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Abstract. There is evidence that climate change and human
activities are changing ecohydrological systems, yet the com-
plex relationships among ecological (normalized difference
vegetation index, gross primary productivity, and water use
efficiency) and hydrological variables (runoff, soil water stor-
age, groundwater storage, etc.) remain understudied. This
study develops a novel framework based on network anal-
ysis alongside satellite data and in situ observations to delin-
eate the joint evolutions (phenomena) and causal interactions
(mechanisms) in complex systems. The former employs cor-
relations, and the latter uses physically constrained causal-
ity analysis to construct network relationships. This frame-
work is applied to the Yellow River basin, a region undergo-
ing profound ecohydrological changes. Results suggest that
joint evolutions are controlled by compound drivers and di-
rect causality. Different types of network relationships are
found – namely, joint evolution with weak causality, joint
evolution with high causality, and asynchronous evolution
with high causality. The upstream alpine subregions, for ex-
ample, where the ecological subsystem is more influenced
by temperature, while the hydrological one is more driven
by precipitation, show relatively high synchronization but
with weak and lagged causality between two subsystems. On
the other hand, ecohydrological causality can be masked by
intensive human activities (revegetation, water withdrawals,
and reservoir regulation), leading to distinct evolution trends.
Other mechanisms can also be deduced. Reductions in water
use efficiency in the growing season are directly caused by
the control of evapotranspiration, and the strength of control
decreases with the greening land surface in some subregions.
Overall, the proposed framework provides useful insight into
the complex interactions within the ecohydrological systems

for the Yellow River basin and has applicability to broader
geographical contexts.

1 Introduction

The hydrosphere and biosphere are intrinsically coupled sub-
systems of the Earth. Hydrological conditions shape the dis-
tribution, structure, and function of terrestrial ecosystems,
which, in turn, affect the hydrological components via mod-
ulations of land–atmosphere water and energy fluxes (Pap-
pas et al., 2017). Hence, ecohydrological systems are com-
plex, with time-dependent interactions occurring between
and within the atmosphere, vegetation, soil, and waterbod-
ies (Yan et al., 2023). These interactions contain intensify-
ing and mitigating mechanisms, e.g., vegetation coverage
can be enhanced by warmer temperatures, increased water
availability, and afforestation and can be further reduced by
the decrease in water storage through root uptake. Together,
these interactions among multiple components dictate a col-
lective behavior of the ecohydrological system (Goodwell et
al., 2018). In the context of climate change and increasing
human activities, ecohydrological processes have undergone
substantial changes. Therefore, there is a pressing need for
a comprehensive understanding of how the system behaves
(phenomenon) and unraveling the multivariate interactions
(mechanisms) that drive such behaviors at the system level.

A comprehensive understanding of a system requires find-
ing as many patterns and associations within it, which is a
major challenge (Runge et al., 2019a). Network analysis is a
powerful tool to study the relationships between elements in
complex systems with a clear visualization (Watts and Stro-
gatz, 1998; Barabási and Albert, 1999). This approach gen-
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erates undirected or directed networks, where links between
pairwise variables are assigned varying weights (typically
measured by correlations). Such weights between variables
are often used as a proxy to deduce the underlying physi-
cal relationships, which can be either direct or indirect. Re-
cently, network analysis has received growing attention in the
field of hydrology, primarily for identifying hydrologically
homogeneous sites or basins based on spatial precipitation
and streamflow networks (e.g., Sivakumar and Woldemeskel,
2014; Jha et al., 2015; Fang et al., 2017; Yasmin and Sivaku-
mar, 2018) and for analyzing temporal co-occurrence of hy-
drological extreme events such as floods and droughts (e.g.,
Boers et al., 2013; Han et al., 2020; Brunner and Gilleland,
2021; Mondal and Mishra, 2021; Fan et al., 2022; Liu et
al., 2022). However, beyond spatial network analysis, this
methodology can also be applied to other types of systems,
such as exploring relationships among multiple hydrological,
meteorological, and ecological variables in a certain region
(Goodwell et al., 2018; Jiang and Kumar, 2019; Terán et al.,
2023). Recent advancements in ground-based data, remote
sensing data, and outputs from various Earth system models
provide unprecedented opportunities to simultaneously char-
acterize complex process dynamics across different scales.

In the literature, correlation relationships remain prevalent
for modeling ecohydrological systems in the form of net-
works (Chauhan and Ghosh, 2020; Runge et al., 2023). In
these studies, networks are referred to as correlation-based
networks. Correlation is useful for measuring the scalar sim-
ilarity in dynamic behaviors among variables (Aslam, 2015;
Su et al., 2023). However, networks defined solely based on
correlations cannot infer causal relationships (Altman and
Krzywinski, 2015; Yasmin and Sivakumar, 2018). Ecohy-
drological interactions are inherently causal as changes in
one variable are caused by changes in other system variables
(Jiang and Kumar, 2019). Additionally, information on the
directionality and lagged effects is also useful (Chen et al.,
2024). Causal detection has been proven to enhance the un-
derstanding of physical mechanisms and contribute to im-
proved model construction (Wang et al., 2018a). To cap-
ture causal interdependencies within the system, causal in-
ference techniques are essential. Obtained causal links can
form causality-based networks, which is beneficial for dis-
covering the path followed by a perturbation introduced in
an ecohydrological variable.

In recent decades, theories and algorithms for causal infer-
ence based on observations have been developed, including
structural causal modeling (SCM; Peters et al., 2017), trans-
fer entropy (TE; Schreiber, 2000), graph-based methods such
as Peter and Clark’s (PC) algorithm and Bayesian networks
(Pearl, 1988; Darwiche, 2009; Dechter, 2013), Granger
causality (GC; Granger, 1969), and convergent cross map-
ping (CCM; Sugihara et al., 2012). These methods have also
been applied in several hydrology studies. For instance, Jiang
and Kumar (2019) used an information-flow-based method to
investigate the information flows in a long-memory observed

stream chemistry dynamics. Singh and Borrok (2019) con-
ducted the Granger causality analysis to identify the causes
of groundwater patterns. Shi et al. (2022) used the convergent
cross mapping (CCM) method to study drought propagation.
Terán et al. (2023) used Peter and Clark’s momentary con-
ditional independence framework (PCMCI+) to investigate
drivers of three water use efficiency indices in Europe.

However, capturing causality remains challenging in han-
dling high-dimensional datasets with limited sample sizes,
like other generic problems. The ecohydrological system is
intricate, highly interconnected, and dynamic, necessitating
the consideration of multiple variables to better depict the
system (Su et al., 2023). From a computational and statisti-
cal perspective, this complexity significantly impacts the re-
liability of statistical inference. Previous studies have noted
that causal inference techniques can encounter issues such
as high false–positive rates or low recall rates when iden-
tifying causal relationships (Rinderer et al., 2018; Delforge
et al., 2022). In addition, considering confounding factors
and feedback loops, the results should be interpreted cau-
tiously due to potential spurious links (Deyle et al., 2016;
Peng and Susan, 2022). To improve reliability, hybrid ap-
proaches should be developed by reintroducing the physical
aspects of the problem to exclude or control for the risk of
physically irrelevant results (Delforge et al., 2022). Causality
results may also be context-specific, so conclusions may not
generalize well to different settings or time periods. Ensur-
ing the robustness and applicability of causal findings across
different conditions is also challenging (Runge et al., 2019a).

