the kernel, even if
particle impoverishment takes place.
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1 Introduction

Data assimilation is a way to integrate information from a va-
riety of sources to improve prediction accuracy, taking into
consideration of the uncertainty in both a measurement sys-
tem and a prediction model. There have been considerable
advances in hydrologic data assimilation for streamflow pre-
diction (e.g. Kitanidis and Bras, 1980; Georgakakos, 1986;
Vrugt et al., 2006; Clark et al., 2008; Seo et al., 2003,
2009). State-space filtering methods based on variations of
the Kalman filter (KF) approach have been proposed and
implemented because of their potential ability to explicitly
handle uncertainties in hydrologic predictions. However, the
KF approaches for a non-linear system such as the extended
Kalman filter (EKF) have limitations in practical applica-
tion due to their instability for strong non-linearity and the
high computational cost of model derivative equations, es-
pecially for high-dimensional state-vector problems such as
spatially distributed models. To cope with the drawbacks of
EKF, the ensemble Kalman filter (EnKF) was introduced by
Evensen (1994). The EnKF is computationally efficient be-
cause it has no need for model covariance estimation, but it is
still based on the assumption that all probability distributions
involved are Gaussian. Further reviews of Kalman filter-
based applications for hydrologic models are shown in Vrugt
et al. (2006), Moradkhani et al. (2005b), Moradkhani (2008),
and Evensen (2009).

Another approach to data assimilation is variational assim-
ilation (VAR), which has achieved widespread application in
weather and oceanographic prediction models. In hydrologic
investigations, VAR is implemented for estimating spatial
soil-moisture distributions by Reichle et al. (2001) and for
assimilating potential evaporation and real-time observations
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of streamflow and precipitation to improve streamflow fore-
casts by Seo et al. (2003, 2009). Although variational meth-
ods are more computationally efficient than KF-based meth-
ods, the derivation of the adjoint model needed for min-
imisation of a cost function is difficult, especially in the
case of non-linear, high dimensional hydrological applica-
tions (e.g. Liu and Gupta, 2007).

Among data assimilation techniques, the sequential Monte
Carlo (SMC) methods, known as particle filters, are a
Bayesian learning process in which the propagation of all
uncertainties is carried out by a suitable selection of ran-
domly generated particles without any assumptions being
made about the nature of the distributions (Gordon et al.,
1993; Musso et al., 2001; Arulampalam et al., 2002; Jo-
hansen, 2009). Unlike the various Kalman filter-based meth-
ods that are basically limited to the linear correction step and
the assumption of Gaussian distribution errors, SMC meth-
ods have the advantage of being applicable to non-Gaussian
state-space models. The application of these powerful and
versatile methods has been increasing in various areas, in-
cluding pattern recognition, target tracking, financial analy-
sis, and robotics.

In recent years, these methods have received considerable
attention in hydrology and earth sciences (e.g. Moradkhani
et al., 2005a; Weert and El Serafy, 2006; Zhou et al., 2006;
van Delft et al., 2009; van Leeuwen, 2009; Karssenberg
et al., 2010). Since their first introduction to the rainfall-
runoff model of Moradkhani et al. (2005a), Weert and El
Serafy (2006) compared ensemble Kalman filtering and par-
ticle filtering for state updating of hydrological conceptual
rainfall-runoff models. The SMC methods have also been
applied to parameter estimation and uncertainty analysis of
hydrological models. Smith et al. (2008) evaluate struc-
tural inadequacy in hydrologic models, Qin et al. (2009) es-
timate both soil moisture and model parameters, and Rings
et al. (2010) implement hydrogeophysical parameter estima-
tion. Uncertainty of a distributed hydrological model is an-
alyzed by Salamon and Feyen (2009, 2010), and dual state-
parameter updating of a conceptual hydrologic model is ap-
plied to flood forecasting by Noh et al. (2011). The diversity
of assimilated data and models has been increasing; a snow
water equivalent prediction model (Leisenring and Morad-
khani, 2010) and assimilation with remote sensing-derived
water stages (Montanari et al., 2009) have been investigated.
However, the framework to deal with the delayed response,
which originates from different time scales of hydrologic
processes, routing and spatial heterogeneity of catchment
characteristics, and forcing data, especially in a distributed
hydrologic model, has not been thoroughly addressed in hy-
drologic data assimilation. Furthermore, alternative methods
proposed in the literature to mitigate loss of sample diversity
(e.g. Musso et al., 2001; Arulampalam et al., 2002), which
may cause collapse of the filtering system, have not been
studied in hydrology.

Fig. 1. The concept of discrete and continuous approximation of
particle density:(a) weighted empirical measure, and(b) regular-
ized measure by kernel. Adapted from Musso et al. (2001).

