Articles | Volume 28, issue 24
https://doi.org/10.5194/hess-28-5443-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-5443-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing generalizability of data-driven urban flood models by incorporating contextual information
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Milton Salvador Gomez
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Expertise Center for Climate Extremes, University of Lausanne, Lausanne, Switzerland
Tom Beucler
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Expertise Center for Climate Extremes, University of Lausanne, Lausanne, Switzerland
Jovan Blagojevic
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
João Paulo Leitao
Department of Urban Water Management, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
Nadav Peleg
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
Expertise Center for Climate Extremes, University of Lausanne, Lausanne, Switzerland
Related authors
No articles found.
Francesco Marra, Nadav Peleg, Elena Cristiano, Efthymios I. Nikolopoulos, Federica Remondi, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 25, 2565–2570, https://doi.org/10.5194/nhess-25-2565-2025, https://doi.org/10.5194/nhess-25-2565-2025, 2025
Short summary
Short summary
Climate change is escalating the risks related to hydro-meteorological extremes. This preface introduces a special issue originating from a European Geosciences Union (EGU) session. It highlights the challenges posed by these extremes, ranging from hazard assessment to mitigation strategies, and covers both water excess events like floods, landslides, and coastal hazards and water deficit events such as droughts and fire weather. The collection aims to advance understanding, improve resilience, and inform policy-making.
Qi Zhuang, Marika Koukoula, Shuguang Liu, Zhengzheng Zhou, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2025-1002, https://doi.org/10.5194/egusphere-2025-1002, 2025
Short summary
Short summary
Understanding how projected urbanization and climate change affect typhoons, which may cause the most destructive natural catastrophes, is crucial. Based on numerical simulations of five landfalling typhoons in Shanghai, China, our results highlight that warming sea surface temperatures significantly shift typhoon tracks with intensified structures (increased size, intensity, and affected time) on the big scale. At the meantime, urbanization further enhances local rainfall intensity.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci., 29, 863–886, https://doi.org/10.5194/hess-29-863-2025, https://doi.org/10.5194/hess-29-863-2025, 2025
Short summary
Short summary
In this study, we implement a climate, water, and crop interaction model to evaluate current conditions and project future changes in rainwater availability and its yield potential, with the goal of informing adaptation policies and strategies in Ethiopia. Although climate change is likely to increase rainfall in Ethiopia, our findings suggest that water-scarce croplands in Ethiopia are expected to face reduced crop yields during the main growing season due to increases in temperature.
Janbert Aarnink, Tom Beucler, Marceline Vuaridel, and Virginia Ruiz-Villanueva
Earth Surf. Dynam., 13, 167–189, https://doi.org/10.5194/esurf-13-167-2025, https://doi.org/10.5194/esurf-13-167-2025, 2025
Short summary
Short summary
This study presents a novel convolutional-neural-network approach for detecting instream large wood in rivers, addressing the need for flexible monitoring methods across diverse data sources. Using a database of 15 228 fully labelled images, the model achieved a weighted mean average precision of 67 %. Fine-tuning parameters and sampling techniques can improve performance by over 10 % in some cases, offering valuable insights into ecosystem management.