In these regards, this study develops a network-based
framework that aims to comprehensively improve our un-
derstanding of ecohydrological systems from the observed
evolutions (phenomena) to the underlying complex causal
interactions (mechanisms). More precisely, a wide range of
variables, mainly related to different types of water storage,
streamflow, vegetation growth, and ecosystem functioning,
are used to represent the characteristics of our systems. Cli-
matic forcings and human activities are considered potential
drivers outside the system. To capture system-level varia-
tions, the evolutionary dynamics of each variable are linked
to form correlation-based networks. The joint evolution mod-
ules are then detected by clustering and network metrics are
used to assess the network properties. To capture system-
level mechanisms, physically possible and plausible links
between the variables are constructed to constrain the core
structure of causality-based networks, and significant con-
temporaneous and lagged causal links are portrayed quantita-
tively. Overall, this study contributes to the understanding of
ecohydrological processes and extends the network analysis
application within the realm of ecohydrology. An important
ecological corridor in China, the Yellow River basin (YRB),
which has been undergoing significant changes in ecohydro-
logical processes, is taken as the study case. The YRB is vast
with different climatic conditions, land use types, and hu-
man disturbances, providing various types of ecohydrologi-
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cal regimes for investigation (Luan et al., 2021; Wang et al.,
2021; Yin et al., 2021). Our framework has the potential to
be generalized and applied to the analysis in different regions
of the world as well.

The paper is structured as follows. Section 2 describes the
framework developed. Section 3 introduces the study area
and the data used. Section 4 presents the results for each sub-
region of the YRB, followed by a discussion of the findings
in Sect. 5, including the significance of the study, compar-
isons with other studies, limitations, and future outlooks. Fi-
nally, some conclusions are drawn in Sect. 6.

2 Methodology

The general framework for investigating ecohydrological
systems consists of the following main steps, as shown
in Fig. 1. Relationships between ecohydrological processes
vary within the year, so we focus on the most active growing
season (April to September).

Step I selects variables describing key characteristics/com-
ponents of the ecohydrological system and processes the
data. Based on Fig. 1a, regional runoff (Rmodulus) and ter-
restrial water storage (TWSA) together with its components
(soil moisture storage anomalies, SMSA, and groundwater
storage anomalies, GWSA) are chosen as the main hydro-
logical variables. Regional sediment load (SLmodulus) is also
selected since the Yellow River is known for high sediment
loads. Besides, snow cover (SCA) of the source region is
considered due to its location on the Tibetan Plateau. Veg-
etation coverage (normalized difference vegetation index,
NDVI) and physiological activities (gross primary produc-
tivity, GPP) are selected as main ecological variables. In ad-
dition, ecosystem water use efficiency (WUE; quantified as
the ratio of GPP to actual evapotranspiration) is employed to
characterize the trade-off between carbon and water cycles.
Due to the difficulty of accurate quantification, more detailed
processes such as infiltration and interception are not consid-
ered. External climate forcings include precipitation (P ) and
air temperature (T ), and human impacts contain reservoirs
(RSC) and human water withdrawals (WW).

Step II identifies the evolution of each variable using the
Mann–Kendall (M–K) test, providing an overview of how the
ecohydrological variables change individually.

Step III detects which variables exhibit joint changes.
SMSA and GWSA are the two principal components of
TWSA, and we therefore remove TWSA to reduce redundant
correlations. A correlation-based network is constructed for
each subregion, and module clustering is employed for the
analysis of positive correlations. Modularity and the degree
of synchronization between hydrological and ecological sub-
systems are constructed as network metrics.

Step IV further investigates the causality between vari-
ables. Potential drivers, including climatic forcings and hu-
man activities, are considered here to fulfill the causal suffi-

Figure 1. The general framework for investigating ecohydrological
systems. (a) The conceptual diagram of ecohydrological processes
in a basin. (b) The detailed flowchart. The blue circles denote the
hydrological variables and the green circles represent the ecological
variables. The blue lines stand for the connection between hydro-
logical variables, the green lines represent the connections between
ecological variables, and the red lines are the connections between
hydrological and ecological variables.

ciency. Since multiple variables (more than 10) can generate
a large number of causal links with different time lags and
some of them may be spurious, empirical knowledge is in-
corporated into the causality analysis (Peter–Clark momen-
tary conditional independence, PCMCI) to reduce the uncer-
tainty. As the causality can be strongly influenced by the in-
put data, such as the presence of outliers, data length, and
interannual variability in causality, representative subregions
are selected to check the robustness of the results.

2.1 Trend analysis for individual ecohydrological
variables

The interannual trend analysis for ecohydrological variables
is conducted using the commonly applied nonparametric M–
K test (Mann, 1945; Kendall, 1975). The positive and nega-
tive values of Z statistic indicate the increasing and decreas-
ing tendencies, respectively (Sect. S1 in the Supplement).
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When the absolute value of Z is larger than 1.96, there is
a statistically significant trend at the 95 % confidence level.

2.2 Correlation network analysis

2.2.1 Construction of the network

Correlation networks are undirected with no ordering in the
nodes defining a link. The nodes represent the ecohydrolog-
ical variables, and the links between nodes are their corre-
lations. The commonly used Pearson correlation coefficient
(PCC; Pearson, 1895) is used to calculate the strength of con-
nections. A positive PCC indicates a joint evolution between
a pair of variables, while a negative value denotes their op-
posite evolution trends. PCC is calculated as follows:

PCC(Xi,Xj )=
Cov(Xi,Xj )√

Var(Xi)Var(Xj )
, (1)

where Xi and Xj are the time series data of two variables;
Cov(Xi , Xj ) is the covariance of Xi and Xj ; and Var(Xi)
and Var(Xj ) are the variances of Xi and Xj , respectively.
PCC ranges from −1 to 1, and the correlation is stronger
when its absolute value is closer to 1.

Networks for each subregion are constructed using the ad-
jacent matrix A, where the links satisfy the significance level
of P < 0.05.

Aij =

{
PCCij if P < 0.05, i 6= j
0 otherwise , (2)

where Aij is the weight of the link between variables i and j
and is the element of the weighted adjacency matrix A. The
threshold of P < 0.05 is determined to include substantial
correlations without excluding too many potential relation-
ships. In addition, the positively correlated ecohydrological
variables are more densely connected, and we further sepa-
rate them into several modules using the “cluster walktrap”
algorithm in the R package (Pons and Latapy, 2005; Csardi
and Nepusz, 2006). The walktrap approach has been widely
used and reported to obtain better results on average (Rocha
and Filho et al., 2023). Each module represents a group of
variables that are more highly correlated among themselves
and loosely correlated to others.

2.2.2 Network metrics

Modularity (M) represents the ability to partition a network
into modules, and the modules are detected according to the
concentration of links. In this study, this metric is used to
measure whether the variables in the system tend to change

together or evolve separately. It is defined as follows:

m=

∑
i,j

∣∣Aij ∣∣
2

, (3)

M =

∑
ij (Aij −

kikj
2m )δ(ci,cj )

2m
, (4)

where m is the total weighted existing connections; M is the
modularity, ranging from 0 to 1; Aij is the element of the
adjacent matrix; ki and kj are the degrees of variable i and
variable j , respectively; and ci and cj are the modules that
variable i and variable j belong to, respectively. If variables
i and j belong to the same module, the function δ (ci , cj )
returns 1 and otherwise returns 0 (Newman, 2004).

