Articles | Volume 29, issue 2
https://doi.org/10.5194/hess-29-361-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-361-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revealing joint evolutions and causal interactions in complex ecohydrological systems by a network-based framework
Lu Wang
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Haiting Gu
CORRESPONDING AUTHOR
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Li Liu
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Xiao Liang
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Siwei Chen
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Institute of Water Science and Engineering, Zhejiang University, Hangzhou, 310058, China
Related authors
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024, https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Xinting Yu, Yue-Ping Xu, Yuxue Guo, Siwei Chen, and Haiting Gu
Hydrol. Earth Syst. Sci., 29, 179–214, https://doi.org/10.5194/hess-29-179-2025, https://doi.org/10.5194/hess-29-179-2025, 2025
Short summary
Short summary
This study introduces a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek, the vine copula built with this method captured critical spatial–temporal relationships, indicating high synchronization probabilities and flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multi-site flows.
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024, https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024, https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Short summary
Applying optimal water allocation models to simultaneously enable economic benefits, water preferences, and environmental demands at different decision levels, timescales, and regions is a challenge. In this study, a process-based three-layer synergistic optimal-allocation model (PTSOA) is established to achieve these goals. Reused, reclaimed water is also coupled to capture environmentally friendly solutions. Network analysis was introduced to reduce competition among different stakeholders.
Jingkai Xie, Yue-Ping Xu, Hongjie Yu, Yan Huang, and Yuxue Guo
Hydrol. Earth Syst. Sci., 26, 5933–5954, https://doi.org/10.5194/hess-26-5933-2022, https://doi.org/10.5194/hess-26-5933-2022, 2022
Short summary
Short summary
Monitoring extreme flood events has long been a hot topic for hydrologists and decision makers around the world. In this study, we propose a new index incorporating satellite observations combined with meteorological data to monitor extreme flood events at sub-monthly timescales for the Yangtze River basin (YRB), China. The conclusions drawn from this study provide important implications for flood hazard prevention and water resource management over this region.
Yuxue Guo, Xinting Yu, Yue-Ping Xu, Hao Chen, Haiting Gu, and Jingkai Xie
Hydrol. Earth Syst. Sci., 25, 5951–5979, https://doi.org/10.5194/hess-25-5951-2021, https://doi.org/10.5194/hess-25-5951-2021, 2021
Short summary
Short summary
We developed an AI-based management methodology to assess forecast quality and forecast-informed reservoir operation performance together due to uncertain inflow forecasts. Results showed that higher forecast performance could lead to improved reservoir operation, while uncertain forecasts were more valuable than deterministic forecasts. Moreover, the relationship between the forecast horizon and reservoir operation was complex and depended on operating configurations and performance measures.
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 25, 3675–3690, https://doi.org/10.5194/hess-25-3675-2021, https://doi.org/10.5194/hess-25-3675-2021, 2021
Short summary
Short summary
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve the calibration of hydrological models, we designed the E–RD efficiency ratio of fractal dimensions strategy and examined its usability in the calibration of lumped models. The results reveal that, in most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Also, pursuing a better RD during calibration leads to only a minor decrease in E.
Cited articles
Aslam, A.: Research ideas: Correlations does not imply causation, Br. Dent. J., 219, 49, https://doi.org/10.1038/sj.bdj.2015.585, 2015.
Altman, N. and Krzywinski, M.: Association, correlation and causation, Nature Methods, 12, 899–900, https://doi.org/10.1038/nmeth.3587, 2015.
Awange, J. L., Fleming, K. M., Kuhn, M., Featherstone, W. E., Heck, B., and Anjasmara, I.: On the suitability of the 4° × 4° GRACE mascon solutions for remote sensing Australian hydrology, Remote Sens. Environ., 115, 864–875, https://doi.org/10.1016/j.rse.2010.11.014, 2011.
Barabási, A. L. and Albert, R.: Emergence of scaling in random networks, Science, 286, 509–512, https://doi.org/10.1126/science.286.5439.509, 1999.