In this paper, we apply particle filters for a distributed
hydrologic model in support of short-term hydrologic fore-
casting. A lagged particle filtering approach is proposed
to consider different response times of internal states in a
distributed hydrologic model. The regularized particle fil-
ter with the Markov chain Monte Carlo (MCMC) move step
is also adopted to improve sample diversity under the lagged
filtering approach. A process-based distributed hydrologic
model, WEP (Jia and Tamai, 1998; Jia et al., 2001, 2009),
is implemented for sequential data assimilation through state
updating of internal hydrologic variables. Particle filtering
is parallelized and implemented in the multi-core computing
environment via an open message passing interface (MPI).

The paper is organized thus: Sect. 2 outlines the Bayesian
filtering theory and particle filters. In Sect. 3, a lagged filter-
ing approach is introduced with an additional regularization
step to reflect different responses of internal processes in se-
quential data assimilation. Section 4 presents the case study
results, demonstrating the applicability of the proposed par-
ticle filtering approach. The lagged regularized particle filter
(LRPF) and the sequential importance resampling (SIR) par-
ticle filter are evaluated for hindcasting of streamflow in the
Katsura River catchment using the WEP model. Section 5
summarizes the results and conclusions.

2 Method of particle filters

In this section, we briefly describe the theory of Bayesian
filtering and sequential Monte Carlo (SMC) filtering for its
suboptimal solution in non-linear and non-Gaussian cases.
We describe several variants of SMC filters, including se-
quential importance resampling (SIR) and regularized parti-
cle filter (RPF), which are based on sequential importance
sampling (SIS). Detailed descriptions of sequential Monte
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Fig. 2. A single cycle of a regularized particle filter.

Carlo methods can be found in Arulampalam et al. (2002)
and Moradkhani et al. (2005a).

2.1 Bayesian filtering theory and basic particle filtering
methods

To define the problem of the Bayesian filtering, consider a
general dynamic state-space model, which is described as:

xk = f (xk−1, θ , uk) + ωk ωk ∼ N(0, W k) (1)

yk = h
(
xk, θ ′

)
+ νk vk ∼ N(0, V k) (2)

wherexk ∈

 7 
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ny

express the measurement function, having parametersθ ′. ωk

andνk represent the model error and the measurement error,
respectively, andW k andV k represent the covariance of the
error.

In the Bayesian recursive estimation, if the system and
measurement models are non-linear and non-Gaussian, it is
not possible to construct the posterior probability density
function (PDF) of the current statexk given the measurement
y1:k = {yi , i = 1, ...,k} analytically. When the analytic solu-
tion is intractable, an optimal solution can be approximated
by SMC filters.

Sequential Monte Carlo (SMC) filters are a set of
simulation-based methods that provide a flexible approach
to computing posterior distribution without any assumptions
being made about the nature of the distributions. The key
idea of SMC filters is based on point mass (“particle”) repre-
sentations of probability densities with associated weights:

p
(
xk|y1:k

)
≈

n∑
i=1

wi
k δ

(
xk − xi

k

)
(3)

wherexi
k andwi

k denote thei-th posterior state (“particle”)
and its weight, respectively, andδ(·) denotes the Dirac delta
function. Since it is usually impossible to sample from the
true posterior PDF, an alternative is to sample from a pro-
posal distribution, also called importance density, denoted by
q(xk|yk). After several steps of computation, the recursive
weight updating can be derived as:

wi
k ∝ wi

k−1

p
(
yk|x

i
k

)
p

(
xi

k|x
i
k−1

)
q
(
xi

k|x
i
k−1, yk

) . (4)

The choice of importance density is one of the most criti-
cal issues in the design of SMC methods. The most popular
choice is the transitional prior:

q
(
xi

k|x
i
k−1, yk

)
= p

(
xi

k|x
i
k−1

)
. (5)

By substituting Eq. (5) into Eq. (4), the weight updating
becomes:

wi
k ∝ wi

k−1 p
(
yk|x

i
k

)
. (6)

The sequential importance sampling (SIS) algorithm shown
above is a Monte Carlo filter that forms the basis for most
SMC filters. A common problem with the SIS algorithm is
the degeneracy phenomenon, in which after a few iterations,
all but one particle will have negligible weight. A suitable
measure of the degeneracy is the effective sample sizeneff
estimated as (Kong et al., 1994):

neff =
1∑n

i=1

(
wi

k

)2
. (7)

If the weights is uniform (i.e.wi
k = 1/n for i = 1, ...,n), then

neff =n. If all but one particle have 0 weight, thenneff = 1.
The ratio of the effective particle numbernratio is estimated
as follows:

nratio =
neff

n
. (8)
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Fig. 3. Particle traces in the regularization step under the lagged filtering approach.

The maximum ofnratio is 1 when the weights are uniform.
Small nratio indicates a severe degeneracy and vice versa.
nratio is used as an indicator of degeneracy in this study be-
cause it can be used easily regardless of the particle number.

