Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3261-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-3261-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
Yongshin Lee
CORRESPONDING AUTHOR
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
Francesca Pianosi
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
Andres Peñuela
Department of Agronomy, Unidad de Excelencia María de Maeztu, University of Cordoba, 14071 Cordoba, Spain
Miguel Angel Rico-Ramirez
School of Civil, Aerospace and Design Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
Related authors
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Andres Peñuela, Filippo Milazzo, and Emilio Jesús González-Sánchez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3542, https://doi.org/10.5194/egusphere-2025-3542, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Olive groves face severe soil erosion, threatening their sustainability. This study reviewed existing research to understand how and why erosion happens. By analysing data from various measurement methods, we found that erosion rates are unsustainable and that while natural factors contribute, farming practices, especially keeping soil bare, drive significant soil loss. Adding ground cover can cut soil loss by over half. This urges the adoption of soil conservation practices.
Francesca Pianosi, Georgios Sarailidis, Kirsty Styles, Philip Oldham, Stephen Hutchings, Rob Lamb, and Thorsten Wagener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3310, https://doi.org/10.5194/egusphere-2025-3310, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flood risk models are essential to support risk management. As they simulate complex interactions between climate, the natural and the built environment, they unavoidably embed a range of simplifying assumptions. In this paper, we propose a more rigorous approach to analyse the impact of uncertain assumptions on modelling results. This is important to improve model transparency and set priorities for improving models.
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645, https://doi.org/10.5194/egusphere-2025-1645, 2025
Short summary
Short summary
Groundwater is a highly-used water source, which drought management is complicated. We introduce a socio-hydrological water resource model (SHOWER) to aid drought management in groundwater-rich managed environments. Results show which and when drought management interventions influence surface water and groundwater storage, with integrated interventions having most effect on reducing droughts. This encourages further exploration to reduce water shortages and improve future drought resilience.
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 29, 1429–1447, https://doi.org/10.5194/hess-29-1429-2025, https://doi.org/10.5194/hess-29-1429-2025, 2025
Short summary
Short summary
This study assesses the value of seasonal flow forecasts (SFFs) in informing decision-making for drought management in South Korea and introduces a novel method for assessing values benchmarked against historical operations. Our results showed the importance of considering flow forecast uncertainty in reservoir operations. There was no significant correlation between the forecast accuracy and value. The method for selecting a compromise release schedule was a key control of the value.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 15, 503–520, https://doi.org/10.5194/amt-15-503-2022, https://doi.org/10.5194/amt-15-503-2022, 2022
Short summary
Short summary
In this work, we review the use of quasi-vertical profiles for monitoring the calibration of the radar differential reflectivity ZDR. We validate the proposed method by comparing its results against the traditional approach based on measurements taken at 90°; we observed good agreement as the errors are within 0.2 dB. Additionally, we compare the results of the proposed method with ZDR derived from disdrometers; the errors are reasonable considering factors discussed in the paper.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
Daniel Sanchez-Rivas and Miguel A. Rico-Ramirez
Atmos. Meas. Tech., 14, 2873–2890, https://doi.org/10.5194/amt-14-2873-2021, https://doi.org/10.5194/amt-14-2873-2021, 2021
Short summary
Short summary
In our paper, we propose a robust and operational algorithm to determine the height of the melting level that can be applied to either quasi-vertical profiles (QVPs) or vertical profiles (VPs) of polarimetric radar variables. The algorithm is applied to 1 year of rainfall events that occurred over southeast England and validated using radiosonde data. The algorithm proves to be accurate as the errors (mean absolute error and root mean square error) are close to 200 m.
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
Short summary
In this paper we evaluate the potential use of seasonal weather forecasts to improve reservoir operation in a UK water supply system. We found that the use of seasonal forecasts can improve the efficiency of reservoir operation but only if the forecast uncertainty is explicitly considered. We also found the degree of efficiency improvement is strongly affected by the decision maker priorities and the hydrological conditions.