Beer, C., Reichstein, M., Ciais, P., Farquhar, G. D., and Papale, D.: Mean annual GPP of Europe derived from its water balance, Geophys. Res. Lett., 34, L05401, https://doi.org/10.1029/2006GL029006, 2007.
Bo, Y., Li, X. K., Liu, K., Wang, S. D., Zhang, H. Y., Gao, X. J., and Zhang, X. Y.: Three Decades of Gross Primary Production (GPP) in China: Variations, Trends, Attributions, and Prediction Inferred from Multiple Datasets and Time Series Modeling, Remote Sens., 14, 2564, https://doi.org/10.3390/rs14112564, 2022.
Boers, N., Bookhagen, B., Marwan, N., Kurths, J., and Marengo, J.: Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System, Geophys. Res. Lett., 40, 4386–4392, https://doi.org/10.1002/grl.50681, 2013.
Bonotto, G., Peterson, T. J., Fowler, K., and Western, A. W.: Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping, Water Resour. Res., 58, e2021WR030231, https://doi.org/10.1029/2021WR030231, 2022.
Brunner, M. I. and Gilleland, E.: Complex High- and Low-Flow Networks Differ in Their Spatial Correlation Characteristics, Drivers, and Changes, Water Resour. Res., 57, e2021WR030049, https://doi.org/10.1029/2021WR030049, 2021.
Cao, Y. P., Xie, Z. Y., Woodgate, W., Woodgate, W., Ma, X. L., Cleverly, J., Pang, Y. J., Qin, F., and Huete, A.: Ecohydrological decoupling of water storage and vegetation attributed to China's large-scale ecological restoration programs, J. Hydrol., 615, 128651, https://doi.org/10.1016/j.jhydrol.2022.128651, 2022.
Chauhan, T. and Ghosh, S.: Partitioning of memory and real-time connections between variables in Himalayan ecohydrological process networks, J. Hydrol., 590, 125434, https://doi.org/10.1016/j.jhydrol.2020.125434, 2020.
Chauhan, T., Devanand, A., Roxy, M. K., Ashok, K., and Ghosh, S.: River interlinking alters land-atmosphere feedback and changes the Indian summer monsoon, Nat. Commun., 14, 5928, https://doi.org/10.1038/s41467-023-41668-x, 2023.
Chen, H., Huang, S. H., Xu, Y. P., Teegavarapu, R. S. V., Guo, Y. X., Nie, H., and Xie H. W.: Using Baseflow Ensembles for Hydrologic Hysteresis Characterization in Humid Basins of Southeastern China, Water Resour. Res., 60, e2023WR036195, https://doi.org/10.1029/2023WR036195, 2024.
Colombo, D. and Maathuis, M. H.: Order-independent constraint-based causal structure learning, J. Mach. Learn. Res., 15, 3921–3962, https://doi.org/10.48550/arXiv.1211.3295, 2014.
Cooley, S. S., Fisher, J. B., and Goldsmith, G. R.: Convergence in water use efficiency within plant functional types across contrasting climates, Nat. Plants, 8, 341–345, https://doi.org/10.1038/s41477-022-01131-z, 2022.
Csardi, G. and Nepusz, T.: The igraph software package for complex network research, InterJ. Complex Syst., 1695, 1–9, http://igraph.org (last access: 18 October 2024), 2006.
Darwiche, A.: Modeling and reasoning with Bayesian networks, Cambridge University Press, https://doi.org/10.1017/CBO9780511811357, 2009.
Dechter, R.: Reasoning with probabilistic and deterministic graphical models: Exact algorithms, Synthesis Lectures on Artificial Intelligence and Machine Learning, 7, 1–191, https://doi.org/10.2200/S00529ED1V01Y201308AIM023, 2013.
Delforge, D., de Viron, O., Vanclooster, M., Van Camp, M., and Watlet, A.: Detecting hydrological connectivity using causal inference from time series: synthetic and real karstic case studies, Hydrol. Earth Syst. Sci., 26, 2181–2199, https://doi.org/10.5194/hess-26-2181-2022, 2022.