A new metric S representing the degree of synchroniza-
tion between hydrological and ecological subsystems is pro-
posed. It is the ratio of total positive correlations to all the po-
tential links between ecological and hydrological variables:

S =

∑
ijAij δ

′ (hs,es)

2p∗q
, (5)

where p is the number of variables in the hydrological sub-
system; q is the number of variables in the ecological subsys-
tem. hs represents the hydrological subsystem, and es repre-
sents the ecological subsystem, respectively. δ′ (hs, es) re-
turns 1 when the two variables i and j are correlated and are
in hs and es respectively; otherwise returns 0.

2.3 Causal network analysis

2.3.1 Causal discovery method

Causality is estimated based on the PCMCI method (Runge
et al., 2019a, b). PCMCI is a graphical-based method for lin-
ear and nonlinear causal discovery from multivariate time se-
ries datasets. This method is used because it is able to address
the challenges regarding autocorrelated, high-dimensional
time series data by first using a condition–selection step (PC;
Colombo and Maathuis, 2014) and then applying a momen-
tary conditional independence (MCI) test. Compared to other
causal inference methods (such as GC and CCM), PCMCI
is more efficient in dealing with high dimensionality, re-
ports significant contemporaneous dependencies, and pro-
vides causal relationships with link strengths and different
time lags (Runge et al., 2019b).

Specifically, in an underlying time-dependent system with
N variables Xjt ∈ (X1

t , . . .,X
N
t ) varying in time t , the link

Xit−τ →X
j
t (where τ is a positive time lag) exists if the

lagged variable Xit−τ has a significant dependence or pre-
dictive power over Xjt while removing the influence of
all other potential variables that affect Xit−τ or Xjt , ex-
cept Xit−τ . These potential variables are parents, denoted
as P(Xit−τ ) and P(X

j
t ) {X

i
t−ι} (an example is shown in

Fig. 2a). In the PC step, the preliminary parents P̂ (Xjt )=
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Figure 2. Overview of the causal inference method. (a) An exam-
ple of causality that a lagged variable X4

t−1 (the brown square) is

said to be a cause of X1
t (the brown circle) if X4

t−1 has a significant

dependence or predictive power over X1
t while removing the effect

of all other potential variables influencing X4
t−1 or X1

t (the yellow

squares), except X4
t−1. (b) Four types of assumptions to construct

physically possible and plausible links. τmax represents the maxi-
mum lag time. (c) The network with physically possible and plau-
sible links between the included variables in the PCMCI analysis.
PCMCI will test shown links for significant causality and yield the
final causal network as a subset of this. The dashed lines represent
the causality considered to be spurious, but we do not remove it
from the test as in Case 4 as it might help illustrate ecohydrological
mechanisms in this study.

(Xt−1,Xt−2, . . .,Xt−τmax) of each variable Xjt are initial-
ized. The null hypothesis is set that Xit−τ and Xjt are con-
ditional independence. In the first iteration, p = 0, uncondi-
tional independence tests are conducted, and Xit−τ will be
removed from P̂ (X

j
t ) if the null hypothesis cannot be re-

jected at the significance level of αpc. In each next iteration,
p→ p+ 1, the preliminary parents are sorted according to
their absolute statistic value and then conduct conditional
independence tests. After each iteration, irrelevant parents
are removed from P̂ (X

j
t ), and the algorithm converges if no

more conditions can be tested. In the second step, the MCI
test uses a much smaller set of conditions (generated in the
PC stage) to identify cause links for various time delays. MCI
is defined as follows:

MCI :Xit−τ ⊥X
j
t |P̂ (X

j
t ) {X

i
t−τ }, P̂ (X

i
t−τ ), (6)

where ⊥ denotes (conditional) independence.
Both PC and MCI stages use conditional independence

tests to measure the strength and the statistical significance
of links. The significance level, αpc, and maximum time de-
lay, τmax, are two parameters governing the allowable amount
of false–positive link discovery. The linear test statistic is
based on partial correlation (ParCorr) and the nonlinear con-
nections can be estimated by conditional mutual informa-
tion using the k-nearest-neighbor approach (CMI-knn). For
more details about the method, please refer to Runge et
al. (2019a, 2020).

Although ecohydrological relationships are nonlinear, our
study uses ParCorr to capture significant links. This is be-
cause the nonlinear CMI-knn is unstable in the real case
study, especially when the data sample is limited (Delforge
et al., 2022). Besides, the CMI-knn test is more likely to
miss the effective connections and the linear ParCorr test has
been reported to detect small nonlinearities as well (Terán
et al., 2023). Furthermore, to avoid the penalty of high di-
mensionality and to maintain high statistical power in condi-
tional independence tests, the maximum time lag, τmax, is set
to 3 months. We believe that this time delay is sufficient to
detect the majority of significant cause–effect relationships
during the growing season. We set a strict significance level
of 99 % for both condition selection and condition indepen-
dence tests.

2.3.2 Satisfaction of causal assumptions

Faithfulness, causal Markov condition, causal sufficiency,
and stationarity of variables are the main assumptions of
PCMCI (Runge et al., 2019a). Causal sufficiency refers to the
included variables being sufficient to capture the causal rela-
tionships between them. However, it always depends on sub-
jective judgment and is difficult to handle due to no bound-
aries in the system (Chauhan et al., 2023). We account for
common influencing factors while controlling high dimen-
sionality. Climatic forcings, i.e., temperature (T ) and precip-
itation (P ), as well as reservoir storage change (RSC), are
added as potential influencing factors. The actual evapotran-
spiration (ET) is also added to fulfill causal processes as it
governs the ecosystem water use efficiency (WUE) accord-
ing to the definition. To satisfy the stationarity assumption,
the time series of each variable is masked according to the
growing-season months. The series are further detrended and
use seasonal anomalies based on the additive model (Ombadi
et al., 2020; Terán et al., 2023):

Xt = Tt + St + at , (7)

where Xt is the original time series, Tt is the trend, St is
the seasonality, at is the remainder, and t denotes time. We
first remove the multi-year monthly mean values to obtain
seasonal anomalies. The remaining time series are tested for
long-term trends using the M–K test. When the null hypoth-
esis of no trend is rejected at a significance level of 0.05, the
linear trend is removed from the time series.

2.3.3 Using prior knowledge as physical constraints

Ecohydrological systems present highly interdependent time
series (or functional connections), favoring a high false–
positive rate. Uncertainties in causality analysis are therefore
minimized with the aid of prior knowledge. As illustrated in
Fig. 2b, there are four types of link assumptions, and they are
that (1) the causal link must exist and its direction is fixed
(Case 1), (2) the causal link may exist and its direction is
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fixed (Case 2), (3) the causal link may exist but its direction
is not specified (the direction is then given by the time order;
Case 3), and (4) the causal link is physically inappropriate
and will not be tested (Case 4). In this study, the second case
is designed to specify the direction of potential contempo-
raneous links, and the third case is used for potential bidi-
rectional interactions. Such knowledge is incorporated by
utilizing the link_assumptions function in the Python pack-
age tigramite (https://github.com/jakobrunge/tigramite, last
access: 18 October 2024). As a result, physically possible
and plausible links between the included variables are hy-
pothesized as a constrained structure (Fig. 2c). Then, PCMCI
tests possible links and provides the final results as a subset of
the total possible network, showing causal links, directions,
strengths, and time lags.