Judith Eeckman, Brian De Grenus, Floreana Miesen, James Thornton, Philip Brunner, and Nadav Peleg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1832, https://doi.org/10.5194/egusphere-2024-1832, 2024
Short summary
Short summary
The fate of liquid water from melting snow in winter and spring is difficult to understand in the mountains. This work uses uncommon methods to accurately track the dynamics of snowmelt and infiltration at different depths in the ground and at different altitudes. The results show that melting snow quickly infiltrates into the upper layers of the soil but is also quickly transferred into the surface layer of the soil along the slopes towards the river.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org (last access: 10 October 2023), 2015. a
Ahmed, F., Moors, E., Khan, M. S. A., Warner, J., and van Scheltinga, C. T.: Tipping points in adaptation to urban flooding under climate change and urban growth: The case of the Dhaka megacity, Land Use Policy, 79, 496–506, https://doi.org/10.1016/j.landusepol.2018.05.051, 2018. a
Alsubaie, N., Shaban, M., Snead, D., Khurram, A., and Rajpoot, N.: A multi-resolution deep learning framework for lung adenocarcinoma growth pattern classification, Comm. Com. Inf. Sc., 894, 3–11, https://doi.org/10.1007/978-3-319-95921-4_1, 2018. a
Barnes, R.: RichDEM: Terrain Analysis Software, http://github.com/r-barnes/richdem (last access: 10 October 2023), 2016. a
BenTaieb, A., Li-Chang, H., Huntsman, D., and Hamarneh, G.: A structured latent model for ovarian carcinoma subtyping from histopathology slides, Med. Image Anal., 39, 194–205, https://doi.org/10.1016/j.media.2017.04.008, 2017. a
Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Deep learning methods for flood mapping: a review of existing applications and future research directions, Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, 2022. a, b
Berkhahn, S. and Neuweiler, I.: Data driven real-time prediction of urban floods with spatial and temporal distribution, J. Hydro. X, 22, 100167, https://doi.org/10.1016/j.hydroa.2023.100167, 2024. a, b
Berndtsson, R., Becker, P., Persson, A., Aspegren, H., Haghighatafshar, S., Jönsson, K., Larsson, R., Mobini, S., Mottaghi, M., Nilsson, J., Nordström, J., Pilesjö, P., Scholz, M., Sternudd, C., Sörensen, J., and Tussupova, K.: Drivers of changing urban flood risk: A framework for action, J. Environ. Manage., 240, 47–56, https://doi.org/10.1016/j.jenvman.2019.03.094, 2019. a
Cache, T. and Gomez, M. S.: Context-Aware Data-Driven Urban Flood Model, https://doi.org/10.5281/zenodo.10688079, 2024. a
Dallan, E., Marra, F., Fosser, G., Marani, M., Formetta, G., Schär, C., and Borga, M.: How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?, Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, 2023. a
do Lago, C. A., Giacomoni, M. H., Bentivoglio, R., Taormina, R., Gomes, M. N., and Mendiondo, E. M.: Generalizing rapid flood predictions to unseen urban catchments with conditional generative adversarial networks, J. Hydrol., 618, 129276, https://doi.org/10.1016/j.jhydrol.2023.129276, 2023. a, b, c
Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S.: Why Does Unsupervised Pre-training Help Deep Learning?, J. Mach. Learn. Res., 11, 625–660, 2010. a
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., and Zhang, X.: Anthropogenic intensification of short-duration rainfall extremes, Nat. Rev. Earth Environ., 2, 107–122, https://doi.org/10.1038/s43017-020-00128-6, 2021. a
Fraehr, N., Wang, Q. J., Wu, W., and Nathan, R.: Supercharging hydrodynamic inundation models for instant flood insight, Nature Water, 1, 835–843, https://doi.org/10.1038/s44221-023-00132-2, 2023. a
Glorot, X. and Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, https://proceedings.mlr.press/v9/glorot10a.html (last access: 28 February 2024), 2010. a
Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjević, S., and Savić, D. A.: A weighted cellular automata 2D inundation model for rapid flood analysis, Environ. Modell. Softw., 84, 378–394, https://doi.org/10.1016/J.ENVSOFT.2016.07.008, 2016. a
Guo, Z.: Simulation data and source code for data-driven flood emulation of urban flood, Tech. rep., ETH Zurich, https://doi.org/10.3929/ethz-b-000365484, 2019. a