Deyle, E. R., Maher, M. C., Hernandez, R. D., and Sugihara, G.: Global environmental drivers of influenza, P. Natl. Acad. Sci. USA, 113, 13081–13086, https://doi.org/10.1073/pnas.1607747113, 2016.
Didan, K.: MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid V061, USGS (U.S. Geological Survey) [data set], https://doi.org/10.5067/MODIS/MOD13A3.061, 2021.
Fan, J. F., Meng, J., Ludescher, J., Li, Z. Y., Surovyatkina, E., Chen, X. S., Kurths, J., and Schellnhuber H. J.: Network-based approach and climate change benefits for forecasting the amount of Indian monsoon rainfall, J. Climate, 35, 1009–1020, https://doi.org/10.1175/JCLI-D-21-0063.1, 2022.
Fang, K. R., Sivakumar, B., and Woldemeskel, F. M.: Complex networks, community structure, and catchment classification in a large-scale river basin, J. Hydrol., 545, 478–493, https://doi.org/10.1016/j.jhydrol.2016.11.056, 2017.
Ge, J., Pitman, A. J., Guo, W., Zan, B., and Fu, C.: Impact of revegetation of the Loess Plateau of China on the regional growing season water balance, Hydrol. Earth Syst. Sci., 24, 515–533, https://doi.org/10.5194/hess-24-515-2020, 2020.
Goodwell, A. E., Kumar, P., Fellows, A. W., and Flerchinger, G. N.: Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought, P. Natl. Acad. Sci. USA, 115, 8604–8613, https://doi.org/10.1073/pnas.1800236115, 2018.
Granger, C. W. J.: Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37, 424–438, https://doi.org/10.2307/1912791, 1969.
Han, X., Ouarda, T. B. M. J., Rahman, A., Haddad, K., Mehrotra, R., and Sharma, A.: A network approach for delineating homogeneous regions in regional flood frequency analysis, Water Resour. Res., 56, e2019WR025910, https://doi.org/10.1029/2019WR025910, 2020.
Hao, X., Huang, G., Zheng, Z., Sun, X., Ji, W., Zhao, H., Wang, J., Li, H., and Wang, X.: Development and validation of a new MODIS snow-cover-extent product over China, Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, 2022.
Jha, S. K., Zhao, H. H., Woldemeskel, F. M., and Sivakumar B.: Network theory and spatial rainfall connections: An interpretation, J. Hydrol., 527, 13–19, https://doi.org/10.1016/j.jhydrol.2015.04.035, 2015.
Jiang, P. S. and Kumar, P.: Using Information Flow for Whole System Understanding from Component Dynamics, Water Resour. Res., 55, 8305–8329, https://doi.org/10.1029/2019WR025820, 2019.
Jiao, F. S., Xu, X. J., Zhang, M. Y., Gong, H. B., Liu, H. Y., and Wang, K. L.: Contributory factors of the secular trends to changes in ecosystem water-use efficiency in China, J. Hydrol., 615, 128690, https://doi.org/10.1016/j.jhydrol.2022.128690, 2022.
Kelleher, C., McGlynn, B., and Wagener, T.: Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding, Hydrol. Earth Syst. Sci., 21, 3325–3352, https://doi.org/10.5194/hess-21-3325-2017, 2017.
Kendall, M. G.: Rank Correlation Measures, Charles Griffin, London, 272 pp., ISBN 978-0195208375, 1975.
Lan, T., Lin, K., Xu, C.-Y., Liu, Z., and Cai, H.: A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics, Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, 2020.
Lan, T., Li, T., Zhang, H., Wu, J., Chen, Y. D., and Xu, C.-Y.: Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2024-118, in review, 2024.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, 4, https://doi.org/10.1029/2011WR011453, 2012.
Li, C., Zhang, Y., Shen, Y., and Yu, Q.: Decadal water storage decrease driven by vegetation changes in the Yellow River Basin, Sci. Bull., 65, 1859–1861, https://doi.org/10.1016/j.scib.2020.07.020, 2020.