Since this study focuses mainly on the ecohydrologi-
cal feedback occurring at the land surface, climate forc-
ings are considered external system factors, as are hu-
man impacts. The effects of ecohydrological variables
in turn on climatic drivers and human activities are
not considered. The interactions can be separated into
the processes of hydrological→hydrological variables,
hydrological→ecological variables, ecological→ecological
variables, and ecological→hydrological variables. Some in-
teractions are potentially bidirectional; for example, GWSA
and SMSA can complement each other. Afforestation, i.e.,
the increase in vegetation coverage (NDVI), improves the to-
tal GPP of a region, while the enhanced physiological abil-
ity (GPP) also facilitates leaf growth (NDVI). Vegetation
productivity (GPP) is directly supported by soil water sup-
ply (SMSA), while enhanced GPP in turn influences SMSA.
Note that water withdrawal (WW) is an important anthro-
pogenic influence, but due to the lack of monthly data, the
correlation coefficient (PCC) is used to characterize its gen-
eral association with other variables in the system.

3 Study area and data

3.1 Study area

The Yellow River (Fig. 3) is the second-longest river in
China (Wang et al., 2020). It originates from the northeastern
Qinghai–Tibet Plateau, flowing through the Loess Plateau
and the North China Plain, and finally enters the Bohai Sea.
The YRB is an important ecological corridor, hosting more
than 12 % of the population and creating about 14 % of the
gross domestic product (GDP) of China. In general, the YRB
is dominated by the arid and semi-arid continental monsoon
with a long-term mean annual PET /P ratio of 2.1 (Xie et al.,
2019). Summer serves as the primary rainy season, with pre-
cipitation from June to September comprising approximately
70 % of the annual total (Ni et al., 2022).

Figure 3. Location of the Yellow River basin and its topography,
with the basin divided into eight subregions based on the sec-
ondary basin boundary in China. Distributions of meteorological
stations and hydrological stations are also shown in this figure. Re-
gion I: above the Guide, Region II: Guide to Lanzhou, Region III:
Lanzhou to Toudaoguai, Region IV: Endorheic Basin, Region V:
Toudaoguai to Longmen, Region VI: Longmen to Sanmenxia, Re-
gion VII: Sanmenxia to Huayuankou, Region VIII: the downstream
part of Huayuankou.

In this study, the YRB is divided into eight subregions
labeled Region I to Region VIII from the upstream to the
downstream (Fig. 3 and Table 1). The upper reaches include
Regions I–IV, covering part of the Qinghai–Tibet Plateau and
part of the Loess Plateau. The source region (Region I) has a
cold and vulnerable eco-environment where the climate is in-
land alpine semi-humid, generating 35 % of the total annual
runoff for the entire basin (Zhan et al., 2024). From west to
east, the altitude gradually decreases, the temperature rises,
and the climate becomes drier. Region II is the transitional
zone between the source (Region I) and the Loess Plateau
(Regions III and IV). Regions III and IV are the driest parts of
the YRB, characterized by low precipitation, high evapotran-
spiration, and sparse vegetation coverage. The dominant land
use type in the upper reaches is grassland (Cao et al., 2022).

The middle reaches are Regions V–VII, and the lower
reaches are Region VIII, with a temperate monsoon climate.
From Region V to Region VIII, climatic conditions become
warmer and wetter, and vegetation cover increases. The main
land use types are cropland and forests. Compared to the
upper reaches, these regions have experienced more inten-
sive human activities, including the change of agricultural
land back to forest and excessive water withdrawals for large
populations, agricultural irrigation, and industrial production
(Xie et al., 2019; Zhou et al., 2024).
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3.2 Data sources and processing

3.2.1 Hydrological data

The monthly runoff observations from 2003 to 2019 at GD,
LZ, TDG, LM, SMX, HYK, and LJ main-stem hydrolog-
ical stations are collected from the National Hydrological
Yearbook. Since the Yellow River is one of the most heav-
ily loaded rivers in the world, we collect the sediment loads
from the National Hydrological Yearbook as well. Gauged
streamflow and sediment are not suitable for regional investi-
gation, so we calculate the increments in flow (Rmodulus) and
sediment loads (SLmodulus) for each subregion, i.e., the dif-
ference in flow/sediment loads between two gauged stations
that are standardized as modulus by area (Xu et al., 2022).

The MODIS-based snow cover product is used to obtain
the variation in snow cover area (SCA; Hao et al., 2022) in
the source region. Terrestrial water storage (TWS) data are
derived from three monthly gridded GRACE products, which
are the GRACE mascon data from the Center for Space Re-
search (CSR, at the University of Texas, Austin) (Save et
al., 2016), the GRACE mascon data from the Jet Propulsion
Laboratory (JPL, at NASA and the California Institute of
Technology, California) (Swenson and Wahr, 2006; Landerer
and Swenson, 2012), and the GRACE mascon data from the
Goddard Space Flight Center (GSFC, at NASA) (Awange
et al., 2011; Luthcke et al., 2017). The three GRACE prod-
ucts are used by taking their ensemble mean values. A few
months of data missing during the study period due to bat-
tery management are interpolated by averaging the values of
adjacent months. All GRACE data used are anomalies rela-
tive to a 2004–2009 time-mean baseline – namely, terrestrial
water storage anomalies (TWSA). Monthly data simulated
by the Noah model of the Global Land Data Assimilation
System (GLDAS-v2.1; http://disc.sci.gsfc.nasa.gov/services/
grads-gds/gldas, last access: last access: 18 October 2024)
are utilized to collect the surface water storage (SWS) and
the soil (moisture) water storage (SMS). SWS contains snow
water equivalent and canopy water storage from the Noah
model, as well as the volume of water stored in reservoirs
and lakes. SMS is calculated as the total soil moisture con-
tent from four different soil layers (0–10, 10–40, 40–100,
and 100–200 cm). Their values are also processed into the
anomaly values as surface water storage anomalies (SWSA)
and soil moisture storage anomalies (SMSA). Groundwa-
ter storage anomalies (GWSA) are calculated by subtracting
SWSA and SMSA from TWSA (Scanlon et al., 2018; Yao et
al., 2019).

3.2.2 Ecological data

Normalized difference vegetation index (NDVI) and gross
primary productivity (GPP) are used as proxies for vege-
tation growth and photosynthetic activity, respectively. The
time series of NDVI at 1 km is obtained from the Terra

Moderate-Resolution Imaging Spectroradiometer (MODIS)
Vegetation Indices Monthly (MOD13A3) product (Didan,
2021) (https://lpdaac.usgs.gov/products/mod13a3v061/, last
access: 18 October 2024). The GPP dataset is obtained from
the MOD17A2H product (Running et al., 2021a), avail-
able at a 500 m spatial resolution and 8 d temporal reso-
lution. Ecosystem water use efficiency (WUE) is the ra-
tio of GPP to actual evapotranspiration (ET) (Beer et al.,
2007; Cooley et al., 2022), where ET is available from the
MOD16A2 product (Running et al., 2021b) (https://lpdaac.
usgs.gov/products/mod16a2v061/, last access: 18 October
2024). All the time series are processed to monthly data.