Han, J. Y. and Baik, J. J.: A theoretical and numerical study of urban heat island-induced circulation and convection, J. Atmos. Sci., 65, 1859–1877, https://doi.org/10.1175/2007JAS2326.1, 2008. a
Hirsch, R. M.: A Perspective on nonstationarity and water management, J. Am. Water Resour. As., 47, 436–446, https://doi.org/10.1111/j.1752-1688.2011.00539.x, 2011. a
Hollis, G. E.: The effect of urbanization on floods of different recurrence interval, Water Resour. Res., 11, 431–435, https://doi.org/10.1029/wr011i003p00431, 1975. a
Houston, D., Werritty, A., Bassett, D., Geddes, A., Hoolachan, A., and Mcmillan, M.: Pluvial (rain-related) flooding in urban areas: the invisible hazard, https://www.jrf.org.uk (last access: 28 February 2024), 2011. a
Huang, J., Fatichi, S., Mascaro, G., Manoli, G., and Peleg, N.: Intensification of sub-daily rainfall extremes in a low-rise urban area, Urban Climate, 42, 101124, https://doi.org/10.1016/j.uclim.2022.101124, 2022. a
IPCC: Impacts of 1.5 °C Global Warming on Natural and Human Systems, Cambridge University Press, 175–312, https://doi.org/10.1017/9781009157940.005, 2022. a, b
Kingma, D. P. and Ba, J. L.: Adam: A Method for Stochastic Optimization, 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings, arXiv [preprint], https://doi.org/10.48550/arxiv.1412.6980, 2014. a
Kourtis, I. M. and Tsihrintzis, V. A.: Adaptation of urban drainage networks to climate change: A review, Sci. Total Environ., 771, 145431, https://doi.org/10.1016/j.scitotenv.2021.145431, 2021. a
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019. a, b
Kundzewicz, Z. W. and Pińskwar, I.: Are Pluvial and Fluvial Floods on the Rise?, Water-Sui, 14, 2612 pp., https://doi.org/10.3390/w14172612, 2022. a
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and Sherstyukov, B.: Flood risk and climate change: global and regional perspectives, Hydrolog. Sci. J., 59, 1–28, https://doi.org/10.1080/02626667.2013.857411, 2014. a, b
Leopold, L. B.: Hydrology for Urban land Planning – A Guidebook on the Hydrologic Effects of Urban Land Use, vol. 554, Geological Survey Circular 554, US Geological Survey, https://doi.org/10.3133/cir554, 1968. a, b
Li, Y., Fowler, H. J., Argüeso, D., Blenkinsop, S., Evans, J. P., Lenderink, G., Yan, X., Guerreiro, S. B., Lewis, E., and Li, X. F.: Strong Intensification of Hourly Rainfall Extremes by Urbanization, Geophys. Res. Lett., 47, e2020GL088758, https://doi.org/10.1029/2020GL088758, 2020. a
Liu, W., Li, Q., Lin, X., Yang, W., He, S., and Yu, Y.: Ultra-high Resolution Image Segmentation via Locality-aware Context Fusion and Alternating Local Enhancement, Int. J. Comput. Vision, 1–18 pp., https://doi.org/10.1007/s11263-024-02045-3, 2024. a, b
Liang, P. and Ding, Y.: The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014, Adv. Atmos. Sci., 34, 321–334, https://doi.org/10.1007/s00376-016-6120-0, 2017. a
Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simplified MEV formulation to model extremes emerging from multiple nonstationary underlying processes, Adv. Water Resour., 127, 280–290, https://doi.org/10.1016/j.advwatres.2019.04.002, 2019. a
Marra, F., Koukoula, M., Canale, A., and Peleg, N.: Predicting extreme sub-hourly precipitation intensification based on temperature shifts, Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, 2024. a
Miller, J. D. and Hutchins, M.: The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom, J. Hydrol. Reg. Stud., 12, 345–362, https://doi.org/10.1016/j.ejrh.2017.06.006, 2017. a
Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby, S., and Dearden, R.: Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover, J. Hydrol., 515, 59–70, https://doi.org/10.1016/j.jhydrol.2014.04.011, 2014. a
Mou, L., Hua, Y., and Zhu, X. X.: Relation Matters: Relational Context-Aware Fully Convolutional Network for Semantic Segmentation of High-Resolution Aerial Images, IEEE T. Geosci. Remote, 58, 7557–7569, https://doi.org/10.1109/TGRS.2020.2979552, 2020. a
Moy de Vitry, M., Kramer, S., Wegner, J. D., and Leitão, J. P.: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network, Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019, 2019. a