Li, X., Zhou, Z. H., Liu, J. J., Xu, C. Y., Xia, J. Q., Wang, P. X., Wang, H., and Jia, Y. W.: Analysis and partitioning of terrestrial water storage in the Yellow River source region, Hydrol. Process., 38, e15097, https://doi.org/10.1002/hyp.15097, 2024.
Liu, T., Chen, D., Yang, L., Meng, J., Wang, Z., Ludescher, J., Fan, J. F., Yang, S. N., Chen, D. L., Kurths, J., Chen, X. S., Havlin, S., and Schellnhuber, H. J.: Teleconnections among tipping elements in the Earth system, Nat. Clim. Change, 13, 67–74, https://doi.org/10.1038/s41558-022-01558-4, 2022.
Liu, K., Li, X. K., Wang, S. D., and Zhang, X. Y.: Unrevealing past and future vegetation restoration on the Loess Plateau and its impact on terrestrial water storage, J. Hydrol., 617, 129021, https://doi.org/10.1016/j.jhydrol.2022.129021, 2023.
Luan, J., Zhang, Y. Q., Ma, N., Tian, J., Li, X. J., and Liu, D. F.: Evaluating the uncertainty of eight approaches for separating the impacts of climate change and human activities on streamflow, J. Hydrol., 601, 126605, https://doi.org/10.1016/j.jhydrol.2021.126605, 2021.
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., and Arendt, A. A.: Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution, J. Glaciol., 216, 613–631, https://doi.org/10.3189/2013JoG12J147, 2017.
Lv, M., Ma, Z., Li, M., and Zheng, Z. Y.: Quantitative analysis of terrestrial water storage changes under the grain for green program in the Yellow River Basin, J. Geophys. Res.-Atmos., 124, 1336–1351, https://doi.org/10.1029/2018JD029113, 2019.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Mondal, S. and Mishra, A. K.: Complex networks reveal heatwave patterns and propagations over the USA, Geophys. Res. Lett., 48, e2020GL090411, https://doi.org/10.1029/2020GL090411, 2021.
Naeem, S., Zhang, Y. Q., and Zhang, X. Z.: Recent change in ecosystem water use efficiency in China mainly dominated by vegetation greening and increased CO2, Remote Sens. Environ., 298, 113811, https://doi.org/10.1016/j.rse.2023.113811, 2023.
Newman, M. E. J.: Analysis of weighted networks, Phys. Rev. E, 70, 056131, https://doi.org/10.1103/PhysRevE.70.056131, 2004.
Ni, Y. X., Yu, Z. B., Lv, X. Z., Qin, T. L., Yan, D. H., Zhang, Q. F., and Ma, L.: Spatial difference analysis of the runoff evolution attribution in the Yellow River Basin, J. Hydrol., 612, 128149, https://doi.org/10.1016/j.jhydrol.2022.128149, 2022.
Ombadi, M., Nguyen, P., Sorooshian, S., and Hsu, K. L.: Evaluation of Methods for Causal Discovery in Hydrometeorological Systems, Water Resour. Res., 56, 7, https://doi.org/10.1029/2020WR027251, 2020.
Pappas, C., Mahecha, M. D., Frank, D. C. Babst, F., and Koutsoyiannis, D.: Ecosystem functioning is enveloped by hydrometeorological variability, Nat. Ecol. Evol., 1, 1263–1270, https://doi.org/10.1038/s41559-017-0277-5, 2017.
Pearl, J.: Probabilistic reasoning in intelligent systems, Morgan Kaufmann, https://doi.org/10.1016/C2009-0-27609-4, 1988.
Pearson, K.: Notes on regression and inheritance in the case of two parents, P. Roy. Soc. London, 58, 240–242, https://doi.org/10.1098/rspl.1895.00, 1895.
Peng, C. and Susan, A.: Stable learning establishes some common ground between causal inference and machine learning, Nat. Mach. Intell., 4, 110–115, 2022.
Peters, J., Janzing, D., and Schölkopf, B.: Elements of causal inference: Foundations and learning algorithms, MIT Press, 15–26 pp., ISBN 9780262037310, 2017.