Elisa Bozzolan, Elizabeth Holcombe, Francesca Pianosi, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 20, 3161–3177, https://doi.org/10.5194/nhess-20-3161-2020, https://doi.org/10.5194/nhess-20-3161-2020, 2020
Short summary
Short summary
We include informal housing in slope stability analysis, considering different slope properties and precipitation events (including climate change). The dominant failure processes are identified, and their relative role in slope failure is quantified. A new rainfall threshold is assessed for urbanised slopes. Instability
rulesare provided to recognise urbanised slopes most at risk. The methodology is suitable for regions with scarce field measurements and landslide inventories.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, United Irrigation and drainage paper 56, Nations Food and Agriculture Organization, Rome, Italy, ISBN 92-5-104219-5, 1998.
Alley, R. B., Emanuel, K. A., and Zhang, F.: Advances in weather prediction, Science, 363, 342–344, https://doi.org/10.1126/science.aav7274, 2019.
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018.
Azman, A. H., Tukimat, N. N. A., and Malek, M. A.: Analysis of Linear Scaling Method in Downscaling Precipitation and Temperature, Water Resour. Manage., 36, 171–179, https://doi.org/10.1007/s11269-021-03020-0, 2022.
Baker, S. A., Rajagopalan, B., and Wood, A. W.: Enhancing ensemble seasonal streamflow forecasts in the upper Colorado river basin using multi-model climate forecasts, J. Am. Water Resour. Assoc., 57, 906–922, https://doi.org/10.1111/1752-1688.12960, 2021.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Boucher, M.-A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F.: Hydro-economic assessment of hydrological forecasting systems, J. Hydrol., 416–417, 133–144, https://doi.org/10.1016/j.jhydrol.2011.11.042, 2012.
Chiew, F. and Mcmahon, T.: Assessing the adequacy of catchment streamflow yield estimates, Soil Res., 31, 665–680, https://doi.org/10.1071/sr9930665, 1993.
Chiew, F. H. S., Zhou, S. L., and McMahon, T. A.: Use of seasonal streamflow forecasts in water resources management, J. Hydrol., 270, 135–144, https://doi.org/10.1016/s0022-1694(02)00292-5, 2003.
Copernicus: Climate Data Store, https://cds.climate.copernicus.eu/ (last access: 17 January 2024), 2024.
Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, 2016.
Day, G. N.: Extended streamflow forecasting using NWSRFS, J. Water Resour. Plan. Manage., 111, 157–170, https://doi.org/10.1061/(asce)0733-9496(1985)111:2(157), 1985.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994.
Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China, Hydrol. Earth Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-2015, 2015.
Ferreira, G. W. S., Reboita, M. S., and Drumond, A.: Evaluation of ECMWF-SEAS5 seasonal temperature and precipitation predictions over South America, Climate, 10, 128, https://doi.org/10.3390/cli10090128, 2022.
Goodarzi, M., Jabbarian Amiri, B., Azarneyvand, H., Khazaee, M., and Mahdianzadeh, N.: Assessing the performance of a hydrological Tank model at various spatial scales, J. Water Manage. Model., 29, 665–680, https://doi.org/10.14796/jwmm.c472, 2020.
Greuell, W., Franssen, W. H. P., Biemans, H., and Hutjes, R. W. A.: Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations, Hydrol. Earth Syst. Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018, 2018.
Greuell, W., Franssen, W. H. P., and Hutjes, R. W. A.: Seasonal streamflow forecasts for Europe – Part 2: Sources of skill, Hydrol. Earth Syst. Sci., 23, 371–391, https://doi.org/10.5194/hess-23-371-2019, 2019.
Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135–143, https://doi.org/10.1061/(asce)1084-0699(1999)4:2(135), 1999.
Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and Tanguy, M.: Benchmarking ensemble streamflow prediction skill in the UK, Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018, 2018.
Hersbach, H.: Decomposition of the Continuous Ranked Probability Score for ensemble prediction systems, Weather Forecast., 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2, 2000.
Jackson-Blake, L., Clayer, F., Haande, S., James, E. S., and Moe, S. J.: Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network, Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022, 2022.