The degeneracy phenomenon can be reduced by perform-
ing the resampling step whenever a significant degeneracy is
observed. Thus, the SIR particle filter is derived from the SIS
algorithm by performing the resampling step at every time in-
dex. The idea of resampling is simply that particles with very
low weights are abandoned, while multiple copies of parti-
cles are kept with the uniformly weighted measure{xi

k, n−1
},

which still approximates the posterior PDF,p(xk|y1:k) (van
Leeuwen, 2009).

Resampling is one of the key issues in the SMC filters, and
various resampling approaches have been introduced in the
literature, such as multinomial resampling, residual resam-
pling, stratified resampling, and systematic resampling. A
comparative analysis and review of resampling approaches
can be found in Douc et al. (2005) and van Leeuwen (2009).
Systematic resampling, also known as stochastic universal
sampling, is often preferred due to its computational simplic-
ity and good empirical performance. It has also been shown
that systematic resampling has the lowest sampling noise
(Kitagawa, 1996). Hence, we use systematic resampling for
all particle filtering cases in this study. It is worth noting
that there are several choices in resampling methods, and the
proper method may be different, depending on the character-
istics of hydrologic models. See Weert and El Serafy (2006),
Rings et al. (2010), and Salamon and Feyen (2009) for resid-
ual resampling; see also Salamon and Feyen (2010) and
Moradkhani et al. (2005a) for systematic resampling. Al-
though the SIR method has the advantage that the importance
weights are easily evaluated, because resampling is applied

at every iteration, this filter may lead to a sudden loss of di-
versity in particles and is sensitive to outliers (Ristic et al.,
2004).

2.2 Regularized particle filter

The positive effects of the resampling step are to automati-
cally concentrate particles in regions of interest of the state-
space and to reduce particle degeneracy. However, the par-
ticles resampled from high weights are statistically selected
many times. This leads to another problem, known as sam-
ple impoverishment, which means a loss of diversity among
the particles because the resultant sample will contain many
repeated points (Ristic et al., 2004). Some systematic tech-
niques have been proposed to solve the problem of sam-
ple impoverishment. An alternative solution is to introduce
the regularization step when the sample impoverishment be-
comes severe. The regularized particle filter (RPF) is based
on regularization of the empirical distribution associated with
the particle system using the kernel method (Musso et al.,
2001). The main idea of RPF consists of changing the dis-
crete approximation of posterior distribution to a continuous
approximation, so the resampling step is changed into simu-
lating an absolutely continuous distribution, hence producing
a new particle system withn different particle locations. The
concept of discrete and continuous approximation of particle
density is illustrated in Fig. 1. If the weights are concentrated
on the limited number of particles, the resampling in the dis-
crete approximation (e.g. the SIR particle filter) may lead to
a poor representation of the posterior density, while a con-
tinuous approximation in regularized measure improves the
diversity in the resampling step.
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Table 1. Simulation periods and observed flow.

Simulation period Max. observed flow Data availability at each location

at Katsura (m3 s−1) Katsura Kameoka

1 Jun–31 Jul 2007 336.9 O X
1 Aug–30 Oct 2004 2276.7 O O
1 Jun–31 Aug 2003 361.6 O O

Fig. 5. The Katsura River catchment.
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1
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RPF differs from SIR only in additional regularization steps
when sample impoverishment happens. The key step is

xi∗

k = xi
k + hopt Dk εi (15)

wherexi∗

k is a new particle generated from kernel density,
Dk is estimated fromSk, which is the empirical covariance
matrix such thatDkDT

k = L k, andεi is the random noise from
the kernel. Note that the calculation of the empirical covari-
ance matrixL k is carried out prior to the resampling and is
therefore a function of both thexi

k andwi
k. The theoretical

disadvantage of RPF is that its samples are no longer guaran-
teed to asymptotically approximate those from the posterior.
This can be mitigated by including the Markov chain Monte
Carlo (MCMC) move step (Gilks and Berzuini, 2001) based
on the Metropolis-Hastings algorithm (Robert and Casella,

Fig. 6. A schematic view of WEP model structure. Adapted from
Jia et al. (2009).

1999). The key idea is that a resampled particle is moved
to a new state, according to Eq. (15), only ifu ≤ α, where
u ∼ U [0, 1] andα is the acceptance probability. Otherwise,
the move is rejected.

α =

min

{
1,

p
(
yk |x

i∗

k

)
p
(
yk |x

i
k

)
}

if p
(
yk|x

i
k

)
6= 0

1 otherwise

. (16)

In Eq. (16),α becomes 1.0 when the likelihood of new par-
ticle is greater than that of the previous particle. That means
that the MCMC move step contributes to screening bad par-
ticles in the regularization step, thus ensuring that particles
asymptotically approximate samples from the posterior.