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resour. Res., 57, e2020WR028091, https://doi.org/10.1029/2020WR028091, 2021. a, b
Peduzzi, P., Chatenoux, B., Dao, H., Bono, A. D., Herold, C., Kossin, J., Mouton, F., and Nordbeck, O.: Global trends in tropical cyclone risk, Nat. Clim. Change, 2, 289–294, https://doi.org/10.1038/nclimate1410, 2012. a
Peleg, N., Blumensaat, F., Molnar, P., Fatichi, S., and Burlando, P.: Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling, Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, 2017. a
Peleg, N., Ban, N., Gibson, M. J., Chen, A. S., Paschalis, A., Burlando, P., and Leitão, J. P.: Mapping storm spatial profiles for flood impact assessments, Adv. Water Resour., 166, 104258, https://doi.org/10.1016/j.advwatres.2022.104258, 2022. a
Romano, Y. and Elad, M.: Con-Patch: When a Patch Meets its Context, IEEE, https://doi.org/10.1109/TIP.2016.2576402, 2016. a
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th international conference, Munich, Germany, 5–9 October 2015, proceedings, part III 18, edited by: Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., Springer, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a
Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., and Davidson, C. I.: Pluvial flood risk and opportunities for resilience, WIRes Water, Wiley Online Library, 5, e1302, https://doi.org/10.1002/wat2.1302, 2018. a
Semadeni-Davies, A., Hernebring, C., Svensson, G., and Gustafsson, L. G.: The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater, J. Hydrol., 350, 114–125, https://doi.org/10.1016/j.jhydrol.2007.11.006, 2008. a
Shaban, M., Awan, R., Fraz, M. M., Azam, A., Snead, D., and Rajpoot, N. M.: Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images, IEEE transactions on medical imaging, 39, 295–2405, https://doi.org/10.1109/TMI.2020.2971006, 2020. a
Sirinukunwattana, K., Alham, N. K., Verrill, C., and Rittscher, J.: Improving Whole Slide Segmentation Through Visual Context – A Systematic Study, in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, edited by: Frangi, A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C., and Fichtinger, G., Springer International Publishing, Cham, 192–200, https://doi.org/10.1007/978-3-030-00934-2_22, 2018. a
Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H., and Drews, M.: Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding, Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, 2017. a, b
Tabari, H., Madani, K., and Willems, P.: The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe, Environ. Res. Lett., 15, 104077, https://doi.org/10.1088/1748-9326/abb268, 2020. a
tcache1: context_aware_flood_model, GitHub, https://github.com/tcache1/context_aware_flood_model (last access: 28 February 2024), 2024.
UN: World Urbanization Prospects: The 2018 Revision, United Nations, ISBN 9789211483192, 2018. a
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V. T.: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012. a
Winsemius, H. C., Aerts, J., van Beek, L., Bierkens, M., Bouwman, A., Jongman, B., Kwadijk, J., Ligtvoet, W., Lucas, P., van Vuuren, D., and Ward, P. J.: Global drivers of Future River Flood Risk, Nat. Clim. Change, 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016. a
Zhang, Y., Ragettli, S., Molnar, P., Fink, O., and Peleg, N.: Generalization of an Encoder-Decoder LSTM model for flood prediction in ungauged catchments, J. Hydrol., 614, 128577, https://doi.org/10.1016/j.jhydrol.2022.128577, 2022. a
Short summary
We introduce a new deep-learning model that addresses the limitations of existing urban flood models in handling varied terrains and rainfall events. Our model subdivides a city into small patches and presents a novel approach to incorporate broader terrain information. It accurately predicts high-resolution flood maps across diverse rainfall events and cities (on minute and meter scales) that haven’t been seen by the model, which offers valuable insights for urban flood mitigation strategies.
We introduce a new deep-learning model that addresses the limitations of existing urban flood...