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019.
Kang, S. U., Lee, D. R., and Lee, S. H.: A study on calibration of Tank model with soil moisture structure, J. Korea Water Resour. Assoc., 37, 133–144, 2004.
Köhn-Reich, L. and Bürger, G.: Dynamical prediction of Indian monsoon: Past and present skill, Int. J. Climatol., 39, 3574–3581, https://doi.org/10.1002/joc.6039, 2019.
Kolachian, R. and Saghafian, B.: Deterministic and probabilistic evaluation of raw and post processed sub-seasonal to seasonal precipitation forecasts in different precipitation regimes, Theor. Appl. Climatol., 137, 1479–1493, https://doi.org/10.1007/s00704-018-2680-5, 2019.
K-water – Korea Water Resources Corporation: My water, http://water.or.kr (last access: 4 October 2022), 2022.
Lee, J. H. and Julien, P. Y.: Teleconnections of the ENSO and South Korean precipitation patterns, J. Hydrol., 534, 237–250, https://doi.org/10.1016/j.jhydrol.2016.01.011, 2016.
Lee, J. W., Chegal, S. D., and Lee, S. O.: A review of Tank model and its applicability to various Korean catchment conditions, Water, 12, 3588, https://doi.org/10.3390/w12123588, 2020.
Lee, Y., Peñuela, A., Pianosi, F., and Rico-Ramirez, M. A.: Catchment-scale skill assessment of seasonal precipitation forecasts across South Korea, Int. J. Climatol., 43, 5092–5111, https://doi.org/10.1002/joc.8134, 2023.
Leutbecher, M. and Haiden, T.: Understanding changes of the continuous ranked probability score using a homogeneous Gaussian approximation, Q. J. Roy. Meteorol. Soc., 147, 425–442, https://doi.org/10.1002/qj.3926, 2020.
Li, H., Luo, L., Wood, E. F., and Schaake, J.: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting, J. Geophys. Res., 114, D04114, https://doi.org/10.1029/2008jd010969, 2009.
Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J., and Jensen, K. H.: Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency, Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, 2018.
Manzanas, R., Lucero, A., Weisheimer, A., and Gutiérrez, J. M.: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?, Clim. Dynam., 50, 1161–1176, https://doi.org/10.1007/s00382-017-3668-z, 2017.
Maraun, D.: Bias correcting climate change simulations – a critical review, Curr. Clim. Change Rep., 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016.
Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Manage. Sci., 22, 1087–1096, https://doi.org/10.1287/mnsc.22.10.1087, 1976.
McCabe, G. J. and Markstrom, S. L.: A monthly water-balance model driven by a graphical user interface, US Geological Survey, 1–2, https://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf (last access: 5 February 2023), 2007.
Melesse, A. M., Abtew, W., and Senay, G.: Extreme hydrology and climate variability: monitoring, modelling, adaptation and mitigation, Elsevier, Amsterdam, the Netherlands, ISBN 978-0-128159-98-9, 2019.
Ministry of Environment: 2020 Korea annual hydrological report, South Korea, https://www.mois.go.kr/frt/bbs/type001 (last access: 28 August 2022), 2021.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel R. D., and Veith T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, J. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, J. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Noh, G.-H. and Ahn, K.-H.: Long-lead predictions of early winter precipitation over South Korea using a SST anomaly pattern in the North Atlantic Ocean, Clim. Dynam., 58, 3455–3469, https://doi.org/10.1007/s00382-021-06109-9, 2022.
Ou, X., Gharabaghi, B., McBean, E., and Doherty, C.: Investigation of the Tank model for urban storm water management, J. Water Manage. Model., 25, 1–5, https://doi.org/10.14796/jwmm.c421, 2017.
Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F., Alfieri, L., Bogner, K., Mueller, A., and Salamon, P.: How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction, J. Hydrol., 522, 697–713, https://doi.org/10.1016/j.jhydrol.2015.01.024, 2015.