A single cycle of RPF with the MCMC move step is il-
lustrated in Fig. 2. The basic procedure of RPF is the same
with SIR before resampling. After the resampling step, en-
tirely new samples are drawn from the continuous kernel. If a
new particle is rejected in the MCMC move step, the particle
resampled before regularization is used. Therefore, the effi-
ciency of RPF depends on how many particles are preserved
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in the MCMC move step. Although this approach is fre-
quently found to improve performance with a less rigorous
deviation, RPF has not been introduced in hydrologic data
assimilation.

3 Particle filter with lag time approach

Many hydrological processes operate – in response to precip-
itation – at similar length scales, but the time scales are de-
layed (Bloschl and Sivapalan, 1995). In a distributed hydro-
logic model, there are many types of state variables, and each
variable interacts with others based on different time scales.
For example, in catchment modelling, internal state variables
may refer to two-dimensional distribution of soil moisture
content, evapotranspiration, and overland flow; and an ob-
servable state may refer to streamflow flux at the monitoring
sites. There is a time lag until the changes of soil moisture
distribution affect infiltration and sub-surface/surface runoff
processes and generated runoff is routed as streamflow into
the measurement site. Hydrologic components in a hydro-
logic model have usually different time scales, which need to
be considered in the data assimilation process.

As stated by Salamon and Feyen (2010), this response time
is usually greater than the high-frequency discharge mea-
surements. One simple approach is to use delayed updat-
ing, which utilizes longer time intervals before updating state
variables. However, delayed updating leads to omitting large
quantities of measurement information, and a fixed delay as-
sumption may result in inappropriate estimation, because a
response time always changes, depending on the current spa-
tial distributions of the state and forcing variables. Further-
more, when system behaviour is relatively fast (e.g. hourly
based hydrologic or hydraulic modelling cases), delayed up-
dating may lead to missing proper timing of assimilation.
That can make it hard to implement sequential data assim-
ilation techniques into hydrologic modelling. Thus, we pro-
pose a new lagged particle filtering approach based on the
regularized particle filter, not only for considering different
catchment responses, but also for using whole measurement
information for data assimilation.

Figure 3 shows an example of a newly proposed lagged
particle filtering approach with RPF. Here,k is the current
time step, andj is the lag time required for responses of
internal state variables to be transmitted into the observ-
able variables. Note that it is better to set the lag timej

large enough to cover plausible ranges because the system
response is time-variant.

The assimilation window of the lagged filtering is defined
from k − j to k time step. The procedure of the lagged fil-
tering is as follows: (1) to have prediction at the time stepk,
simulation starts from the time stepk − j . (2) When particles
arrive at the current timek, the lagged weights are estimated
according to the measurement. (3) Resampling is executed
according to the lagged weights. Note that state variables

Fig. 7. Observed versus 6-h-lead forecasts at the Katsura station via
LRPF and SIR (1 June–31 July 2007):(a) a deterministic modelling
case;(b) LRPF; and(c) SIR. The blue line and area represent the
mean value and 90 % confidential intervals, respectively. A gray
dashed line represents a deterministic modelling case. The black
dots represent observed discharge.

at the time stepk − j + 1 are resampled simultaneously with
those at the current time step. (5) If the effective particle
numberneff is less than the threshold (neff < nthr), the regu-
larization step is executed from the time stepk − j with new
particle members generated from kernel. (6) When each par-
ticle arrives in the current time stepk, acceptance probability
α is calculated according to the lagged likelihood, as shown
in Eq. (16). If a particle is rejected (u >α), state variables
before regularization will be used without kernel perturba-
tion. (7) For the next time stepk + 1, simulation starts from
time stepk − j + 1 and follows the same procedure as from
1) to 6). In this way, sequential data assimilation procedure
is implemented at every time step without loss of measure-
ment information. Compared to conventional particle filter-
ing, an additional procedure needed in the lagged regular-
ized particle filtering is only that state variables at the time
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stepk − j + 1 should be stored and resampled according to
lagged weights.

Lagged weight,wi
lag, and lagged likelihood,Li

lag, can be
calculated through various methods, including the aggrega-
tion of the past weight. However, in this study, the weight
and likelihood at the last time stepk (wi

k, Li
k) are simply used

as lagged weight and likelihood, respectively. Note that the
use of weights without aggregation can show better results in
cases of short-term forecasting.

Figure 4 summarises one cycle of the algorithm of RPF
with the Markov chain Monte Carlo (MCMC) move step un-
der the lagged filtering approach. The procedure connected
with the dashed line means the regularization step. It is
worth mentioning that the regularization step can be executed
not just in the sample impoverishment, but also in the parti-
cle collapse case, which means all particles have negligible
weights that fall outside the measurement PDF. In this case,
the regularization step is used effectively for re-initialization
of the particle system.