Pons, P. and Latapy, M.: Computing Communities in Large Networks Using Random Walks, Computer and Information Sciences – ISCIS 2005, 3733, 284–293, https://doi.org/10.1007/11569596_31, 2005.
Poppe Terán, C., Naz, B. S., Graf, A., Qu Y. Q., Franssen H. H, Baatz, R., Ciais, P., and Vereecken, H.: Rising water-use efficiency in European grasslands is driven by increased primary production, Commun. Earth Environ., 4, 95, https://doi.org/10.1038/s43247-023-00757-x, 2023.
Qin, Y., Yang, D. W., Gao, B., Wang, T. H., Chen, J. S., Chen, Y., Wang, Y. H., and Zheng, G. H.: Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China, Sci. Total Environ., 605–606, 830–841, https://doi.org/10.1016/j.scitotenv.2017.06.188, 2017.
Rinderer, M., Ali, G., and Larsen, L. G.: Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: State-of-the-art and research directions, Earth-Sci. Rev., 178, 29–47, https://doi.org/10.1016/j.earscirev.2018.01.009, 2018.
Rocha, R. V. and Filho F. A. S.: Stream gauge clustering and analysis for non-stationary time series through complex networks, J. Hydrol., 616, 128773, https://doi.org/10.1016/j.jhydrol.2022.128773, 2023.
Runge, J.: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets, In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, AUAI Press, http://proceedings.mlr.press/v124/runge20a.html (last access: 18 October 2024), 2020.
Runge, J.: Tigramite, GitHub [data set], https://github.com/jakobrunge/tigramite/ (last access: 18 October 2024), 2023.
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D., Muñoz-Marí, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., and Zscheischler, J.: Inferring causation from time series in earth system sciences, Nat. Comm., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3, 2019a.
Runge, J., Nowack, P., Kretschmer, M., Flaxman S., and Sejdinovic, D.: Detecting and quantifying causal associations in large nonlinear time series datasets, Sci. Adv., 5, eaau4996, https://doi.org/10.1126/sciadv.aau4996, 2019b.
Runge, J., Gerhardus, A., Varando, G., Eyring, V., and Camps-Valls, G.: Causal inference for time series, Nat. Rev. Earth Environ., 4, 487–505, https://doi.org/10.1038/s43017-023-00431-y, 2023.
Running, S., Mu, Q., and Zhao, M.: MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500 m SIN Grid V061 [data set], https://doi.org/10.5067/MODIS/MOD17A2H.061, 2021a.
Running, S., Mu, Q., and Zhao, M.: MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V061 [data set], https://doi.org/10.5067/MODIS/MOD16A2.061, 2021b.
Save, H., Bettadpur, S., and Tapley B. D.: High-resolution CSR GRACE RL05 mascons, J. Geophys. Res.-Solid Earth, 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y. , Schmied, H. M., van Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P., and Bierkens, M. F. P.: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, 1080–1089, https://doi.org/10.1073/pnas.1704665115, 2018.
Schreiber, T.: Measuring information transfer, Phys. Rev. Lett., 85, 461–464, https://doi.org/10.1103/PhysRevLett.85.461, 2000.
Shi, H. Y., Zhao, Y. Y., Liu, S. N., Cai, H. J., and Zhou, Z. Q.: A New Perspective on Drought Propagation: Causality, Geophys. Res. Lett., 49, e2021GL096758, https://doi.org/10.1029/2021GL096758, 2022.
Singh, N. K. and Borrok, D. M.: A Granger causality analysis of groundwater patterns over a half-century, Sci. Rep., 9, 12828, https://doi.org/10.1038/s41598-019-49278-8, 2019.
Sivakumar, B. and Woldemeskel, F. M.: Complex networks for streamflow dynamics, Hydrol. Earth Syst. Sci., 18, 4565–4578, https://doi.org/10.5194/hess-18-4565-2014, 2014.
Su, J. B., Chen, D. X., Zheng, D. H., Su, Y., and Li, X.: The insight of why: Causal inference in Earth system science, Sci. China Earth Sci., 66, 2169–2186, 2023.
Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., and Munch, S.: Detecting causality in complex ecosystems, Science, 6106, 496–500, https://doi.org/10.1126/science.1227079, 2012.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, 8, https://doi.org/10.1029/2005GL025285, 2006.
Wang, Y. Q., Yang, J., and Chen, Y. N.: Detecting the causal effect of soil moisture on precipitation using convergent cross mapping, Sci. Rep., 8, 12171, https://doi.org/10.1038/s41598-018-30669-2, 2018a.
Wang, T., Yang, H., Yang, D., Qin, Y., and Wang, Y. H.: Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework, J. Hydrol., 558, 301–313, https://doi.org/10.1016/j.jhydrol.2018.01.050, 2018b.
Wang, W., Zhang, Y., and Tang. Q.: Impact assessment of climate change and human activities on streamflow signatures in the Yellow River Basin using the Budyko hypothesis and derived differential equation, J. Hydrol., 591, 125460, https://doi.org/10.1016/j.jhydrol.2020.125460, 2020.
Wang, Y., Wang, S., Wang, C., and Zhao, W. W.: Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin, J. Hydrol., 600, 126536, https://doi.org/10.1016/j.jhydrol.2021.126536, 2021.
Wang, Z. J., Xu, M. Z., Penny, G., Hu, H. C., Zhang, X. P., and Tian, S. M.: Impact of revegetation and agricultural intensification on water storage variation in the Yellow River Basin, J. Hydrol., 635, 131218, https://doi.org/10.1016/j.jhydrol.2024.131218, 2024.
Watts, D. J. and Strogatz, S. H.: Collective dynamics of `small-world' networks, Nature, 393, 440–442, https://doi.org/10.1038/30918, 1998.
Xie, J. K., Xu, Y. P., Wang, Y. T., Gu, H. T., Wang, F. M., and Pan, S. L.: Influences of climatic variability and human activities on terrestrial water storage variations across the Yellow River basin in the recent decade, J. Hydrol., 579, 124218, https://doi.org/10.1016/j.jhydrol.2019.124218, 2019.
Xie, J. K., Xu, Y. P., Booij, M. J., and Guo, Y. X.: Influences of reservoir operation on terrestrial water storage changes detected by GRACE in the Yellow River basin, J. Hydrol., 610, 127924, https://doi.org/10.1016/j.jhydrol.2022.127924, 2022.
Xu, M. Z., Wang, G. H., Wang, Z. J., Hu, H. C., Singh, D. K., and Tian, S. M.: Temporal and spatial hydrological variations of the Yellow River in the past 60 years, J. Hydrol., 609, 127750, https://doi.org/10.1016/j.jhydrol.2022.127750, 2022.
Yan, Z. H., Lei, H. M., Gao, H. D., Ma, T., Yang, H. Y., and Yang, D. W.: Simulating the hydrological impacts of intensive soil and water conservation measures in the Yellow River basin using a distributed physically-based model, J. Hydrol., 625, 129936, https://doi.org/10.1016/j.jhydrol.2023.129936, 2023.
Yang, J. J., Wang, T. H., Yang, D. W., and Yang, Y. T.: Insights into runoff changes in the source region of Yellow River under frozen ground degradation, J. Hydrol., 617, 128892, https://doi.org/10.1016/j.jhydrol.2022.128892, 2023.
Yao, J. Q., Hu, W. F., Chen, Y. N., Huo, W., Zhao, Y., Mao, W. Y., and Yang, Q.: Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia, Sci. Total Environ., 660, 724–732, https://doi.org/10.1016/j.scitotenv.2019.01.084, 2019.
Yasmin, N. and Sivakumar, B.: Temporal streamflow analysis: Coupling nonlinear dynamics with complex networks, J. Hydrol., 564, 59–67, https://doi.org/10.1016/j.jhydrol.2018.06.072, 2018.
Yin, S. H., Gao, G. Y., Ran, L. S., Lu, X. X., and Fu, B. J.: Spatiotemporal Variations of Sediment Discharge and In-Reach Sediment Budget in the Yellow River from the Headwater to the Delta, Water Resour. Res., 57, e2021WR030130, https://doi.org/10.1029/2021WR030130, 2021.