3.2.3 Auxiliary data

Monthly average air temperature (T ) and precipitation (P )
during the period of 2003–2019 at 76 National Meteorologi-
cal Observatory stations (Fig. 3) are derived from the China
Meteorological Administration (http://data.cma.cn/, last ac-
cess: 18 October 2024). For each subregion, meteorologi-
cal values are calculated using the Thiessen polygon method
based on gauged values. Longyangxia (LYX), Sanmenxia
(SMX), and Xiaolangdi (XLD) are important reservoirs en-
gaged in the water-sediment regulation scheme of the Yel-
low River (Xie et al., 2022). In Region I, we use the data
above the reservoir due to concerns within the research com-
munity, and we consider reservoir storage changes (RSC)
in Regions VI and VII. Water storage changes in the reser-
voirs are captured based on runoff records from the National
Hydrological Yearbook. Water withdrawal (WW) data are
obtained from the Water Resources Bulletin of the Yellow
River (http://yrcc.gov.cn/gzfw/szygb/index.html, last access:
18 October 2024). Table S1 in the Supplement is the lookup
table for all the data used in this study.

4 Results

4.1 Evolutions of individual variables

The evolutions of ecohydrological variables during the
growing season across eight subregions are presented in
Fig. 4a–h. The corresponding M–K test results are plotted
in Fig. 4i. The multi-year mean values of the variables are
listed in Table S2. At the basin scale, TWSA of the grow-
ing season significantly reduced (with a decreasing rate of
−5.12 mm yr−1), and GWSA also had a significant down-
ward trend (with a rate of −6.66 mm yr−1), but the evolu-
tion trends of SMSA, Rmodulus, and SLmodulus are not sig-
nificant. The spatial heterogeneity of hydrological evolutions
was as follows. In the source regions (Regions I–II), the wa-
ter resources were relatively abundant with high Rmodulus,
and most of the hydrological variables exhibited increasing
trends (significant or insignificant) except for GWSA. The
trend in snow cover area in the source region was not signifi-
cant. However, the snow cover for melting (April) increased,
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Table 1. Summarized information on eight subregions in the YRB.

Region Area Outflow Growing
label (×104 km2) station Abbreviation PET /P season T (°C) Location

I 13.20 Guide GD 1.76 7.3 Qinghai–Tibet Plateau Upper reaches

II 9.10 Lanzhou LZ 2.05 11.7 Transitional area

III 15.32 Toudaoguai TDG 3.98 18.3 Loess Plateau

IV 4.23 – – 3.56 18.4 Loess Plateau

V 12.24 Longmen LM 2.15 18.8 Loess Plateau Middle reaches

VI 19.08 Sanmenxia SMX 1.83 19.3 Loess Plateau

VII 4.17 Huayuankou HYK 1.63 21.4 Transitional area

VIII 2.24 Lijin LJ 0.88 20.0 The North China Plain Lower reaches

Note: PET /P is the long-term dryness index based on Xie et al. (2019). PET is potential evapotranspiration, and P is precipitation.

and the onset of melting shifted earlier from June to May
(Fig. S1 in the Supplement). In Regions III–VI on the Loess
Plateau,Rmodulus became much lower compared to the source
regions and showed a decreasing trend, except for Region VI
(which is disturbed by the reservoir). TWSA and GWSA
all showed significant downward trends, with depletion in-
creasing from the upstream to the downstream region, while
SMSA displayed non-significant upward trends. In the lower
reaches (Region VIII), all the hydrological variables showed
scarcity and declined substantially from 2003 to 2019. Re-
garding the regional sediment loads (SLmodulus), their evolu-
tion seemed to be irregular across the basin, with significant
trends only in Regions VII (with the XLD reservoir) and VIII
(with severe water withdrawals).

Ecological conditions differed from hydrological condi-
tions a lot. The poorest areas in terms of vegetation cov-
erage (NDVI) and productivity (GPP) were the driest re-
gions, Regions III–IV, while for WUE, the poorest part of
the YRB was the source region where the temperature is low.
NDVI and GPP of the growing season increased by 31.16 %
and 35.70 % for the entire YRB, respectively. It indicated
that the large-scale vegetation restoration undertaken over
the last 2 decades was effective (Yu et al., 2023). However,
the ecosystem water use efficiency (WUE) of the growing
season decreased significantly in most subregions (except in
Regions I and VIII) from 2003 to 2019.

4.2 Correlation-based networks and module detection

Networks were constructed for each subregion in which evo-
lutions of ecohydrological variables were linked by correla-
tions (if significant). The correlations in each network can
be found in Fig. 5a. GWSA played a significant role in
the formation of negative correlations in most subregions
(Fig. 5a). Positive correlations were further clustered into dif-
ferent modules due to their complexity (Fig. 5b).

From Fig. 5b, we recognized which parts of the system
behaved similarly during the growing season from 2003 to
2019. The modularity was found to be low in the upper two
reaches (Regions I and II), meaning that positive correlations
were highly connected and were difficult to separate. In par-
ticular, the ecological variables in the green circles were cor-
related with the hydrological variables in the blue circles, and
they formed a big module. The S values (synchronization be-
tween the two subsystems) for these two regions were 0.25
and 0.37, respectively. This raised the question of whether
there was strong feedback between vegetation and water re-
sources that promoted their joint increases. However, the re-
maining regions, Regions III–VIII, had relatively high mod-
ularity, ranging from 0.18–0.65. In Regions III and IV, some
variables in the ecological (NDVI and GPP) and hydrolog-
ical (SMSA) subsystems still evolved together, with the de-
coupling of Rmodulus and SLmodulus. The synchronization of
the two subsystems was reduced to 0.18 and 0.15, respec-
tively. WUE and GWSA were divided into the same module,
both showing downward trends. In Regions V–VIII, which
were more affected by intensive human activities (Zhang et
al., 2023; Yin et al., 2023), the hydrological subsystems in
blue and the ecological subsystems in green were found to be
decoupled, indicating the two different evolution directions.
In the downstream of the basin (Region VIII), the modularity
decreased due to the synchronized decreases in all hydrolog-
ical components. Given that the network structure and met-
rics can be influenced using different thresholds, PCC> 0.4
and PCC> 0.5 were also employed to construct networks for
validation (Figs. S2 and S3). The mechanisms behind decou-
pling correlations of the ecological and hydrological subsys-
tems from the upper to the lower reaches required further
investigation.
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Figure 4. Ecohydrological variables of the growing season, where the horizontal axis represents the year and the vertical axis is different
subregions: (a) terrestrial water storage anomalies (TWSA), (b) soil water storage anomalies (SMSA), (c) groundwater storage anomalies
(GWSA), (d) runoff increment modulus (Rmodulus), (e) normalized difference vegetation index (NDVI), (f) gross primary productivity (GPP),
(g) ecosystem water use efficiency (WUE), (h) sediment load increment modulus (SLmodulus), and (i) Z-statistic values of the M–K test for
each ecohydrological variable. The significance level is taken to be 0.05. A gray box denotes no data, a red box represents a positive trend, a
blue box represents a negative trend, and the symbol ∗ means the trend is significant.