4 Implementation

4.1 Study area

The SMC methods are applied to the Katsura River catch-
ment (Fig. 5) to show the applicability of the proposed par-
ticle filtering approach. This catchment is located in Kyoto,
Japan, and covers an area of 1100 km2 (887 km2 at the Kat-
sura station) (see Fig. 5). Topography in the catchment is
characterized by a mountainous upstream in the north and
a flatter plain in the south. The elevation in the catchment
ranges from 4 to 1158 m, with an average of about 325 m.
The land use consists of forest (76.7 %), agricultural area
(9.3 %), residential area (7.5 %), water body (2.0 %), pub-
lic area (2.7 %), vacant land (1.2 %), and road (0.6 %), re-
spectively. There are 13 rainfall observation stations, 1 me-
teorological observation station, and 4 river flow observa-
tion stations. Annual precipitation and temperature are about
1422 mm and 16.2◦ in Kyoto city (2001∼ 2010). Precip-
itation is concentrated in the summer season from May to
September. The Hiyoshi dam is located upstream. The con-
trolled outflow record from the dam reservoir is given as
inflow to the hydrologic model, and the model simulates
rainfall-runoff processes for the downstream of the dam.

4.2 Hydrological model and particle filtering

The hydrologic model used is the water and energy transfer
processes (WEP) model, which was developed for simulating
spatially variable water and energy processes in catchments
with complex land covers (Jia and Tamai, 1998; Jia et al.,
2001). State variables of WEP include soil moisture content,
surface runoff, groundwater tables, discharge and water stage
in rivers, heat flux components, etc. (Fig. 6). The spatial cal-
culation unit of the WEP model is a square or rectangular

Fig. 8. Observed versus 6-h-lead forecasts at the Katsura station
via LRPF and SIR (1 August–30 October 2004):(a) a deterministic
modelling case;(b) LRPF; and(c) SIR. The blue line and area rep-
resent the mean value and 90 % confidential intervals, respectively.
A gray dashed line represents a deterministic modelling case. The
black dots represent observed discharge.

grid. Runoff routing on slopes and in rivers is carried out by
applying a one-dimensional kinematical wave approach from
upstream to downstream. The WEP model has been applied
in several watersheds in Japan, Korea, and China with differ-
ent climate and geographic conditions (Jia et al., 2001, 2009;
Kim et al., 2005; Qin et al., 2008).

The model setup uses 250 m grid resolution and an hourly
time step. We use hourly observed rainfall from 13 obser-
vation stations organized by the Ministry of Land, Infras-
tructure, Transport and Tourism in Japan (http://www1.river.
go.jp/) and hourly observed meteorological data including
air temperature, relative humidity, wind speed, and dura-
tion of sunlight from the Kyoto station, which is organized
by Japan Meteorological Agency (http://www.jma.go.jp/jma/
index.html). The nearest neighbour interpolation method is
used for representation of spatial distribution of rainfall.

An SRTM 90 m digital elevation map (DEM) is adopted
(http://srtm.csi.cgiar.org/) and converted to 250 m resolution.
Soil distribution is obtained from the website of the Food
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and Agriculture Organization of the United Nations (http:
//www.fao.org/nr/land/soils/en/). Physical property of soil is
derived from soil texture information using the ROSETTA
model (Schaap et al., 2001). However, the saturated hy-
draulic conductivity of several soils is roughly adjusted for
the data period of 2007, since soil property estimated from
large-scale soil maps varies greatly. For other parameters re-
lated to aquifers and vegetation, we apply parameter ranges
from the earlier studies mentioned above. No flux bound-
ary condition is specified at the catchment boundary for the
groundwater flow. Artifical water use is approximately es-
timated as 3 m3 s−1 and subtracted directly from simulated
discharge at the Katsura station.

Ensemble simulation of 192 particles is conducted on a
multi-processing computer (96 cores in the supercomputing
system of Kyoto University) via parallel-computing tech-
niques of open message passing interface (MPI) (http://www.
open-mpi.org/). The parallel programming code is writ-
ten using a single-program multiple-data (SPMD) approach,
which means the same modelling procedure with different
state variables. A master process aggregates particle statis-
tics and controls resampling/regularization steps. Message
passing commands of MPI is used effectively to transfer spa-
tially distributed state variables from one particle to another
in the resampling step.

4.3 Process and measurement error models

Particle filters perform suboptimal estimation of the system
states by considering the uncertainty in both the measure-
ment and modelling systems. Therefore, the choice of the er-
ror models is crucial to obtaining a better estimation (Weert
and El Serafy, 2006). Another important point is to choosing
hidden state variables for filtering. Since there are numer-
ous state variables in a distributed hydrologic model, it is
not practical to consider the uncertainty of all state variables
with a limited number of particles. Therefore, it is necessary
to choose a limited number of state variables, which process
error of the modelling system is aggregated in, and is easily
updated by observable variables. In this study, we select soil
moisture content and overland flow in each grid as hidden
state variables and streamflows at the Katsura station as an
observable variable for data assimilation. Global multipliers
are introduced to perturb state variables stochastically and ef-
fectively. In the case of soil moisture content, the total soil
moisture depth at the previous time stepSk−1 is aggregated
for three soil layers within the catchment as:

Sk−1 =

3∑
l=1

m∑
j=1

θ l
j d l

j (17)

where θ l
j and d l

j are the volumetric soil moisture content

(m3 m−3) and the soil depth (m) in each layer, andl andm

represent the number of soil layers and the total number of
grids within the catchment, respectively. Then, process noise

Fig. 9. Observed versus 6-h-lead forecasts at the Katsura station
via LRPF and SIR (1 June–31 August 2003):(a) a deterministic
modelling case;(b) LRPF; and(c) SIR. The blue line and area rep-
resent the mean value and 90 % confidential intervals, respectively.
A gray dashed line represents a deterministic modelling case. The
black dots represent observed discharge.

of the soil moisture contentwsoilk is added to the aggregated
state variableSk−1 as:

Ŝk = Sk−1 + wsoilk . (18)

wsoilk is assumed as Gaussian distributionN (0,σ 2
soilk

) having
a heteroscedastic standard deviation as:

σsoilk = αsoil Sk−1 + βsoil. (19)

In the above,αsoil andβsoil are adaptable parameters that can
be obtained from sensitivity analysis. Although proper tun-
ing of these adaptable parameters is important, their optimum
value changes according to different data periods, which is
another source of uncertainty in data assimilation. We will
discuss the effects of adaptable parameters, especiallyαsoil,
on two different particle filters later. The value ofβsoil is set
as 50 mm for the whole simulation. When the process error
of soil moisture contentwsoilk is generated for each particle,
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Fig. 10. Observed versus 6-h-lead forecasts at the Katsura station via LRPF and SIR for varying parameter values of the process error
variance,αsoil (11 to 17 July 2007). The blue line and area represent the mean value and 90 % confidential intervals, respectively. A gray
dashed line represents a deterministic modelling case. The black dots represent observed discharge.

the perturbed states of soil moistureθ̂ l
j are calculated using

multiplicative factorγs as follows:

γs =
Ŝk

Sk−1
(20)

θ̂ l
j = γs θ l

j . (21)

In the above equations, if perturbed soil moisture at each grid
and layer,θ̂ l

j , becomes greater or smaller than the physical

limitation, θ̂ l
j is adjusted at its maximum (i.e. porosity) or

minimum (i.e. wilting point). It is also worth noting that

non-linearity of the distributed hydrologic model can allevi-
ate loss of spatial diversity in the pertubation process, which
is one of the disadvantages of global multipliers. For exam-
ple, even if the same noise is applied, the spatial pattern of
state variables can become different due to antecedent soil
moisture and the non-linear system response for that. Sim-
ilar noise definition for soil moisture has been applied for
state updating of a distributed hydrologic model in the study
of Kim et al. (2007).
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Fig. 11. Observed versus forecasts of varying lead times at
the Katsura station via LRPF and SIR withαsoil of 0.05 (11 to
17 July 2007):(a) the lagged regularization particle filter (LRPF);
and(b) the SIR particle filter. The blue lines represent forecasts of
varying lead times. A gray dashed line represents a deterministic
modelling case. The black dots represent observed discharge.

The perturbation of overland flow is also applied in a mul-
tiplicative way as:

q̂ovj
=

(
1 + wovk

)
qovj

(22)

whereqovj
andq̂ovj

are overland flow with and without pro-
cess noisewovk

, respectively, which is assumed as a Gaussian
distributionN(0, σ 2

ovk
). The standard deviation of overland

flow noiseσovk
is parameterized as follows:

σovk
= cov 10αovexp(−ysimk−1/βov) (23)

whereαov andβov are adaptable parameters with settings of
−10 and 5 m3 s−1, respectively, as obtained from sensitivity
analysis.ysimk−1is the simulated discharge of data assimila-
tion at the previous time step.cov is the constant coefficent.
The value ofcov is estimated through the sensitivity analysis
and set as 0.02 for the whole simulation. This formulation
was originally proposed by Seo et al. (2009) to enhance the
forecast in periods of low flow. Equation (23) specifies pro-
gressively smaller uncertainty if the simulated flow falls be-
low the threshold,βov (m3 s−1). We adopt this error formu-
lation because an error of overland flow routing is expected
to decline in low flow periods.

The measurement error of the discharge is assumed as a
Gaussian distributionN(0, σ 2

obsk
) similar to previous studies

(Georgakakos, 1986; Weert and El Serafy, 2006; Salamon

Fig. 12. Nash-Sutcliffe model efficiency for varying parameter val-
ues of the process error variance,αsoil. The red lines represent the
lagged regularized particle filter. The dashed lines represent the SIR
particle filter. A dotted line represents a deterministic modelling
case.

and Feyen, 2010). The standard deviation of the measure-
ment error is chosen as:

σobsk = αobsyk + βobs. (24)

In Eq. (24),αobs is set as 0.1, which means 10 % of the mea-
surement error, and the constant coefficientβobs is applied as
5 m3 s−1 to consider uncertainty in periods of low flow such
as artificial water use and dam reservoir control. The uncer-
tainty of forcing data is not considered in this study to make
it easy to evaluate the difference of each particle filter. Fif-
teen percent of perturbation from the uniform distribution is
applied for the initial soil moisture condition.