Yin, S. H., Gao, G. Y., Ran, L. S., Li, D. F., Lu, X. X., and Fu, B. J.: Extreme streamflow and sediment load changes in the Yellow River Basin: Impacts of climate change and human activities, J. Hydrol., 619, 129372, https://doi.org/10.1016/j.jhydrol.2023.129372, 2023.
Yin, Y., Tang, Q., Liu, X., and Zhang, X.: Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin, Hydrol. Earth Syst. Sci., 21, 791–804, https://doi.org/10.5194/hess-21-791-2017, 2017.
Yu, Y. P., Yu, P. T., Wang, Y. H., Wan, Y. F., Wang, B., Han, X. S., Tu, X. W., Li, J. M., Xu, L. H., Wang, X., and Liu, Z. B.: Natural revegetation has dominated annual runoff reduction since the Grain for Green Program began in the Jing River Basin, Northwest China, J. Hydrol., 625, 129978, https://doi.org/10.1016/j.jhydrol.2023.129978, 2023.
Zhan, H., Yu, D. X., Wang, L., Zhang, J., Xu, M., Fang, X. Q., Xue, K., Yan, Y. Q., Ren, L. L., Wang, Y. F., and Zhu, Q. A.: Stronger influences of grassland growth than grassland area on hydrological processes in the source region of the Yellow River, J. Hydrol., 642, 131886, https://doi.org/10.1016/j.jhydrol.2024.131886, 2024.
Zhang, B. Q., Tian, L., Yang, Y. T., and He, X. G.: Revegetation Does Not Decrease Water Yield in the Loess Plateau of China, Geophys. Res. Lett., 49, e2022GL098025, https://doi.org/10.1029/2022GL098025, 2022a.
Zhang, H. Y., Zhan, C. S., Xia, J., Yeh, P. J. F., Ning, L. K., Hu, S., and Wang, X. S.: The role of groundwater in the spatio-temporal variations of vegetation water use efficiency in the Ordos Plateau, China, J. Hydrol., 605, 127332, https://doi.org/10.1016/j.jhydrol.2021.127332, 2022b.
Zhang, W. B., Liang, W., Tian, L., and Zhao, X. N.: Climatic and different human influences on annual and seasonal streamflow with considering the soil water storage change in the middle reaches of the Yellow River basin, China, J. Hydrol., 619, 129298, https://doi.org/10.1016/j.jhydrol.2023.129298, 2023.
Zhao, F. B., Ma, S., Wu, Y. P., Qiu, L. J., Wang, W. K., Lian, Y. Q., Chen, J., and Sivakumar, B.: The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China, Agr. Forest Meteorol., 316, 108842, 2022.
Zhou, J. L., Liu, Q., Liang, L. Q., He, J., Yan, D. H., Wang, X., Sun, T., and Li, S. Z.: More portion of precipitation into soil water storage to maintain higher evapotranspiration induced by revegetation on China's Loess Plateau, J. Hydrol., 615, 128707, https://doi.org/10.1016/j.jhydrol.2022.128707, 2022.
Zhou, J. L., Liu, Q., Liang, L. Q., Yan, D. H., Yang, Y. T., Wang, X., Sun, T., Li, S. Z., Gan, L. Y., and Wu, J. F.: Water constraints enhanced by revegetation while alleviated by increased precipitation on China's water-dominated Loess Plateau, J. Hydrol., 640, 131731, https://doi.org/10.1016/j.jhydrol.2024.131731, 2024.
Short summary
To understand how ecohydrological variables evolve jointly and why, this study develops a framework using correlation and causality to construct complex relationships between variables at the system level. Causality provides more detailed information that the compound causes of evolutions regarding any variable can be traced. Joint evolution is controlled by the combination of external drivers and direct causality. Overall, the study facilitates the comprehension of ecohydrological processes.
To understand how ecohydrological variables evolve jointly and why, this study develops a...