4.3 Causality-based networks

Figure 6 presents the significant contemporaneous and
lagged causal links within the complex ecohydrological sys-
tems. The resulting networks display the drivers of small
timescale changes as the maximum time lag is 3 months. If
a pair of variables exhibits significant causality at multiple
time lags and in the same direction, only the strongest lagged
link is shown. The most important causal processes typically
took place in the current month and with a lag of 1 month.
The self-dependencies of the variables are shown in Table S3.

4.3.1 Causal links between water components and
vegetation

In alpine regions, Regions I–II, NDVI and GPP were found
to positively evolve together with Rmodulus and SMSA dur-
ing the growing season. Figure 6 uncovered the only weak
and lagged causal link between the ecological (green cir-
cles) and hydrological subsystems (blue circles) – namely,
SMSA→GPP at a 1-month lag. It suggested less water de-
mand for vegetation and the delayed vegetation response to
changes in the water supply. Instead, increased T (Fig. 4) was
the dominant factor stimulating GPP since the contempora-
neous T →GPP links with the strengths of 0.78 (Region I)

and 0.52 (Region II) were detected. It can be interpreted that
these alpine areas are heat-limited and have a certain number
of water resources, resulting in a higher sensitivity of biolog-
ical photosynthesis, such as carbon allocation and biomass
accumulation, to temperature. Meanwhile, P was the cru-
cial driver of the increases in the hydrological subsystem,
evidenced by strong contemporaneous and lagged links of
P →SMSA, P → Rmodulus and P →SLmodulus in the net-
works. T and P also affected snow melting (SCA) and fur-
ther impactedRmodulus positively, with a 3-month lag. In gen-
eral, the exhibiting “joint evolution” between water compo-
nents and vegetation was more attributed to their respective
drivers instead of direct causality.

In Regions III–IV, joint evolutions in NDVI, GPP, and
SMSA were observed. These are water-limited areas with a
PET /P over 3.0 (Table 1), where water availability, rather
than heat supply, is the primary factor stimulating the ecolog-
ical subsystem. The positive contemporaneous/lagged links
of P→GPP and SMSA→GPP were evidence of this. The
results indicated a relatively strong and rapid vegetation re-
sponse to changes in the water supply, and the contribution of
vegetation to the conservation of soil water storage was also
found (GPP→SMSA with a 1-month lag). Similar links be-
tween NDVI and SMSA were detected although they were
treated as “spurious” ones (Sect. 2.3.3). The direct causal in-
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Figure 5. (a) Correlation metrics for each subregion. (b) Module composition of positively correlated networks in different subregions.
Different gray circles in the background represent different modules. Black lines represent correlations in the same module, and red lines
represent correlations in different modules. Blue circles indicate variables of the hydrological subsystem, and green circles indicate variables
of the ecological subsystem. WUE is a special ecological indicator represented in yellow circles as it is the coupling of hydrological (ET)
and ecological (GPP) processes.

teractions and the common driver P mainly contributed to
the joint increases. Compared to Regions I–II, Rmodulus was
decoupled from the module. It was found that human water
withdrawals exerted a significant influence on regional runoff
(WW→ Rmodulus), and thus WW was regarded as a signifi-
cant contributor to the decoupling of Rmodulus from NDVI,
GPP, and SMSA.

In Regions V–VIII, water availability was still impor-
tant for NDVI and GPP. However, ecological and hydrolog-

ical variables evolved in a non-synchronous manner. This
could be attributed to the disturbance from human activities.
WW negatively affected GWSA with magnitudes of −0.81,
−0.51,−0.61, and−0.65, respectively. It could further influ-
ence soil water storage via the causality between GWSA and
SMSA. WW also decreased Rmodulus, and WW→Rmodulus
with strengths of −0.43 and −0.73 was found in Regions
V and VIII, respectively. Reservoir regulation posed strong
influences on Rmodulus and SLmodulus as well as strong links
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Figure 6. Causal process networks of ecohydrological variables in
the growing season (April to September) for Regions I–VIII. A link
is only shown if found statistically significant at a 99 % confidence
level. Link labels in (1), (2), or (3) indicate the lag at which the con-
nection is found, and only the strongest one is shown in the graph
for clarity. (0) means a contemporaneous link, and a dashed line
(–) indicates a contemporaneous link with uncertain direction. All
links regarding WW are special as they are determined by correla-
tions marked by PCC. Links between SMSA and NDVI as well as
GWSA and GPP are regarded as spurious ones and are denoted in
dashed lines. The red circle under P or (and) T indicates its domi-
nance in controlling the local ecohydrological system.

with respect to RSC were observed from the networks of Re-
gion VI (with the SMX reservoir) and Region VII (with the
XLD reservoir). These led to great differences between nat-
ural and human-induced evolutions, disrupting the correla-
tions between not only ecological and hydrological variables,
but also hydrological variables. On the other hand, revege-
tation measures represented by the Grain for Green project
have been active since 1999 (Zhou et al., 2022). The greening
of the land surface (NDVI) contributed to the rapid growth of

GPP (strong NDVI→GPP links). However, excessive veg-
etation required a lot of extra water to support physiologi-
cal activities, which had lagged negative impacts on SMSA
(Fig. 6). This could also result in different trends in GPP or
NDVI and SMSA. A more detailed insight into this is given
in the Discussion section.

4.3.2 Drivers of WUE variability

As an integrated product of ecological and hydrological pro-
cesses, WUE was observed to co-evolve with GWSA in Re-
gions III–VII according to correlation networks, and it re-
mained isolated in the other regions. Conceptually, WUE and
GWSA do not have a direct causality. The causal networks
indicated two potential pathways through which GWSA
might indirectly influence WUE so that groundwater could
replenish soil water storage, thereby influencing GPP and ET
and further increasing/decreasing the value of WUE. How-
ever, the decline in GWSA was also driven by WW, and
WUE decreased directly due to the control of ET (Fig. 7).

Either GPP or ET, or both, is directly responsible for WUE
changes. In Regions I–II, the control of WUE was exerted by
both GPP and ET. The distinction was that the two types of
controls exhibited comparable strengths in Region I (with an
insignificant WUE decrease), whereas ET was more domi-
nant in Region II (with a significant WUE decrease). In Re-
gions III–VI (the Loess Plateau), the growing-season WUE
had a more significant decrease, and causality analysis re-
vealed the control of ET over WUE. Therefore, the observed
decline was attributed to the increases in ET (direct causal-
ity) originating from increased vegetation coverage (NDVI)
and soil water storage (SMSA). The increases in NDVI were
largely due to afforestation, and changes in SMSA were
mainly determined by a combination of vegetation condi-
tion, precipitation, and groundwater. Generally, the increase
in NDVI was more significant than SMSA (Fig. 4). The in-
fluence of NDVI on ET was also pronounced, with evident
contemporaneous and lagged effects (Fig. 6). Hence, reveg-
etation contributed significantly to GPP, but it also enhanced
ET. As the increase rate of ET exceeded that of GPP, the
WUE value was threatened. Interestingly, we found the con-
trol of ET gradually decreased over time in these regions,
illustrating that the decreasing trends in WUE were allevi-
ated.