4.4 Results and discussion

We implement two kinds of particle filters, SIR and lagged
RPF (LRPF), for the hindcasting of streamflow using the
WEP model. The resampling step is implemented in both
SIR and LRPF. An additional regularization step is executed
only in LRPF when sample impoverishment occurs or the
ensemble mean falls outside 20 % of the observed discharge.
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Fig. 13. Nash-Sutcliffe model efficiency for varying parameter values of the process error variance,αsoil. The red lines represent the lagged
regularized particle filter. The dashed lines represent the SIR particle filter. A dotted line represents a deterministic modelling case.

Simulation periods and observation are shown in Table 1.
Hourly observed discharges at the Katsura station are used
for the data assimilation, and observation at the Kameoka
station is used for comparison. A five-day warm-up period is
added before the data assimilation starts.

Deterministic simulation results and 6-h-lead forecasts of
each particle filter at the Katsura station for the years 2007,
2004, and 2003 are shown in Figs. 7, 8, and 9, respectively.
The lag time of 8 h is applied in LRPF. The applied val-
ues ofαsoil are 0.05 for 2007 and 0.03 for 2004 and 2003.
The forecasted streamflow via two particle filters shown in
Figs. 7 and 9 indicates good conformity between observation
and simulation, while the deterministic modelling shows sig-
nificant underestimation, especially in the high flood regime.
Ninety percent of confidential intervals of SIR are larger than
those of LRPF, although the same error assumption is used.
Compared with results of other years, the differences of con-
fidential intervals between two filters are small in the year
of 2004, shown in Fig. 8, since the deterministic modelling
results show better agreement with observation, relatively.
Elapsed simulation time for the year of 2007 is about 11 h
in SIR and 16 h in LRPF for a 2-month period simulation
with 24-h-lead forecast at every time step, respectively.

Various ranges of proccess noise,αsoil, are simulated for
each particle filter to assess the effects of process noise on
the forecast. The mean and 90 % confidential intervals of
6-h-lead forecasts for varying parameter value ofαsoil are
illustrated in Fig. 10. In the case of SIR, confidential intervals
of forecast widen rapidly, and the ensemble mean becomes
unstable when the value ofαsoil increases. On the other hand,
those of LRPF show stable results regardless of the process
noise.

Figure 11 illustrates streamflow forecast of varying lead
times at the Katsura station via LRPF and SIR. Two particle
filters show different patterns, especially in the rising limb of
the hydrograph from 1000 to 1010 time step. When the lead
time becomes shorter, forecasts via LRPF show better results
compared to SIR. Conversely, two particle filters show sim-
ilar forecasts from 1050 to 1180 time step, and the varying
pattern is relatively smooth. When the observed flows change
sharply, even if the heteroscedastic error assumption is ap-
plied, the process error becomes too small in a moment for
the prior distribution to cover the observation distribution,
which leads to sample impoverishment. In the case of LRPF,
new particles, generated from the kernel and selected in the
lagged time window, mitigate the loss of sample diversity,
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Table 2. Statistics of streamflow forecasts with varying lead times (αsoil = 0.03).

Year Method Lead time (hour)

1 3 6 12 24

NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR NSE RMSE COR

2007 DET 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96 0.87 16.7 0.96
LRPF 0.98 7.9 0.99 0.95 11.5 0.98 0.93 13.6 0.97 0.91 16.1 0.95 0.88 18.3 0.94
SIR 0.96 10.1 0.98 0.95 12.2 0.97 0.93 13.7 0.97 0.91 15.6 0.96 0.88 18.2 0.95

2004 DET 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93 0.84 59.9 0.93
LRPF 0.89 48.1 0.95 0.85 57.5 0.92 0.86 55.4 0.93 0.84 58.8 0.93 0.83 61.4 0.92
SIR 0.87 53.2 0.93 0.85 56.8 0.92 0.85 56.9 0.93 0.84 59.7 0.92 0.83 61.1 0.92

2003 DET 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98 0.70 26.9 0.98
LRPF 0.99 4.4 1.00 0.98 6.7 0.99 0.96 9.4 0.98 0.93 12.6 0.97 0.87 17.6 0.96
SIR 0.99 4.5 1.00 0.98 6.5 0.99 0.97 9.0 0.98 0.94 12.1 0.97 0.89 16.6 0.96

while the recovery of particle diversity needs more time steps
in the case of SIR.

Figure 12 shows the sensitivity of the lag time of LRPF
and process noise parameter,αsoil, for each particle filter are
estimated for varying lead times in the year of 2007 using
Nash-Sutcliffe efficiency calculated as:

E = 1 −

∑T
k=1

(
yk − ysimk

)2∑T
k=1(yk − ȳ)2

(25)

wherey is observation,̄y is the mean of observation,ysimk
is

the forecasted streamflow at the measurement site, andT is
the total number of time steps.

When the lag time is larger than 4 h, the difference of
Nash-Sutcliffe efficiency (NSE) for varying lead times be-
comes negligible, as shown in Fig. 12a. Eight hours of the
lag time are applied to the other simulations by LRPF. NSE
scores for varying lead times show different behaviours for
each particle filter (Fig. 12b). While NSE of LRPF shows a
consistent behaviour regardless of error assumption, with all
the red lines overlapping along the lead time, that of SIR
changes according to the values ofαsoil. Overall, LRPF
shows improved NSE for any range ofαsoil. NSE shows
rather significant differences between the two particle filters
when plotted for the high flows (not shown).

Figure 13 shows NSE of each particle filter for varying
lead times in the years 2004 and 2003. Overall, LRPF fore-
casts show less variation compared to SIR forecasts, except
the forecast of 2003 at Kameoka. Similarly to the year 2007
(Fig. 12b), NSE scores of SIR in 2004 and 2003 drop sharply
when the process errorαsoil increases. Although NSE scores
of LRPF show less change than does SIR, NSE differences
of LRPF of 2003 increase according to the lead time. Rela-
tively excessive perturbation in the regularization step for the
smoothly varied flood events may be one potential reason.
However, differences of NSE appear to be neglible within 8-
h lead times. The forecasts at Kameoka show reduced NSE

scores in both particle filters. In the case of 2004, LRPF
shows better forecasts within 4-h lead times, while SIR out-
performs for other lead times in 2004 and 2003. Since the
H-Q relationship of Kameoka is made with limited data, the
Kameoka station appears to have larger uncertainty than does
Katsura. Due to the lack of data, more extensive comparison
is beyond the scope of this study. Nevertheless, we can ob-
serve that the statistical stability of LRPF is superior to that
of SIR in terms of confidention intervals and accuracy for un-
certain process noise,αsoil (not shown), similar to the results
of 2007 (Fig. 10).

Table 2 shows statistics of streamflow forecasts with vary-
ing lead times at Katsura including NSE, root mean square
error (RMSE) and correlation coefficient (COR) for a given
process noise (αsoil = 0.03). Statistics shown in Table 2 indi-
cate that LRPF is somewhat better than SIR especially in the
years 2007 and 2004. The improvement by LRPF over SIR is
larger for shorter lead times and the high flows (not shown).
COR shows high values for both cases in overall periods. It
is worth noting that SIR has different optimum values of pro-
cess noise for data periods, and thus it shows large variation
of statistics depending on the process noise (not shown) as
the patterns shown in Figs. 12 and 13.

5 Conclusions

A lagged particle filtering approach was proposed as a frame-
work to deal with the delayed response, which originates
from different time scales of hydrologic processes in a dis-
tributed hydrologic model. The regularized particle filter
with the MCMC move step was implemented to preserve
sample diversity under the lagged filtering approach. As a
process-based distributed hydrologic model, WEP was im-
plemented to illustrate the strength and weakness of the
lagged regularized particle filter (LRPF) compared to SIR for
short-term streamflow forecast.
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Two particle filters showed significantly improved fore-
casts compared to deterministic modelling cases in different
simulation periods. Various ranges of process noise related
to soil moisture were simulated for varying lead times. While
SIR has different values of optimal process noise and shows
sensitive variation of confidential intervals according to the
process noise, LRPF shows consistent forecasts regardless
of the process noise assumption. Due to the preservation
of particle diversity by the kernel, LRPF showed enhanced
forecasts, especially when the discharge changed sharply in
a short time (the year 2007) and flood peak was high (the
year 2004). However, the relatively large perturbation by the
kernel could produce negative effects when the flood peak
was relatively small and the hydrograph varied smoothly (the
year 2003).

SMC methods have significant potential for high non-
linearity problems, especially for process-based distributed
models in hydrologic investigation. However, the computa-
tional cost and marginal adequacy of SMC methods for dis-
tributed modelling have been bottlenecks to their practical
implementation. As shown in this study, a particle filtering
process can be effectively parallelized and implemented in
the multi-core computing environment via MPI library. The
LRPF is expected to be used as one of the frameworks for se-
quential data assimilation of process-based distributed mod-
elling. The main benefits of LRPF are the improved forecasts
for rapidly varied high floods and the stability of confidential
intervals for uncertainty of process noise. More extended im-
plementation for multi-site forecasting and effective sequen-
tial estimation of model parameters remain open problems,
indeed.
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