One special thing was that the GPP→WUE and
ET→WUE links were weak in Regions VII–VIII, particu-
larly in Region VII, where both links were insignificant. This
was due to the high synchronization of monthly ET and GPP
(Fig. S4), which almost canceled out their respective con-
tributions to WUE. Consequently, the decreasing trends of
WUE in these two regions were relatively small.
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Figure 7. Link strengths of GPP versus ET to WUE during the
growing season. The bar chart is derived from Fig. 6, represent-
ing the overall link strength during 2003–2019. The line graph rep-
resents time-varying link strengths (absolute value), with a sliding
window of 8 years.

5 Discussion

5.1 Network perspective for understanding complex
systems

A correlation network links the individual evolutions of mul-
tiple variables in the system and separates tightly correlated
ones into different modules. The joint increases and de-
creases in variables within and across the subsystems can
therefore be recognized. However, using correlations alone
makes it difficult to explore the underlying causes. Some-
times intuitively irrelevant variables had similar evolution
trends, such as WUE and GWSA, declining together in some
cases. Causality is valuable for uncovering underlying mech-
anisms but has limited applications in ecohydrology, par-
ticularly when multiple variables complicate the cause-and-
effect relationships. Theoretically, it is possible to trace the
compound causes of changes regarding any variable, con-
tributing to the understanding of ecohydrological processes.
The exhibited joint increases and decreases were found to
be controlled by a combination of common drivers, respec-
tive drivers, and causality. Correlation and causality both
make sense, representing phenomena and mechanisms, re-
spectively, while causality-based networks uncover more de-
tails. On the other side, ecohydrological models are also im-
portant tools to help understand processes of the system or
subsystem, but our observation- and network-based approach

(1) is more directly linked to physical processes and avoids
large uncertainties raised from model structure deficiencies
and equifinality in parameterizations (Kelleher et al., 2017),
(2) is more convenient and more flexible to select variables
and temporal scales to be studied, and (3) better incorporates
processes that are difficult to be considered and parameter-
ized in the models (e.g., human activities). The results re-
vealed by our network approach are further discussed below,
taking the YRB as the case study.

5.1.1 Climatic forcings can be important to drive joint
evolutions

Climatic forcings are critical drivers of variations in the eco-
hydrological system, but the effects vary due to the hetero-
geneous characteristics of the subregions. Due to such ex-
ternal drivers, synchronous increases/decreases or the sim-
ilar bivariate “causality” between ecohydrological variables
are ambiguous in mechanism interpretation and may lead to
incorrect conclusions. Bonotto et al. (2022) identified rela-
tionships between streamflow and groundwater using CCM.
They pointed out that streamflow and groundwater were
forced by rainfall and potential evapotranspiration, and hence
the identified relationships might be the result of a third
(or further) strong common forcing. A synthetic study also
showed that the common meteorological forcing could al-
ways make streamflow and subsurface flow show CCM con-
vergence (Delforge et al., 2022).

Our study presented good examples to illustrate this as
well. The source region of the YRB (Region I) experienced a
warmer and wetter climate in the past decades (Wang et al.,
2018b; Yang et al., 2023), and we found different drivers and
influencing pathways ultimately led to synchronized growth
of the variables. Results showed that T was important for
variables regarding vegetation growth and physiological ac-
tivity in this subregion. A similar conclusion was also drawn
by Bo et al. (2022). P was discovered to dominate the evo-
lutions of hydrological components in the source region, just
as Li et al. (2024) reported. However, increasing T had mi-
nor influences on the hydrological subsystem. This is due to
the relatively small proportion of snow and glaciers (about
6 % of the area; Table S2) and the insignificant contribution
of the frozen-ground thawing process to soil moisture and
runoff during the growing season (Qin et al., 2017; Yang et
al., 2023). A similar result was also found in Region II, a
transitional area between the Tibetan and Loess plateaus. In
the remaining subregions, P was the common driver of both
hydrological and ecological subsystems. P regulated GPP
mainly by influencing soil water for uptake and was also the
main source for replenishing local water resources.
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5.1.2 Asynchronous evolutions attributed to human
activities

Large-scale ecological restoration has been undertaken un-
der the Grain for Green policy, particularly in Regions III–
VII. Previous studies have highlighted the negative relation-
ship between water storage and vegetation greenness due to
revegetation (e.g., Liu et al., 2023). However, some studies
(e.g., Zhang et al., 2022a, and Zhou et al., 2022) have chal-
lenged this conclusion, finding that a large part of the Loess
Plateau has experienced robust upward trends of surface wa-
ter yield since the implementation of vegetation restoration.
In our study, SMSA did not show significant downward
trends during 2003–2019 in core areas of vegetation restora-
tion (especially in the upper reaches) although GWSA de-
creased substantially. On the one hand, the greening of the
land surface can contribute positively to soil water storage by
allocating more precipitation to infiltration (Lan et al., 2024).
The increase in regional P may also lead to increased SMSA,
largely due to enhanced land–atmosphere interactions that
accelerate local moisture recycling following revegetation
(Zhang et al., 2022a). In Regions III and IV (mainly grass-
land), we found positive GPP (NDVI)→SMSA effects with
a delay of 1 month. That is to say, although revegetation leads
to water consumption from the soil (Lv et al., 2019; Ge et al.,
2020; Li et al., 2020; Zhao et al., 2022), it is potentially ben-
eficial for soil water storage in turn. Wang et al. (2024) also
concluded that revegetation had a notably positive impact on
root-zone soil moisture and terrestrial water storage in the
upstream grasslands. In this case, the overall evolution trends
of SMSA and GPP/NDVI showed similar upward trends in
these regions.

On the other hand, revegetation was found to have signif-
icant adverse impacts on SMSA in Regions V–VII (Fig. 6),
which was consistent with Cao et al. (2022). This was evi-
denced by the negative GPP (NDVI)→SMSA links with a
lag of 3 months, which were more significant than the pos-
itive lagged links from GPP to SMSA. These regions are
mainly croplands and forests, having a greater impact on wa-
ter consumption than grasses due to higher canopy covers
and more developed rooting systems (Zhang et al., 2022a).
Indirect consumption of deep groundwater storage was also
captured, but Region VII was special due to the less signifi-
cant replenishment effect between GWSA and SMSA, which
might be caused by groundwater overexploitation and result-
ing low water levels. Therefore, revegetation can, at least in
part, lead to different trends in water components and vege-
tation indices.

In addition, direct water withdrawal and groundwater ex-
ploitation (WW) were reported to significantly influence both
surface water and groundwater storage in the middle and
lower reaches of the YRB (Yin et al., 2017; Zhang et al.,
2023). However, such influences have not been considered
as much when investigating the connections between reveg-
etation and water resources (e.g., Liu et al., 2023; Wang et

al., 2024). Our study also quantified the impacts of RSC and
WW on regional water storage and runoff. The relevant links
all showed strong strength, providing intuitive evidence of
anthropogenic influences on decoupled ecohydrological evo-
lutions in Regions V–VIII.

5.2 WUE in the growing season

In this study, WUE was considered an intersection of hydro-
logical and ecological subsystems. Previous studies argued
that vegetation restoration on the Loess Plateau led to an im-
provement in WUE on the annual scale, and the improve-
ment was mainly driven by the increasing GPP (Zhang et al.,
2022b; Jiao et al., 2022). Our study found similar upward
trends in annual mean WUE (Fig. S5) but found decreases
in growing-season WUE (Fig. 4). Thus, ecosystems may not
have adapted well to environmental changes, with reduced
functionality and performance in terms of the growing sea-
son (Terán et al., 2023). Causality-based networks indicated
that the growing-season WUE of the YRB was generally con-
trolled by ET (except in Region I), especially in the more arid
areas (Regions III–V). This conclusion was consistent with
Zhang et al. (2022b). Rapid revegetation increased the GPP;
however, such measures also increased the ET. On a posi-
tive note, the influence of ET on WUE showed decreasing
trends in many subregions, especially those with relatively
low GPP. These trends suggested that the gap between ET
and GPP growth rates narrowed as revegetation progressed.
It also indicated that the composition of the control over
WUE may continue to change in the future. In addition, as
water consumption for carbon uptake varies between vegeta-
tion types (Naeem et al., 2023), vegetation structures in the
YRB could be further adjusted. To further improve growing-
season WUE, it is also necessary to minimize the use of water
resources by promoting water-saving irrigation systems.

5.3 Temporal uncertainty of ecohydrological
relationships

A violin plot is a graphical representation of data distribu-
tion. The presence of a flatter or multimodal violin plot in-
dicates a higher degree of uncertainty regarding the causal
relationships between variables (Lan et al., 2020). The un-
certainty regarding the link strength was characterized using
violin plots given the influence of potential outliers in the se-
ries, different data lengths, and non-stationarity of causality.
Due to the requirement of sufficient sample data for causality
analysis, sliding windows of 8–16 years were used to con-
struct different networks and explore the uncertainty of net-
work relationships. Regions I, V, and VII were taken as repre-
sentative cases, standing for the typical alpine area, intensive
revegetation area, and water-regulated area, respectively.

In Fig. 8, the relative dominance of different ecohydro-
logical processes (i.e., the median strength represented by
the white dots) is generally consistent with the results dis-
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Figure 8. (a) Absolute values of causal relationships in three rep-
resentative subregions of YRB. The important processes of each
subregion are selected. If a link is not identified at the significance
level, then the link strength is defined as 0. (b) Temporal uncertainty
in causal link strength when the time window is 10 years (taking
Region V as an example).

played in Fig. 6. This suggests that the relationships found
to be significant (Fig. 6) are not coincidental but are gen-
erally robust from 2003 to 2019. Nevertheless, some pro-
cesses show high levels of uncertainty, particularly those
with lower link strengths, which may not exhibit significance
at some times. Such uncertainty may arise from the ran-
dom fluctuations in ecohydrological variables over time, or
there may be ongoing evolutionary trends in system relation-
ships. However, the whole study period of 2003–2019 is not
a long time for studying the time-varying network relation-
ships. Taking Region V as an example, only a small part of
the link strengths, e.g., NDVI→ET, NDVI→ET (1), and
ET→WUE in Fig. 8b, have obvious trends. Hence, we did
not discuss the time-varying relationships too much in our
study.

5.4 Limitations and future outlooks

This study adopted a significant amount of remote sensing
and reanalysis data, which inevitably resulted in uncertainty
in the findings. GRACE data were proven to be a useful tool
to reflect the mass changes in TWS of the YRB (Xie et al.,
2019), and we used the ensemble mean values of three prod-
ucts to reduce the uncertainty. NDVI, GPP, and WUE were
derived from MODIS products, which were widely used to
study the ecological environment of the YRB. For example,
Zhang et al. (2022b) explored the spatial–temporal variations
in WUE, GPP, and ET utilizing MODIS products across the

Ordos Plateau. Liu et al. (2023) checked the accuracy of
MODIS-derived GPP data on the Loess Plateau and demon-
strated its capacity in ecology applications. SCA was derived
from a MODIS-based dataset with good performance. Still,
uncertainty can be reduced by comparing and fusing data
from different datasets in the future.

In addition, we must acknowledge that our study only cap-
tured the most important interactions in the basin. We can-
not observe everything, everywhere, or all the time. Depict-
ing all real-world processes is also challenging due to dif-
ficulties in mathematical assumptions and algorithm perfor-
mance. Nevertheless, we believe that our findings are impor-
tant for understanding the general watershed functioning and
could guide the development of more accurate and region-
specific ecohydrological models. Models that are causally
similar to observations (i.e., our causality results) may yield
more reliable future projections (Runge et al., 2019a). For ex-
ample, in the area where snowmelt contributes significantly
to runoff, a snowmelt module considering the accurate influ-
encing time is required in the model. In places where ground-
water greatly contributes to the upper soil layers and the wa-
ter uptake by roots, modules regarding groundwater and soil
water movement should be carefully considered. We promote
the use of network-based approaches and models together in
the future to more formally address the perceptions of causal-
ity in hydrology and to better prepare for a broad range of
possible futures.

6 Conclusions

To enhance our understanding of the complex interactions
within ecohydrological systems, including which variables
change similarly and potentially why, this study presented
a developed framework based on a correlation analysis, a
causality analysis, and a large amount of satellite data and in
situ observations to create network perspectives. The YRB
was taken as the study area, and the main conclusions are
summarized as follows.

Ecohydrological dynamics in the YRB exhibited signifi-
cant shifts from 2003 to 2019. During the growing season,
TWSA generally decreased, primarily due to GWSA deple-
tion. Meanwhile, NDVI and GPP showed notable increases,
whereas WUE declined. Variables in ecological (represented
by NDVI and GPP) and hydrological subsystems (repre-
sented by Rmodulus, SMSA, etc.) displayed stronger corre-
lations in Regions I–IV (upper reaches) compared to Re-
gions V–VIII (middle and lower reaches). The joint changes
in these variables were influenced by common drivers, re-
spective factors, and causality.

Further analysis of causality revealed more detailed in-
teractions within the system. Distinct interaction patterns
between ecological and hydrological subsystems emerged
across the basin: joint evolution with relatively weak causal-
ity (Regions I–II), joint evolution with relatively strong
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causality (Regions III–IV), and asynchronous evolution with
relatively strong causality (Regions V–VIII). We concluded
that joint increases observed in Regions I–II primarily re-
sulted from the combined influence of warming and humid-
ifying climate conditions, whereas in Regions III–IV, joint
increases were driven by causality and a common driver,
P . The divergent trends observed in Regions V–VIII were
largely attributed to human activities.

Unexpectedly, a joint decline in growing-season WUE and
GWSA was observed. The decrease in WUE was primar-
ily regulated by increased ET (direct causality), originating
from NDVI and SMSA. GWSA decreased due to WW and
the replenishment to SMSA (which further supported GPP
and ET). Interestingly, in some subregions, the influence of
ET on WUE gradually decreased with the greening of land
surface, indicating a mitigation of WUE decline during the
growing season. However, optimizing local vegetation struc-
ture and water-saving irrigation remain crucial for further im-
proving WUE.

To sum up, this study contributes to the scientific under-
standing of ecohydrological systems under a complicated
context of climate change and intensive human activities.
Furthermore, it demonstrates the potential of causality analy-
sis in revealing complex dependable interactions among mul-
tiple variables. The proposed framework not only facilitates
the exploration and interpretation of ecohydrological mech-
anisms in the YRB, but also holds promise for broader geo-
graphical applications.
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