Pechlivanidis, I. G., Crochemore, L., Rosberg, J., and Bosshard, T.: What are the key drivers controlling the quality of seasonal streamflow forecasts?, Water Resour. Res., 56, 1–19, https://doi.org/10.1029/2019wr026987, 2020.
Peñuela, A., Hutton, C., and Pianosi, F.: Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK, Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, 2020.
Phuong, H. T., Tien, N. X., Chikamori, H., and Okubo, K.: A hydrological Tank model assessing historical runoff variation in the Hieu river basin, Asian J. Water Environ. Pollut., 15, 75–86, https://doi.org/10.3233/ajw-180008, 2018.
Portele, T., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and Kunstmann, H.: Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions, Sci. Rep., 11, 10581, https://doi.org/10.1038/s41598-021-89564-y, 2021.
Prudhomme, C., Hannaford, J., Alfieri, L., Boorman, D. B., Knight, J., Bell, V., Jackson, C. A.-L., Svensson, C., Parry, S., Bachiller-Jareno, N., Davies, H., Davis, R. A., Mackay, J. D., Andrew, Rudd, A. C., Smith, K., Bloomfield, J. P., Ward, R., and Jenkins, A.: Hydrological outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales, Hydrolog. Sci. J., 62, 2753–2768, https://doi.org/10.1080/02626667.2017.1395032, 2017.
Rahnamay-Naeini, M. Analui, B., Gupta, H. V., Duan, Q., and Sorooshian, S.: Three decades of the Shuffled Complex Evolution (SCE-UA) optimization algorithm: Review and applications, Scientia Iranica, 26, 2015–2031, 2019.
Ratri, D. N., Weerts, A., Muharsyah, R., Whan, K., Tank, A. K., Aldrian, E., and Hariadi, M. H.: Calibration of ECMWF SEAS5 based streamflow forecast in seasonal hydrological forecasting for Citarum river basin, West Java, Indonesia, J. Hydrol., 45, 101305, https://doi.org/10.1016/j.ejrh.2022.101305, 2023.
Shin, S. H., Jung, I. W., and Bae, D. H.: Study on estimation of optimal parameters for Tank model by using SCE-UA, J. Korea Water Resour. Assoc., 1530–1535, 2010.
Shirvani, A. and Landman, W. A.: Seasonal precipitation forecast skill over Iran, Int. J. Climatol., 36, 1887–1900, https://doi.org/10.1002/joc.4467, 2015.
Shrestha, M., Acharya, S. C., and Shrestha, P. K.: Bias correction of climate models for hydrological modelling – are simple methods still useful?, Meteorol. Appl., 24, 531–539, https://doi.org/10.1002/met.1655, 2017.
Shrestha, S., Shrestha, M., and Babel, M. S.: Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal, Environ. Earth Sci., 75, 280, https://doi.org/10.1007/s12665-015-5150-8, 2016.
Soares, M. B. and Dessai, S.: Barriers and enablers to the use of seasonal climate forecasts amongst organisations in Europe, Climatic Change, 137, 89–103, https://doi.org/10.1007/s10584-016-1671-8, 2016.
Sugawara, M.: “Tank model.” Computer models of watershed hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, ISBN 978-1-887201-74-2, 1995.
Sugawara, M., Watanabe, I., Ozaki, E., and Katsuyama, Y.: Tank model programs for personal computer and the way to use, National Research Centre for Disaster Prevention, Japan, https://dil-opac.bosai.go.jp/publication/nrcdp/nrcdp_report/PDF/37/37sugawara.pdf (last access: 11 October 2022), 1986.
Tian, F., Li, Y., Zhao, T., Hu, H., Pappenberger, F., Jiang, Y., and Lu, H.: Evaluation of the ECMWF system 4 climate forecasts for streamflow forecasting in the upper Hanjiang river basin, Hydrol. Res., 49, 1864–1879, https://doi.org/10.2166/nh.2018.176, 2018.
University of Bristol: SEAFORM, Zenodo [code], https://doi.org/10.5281/zenodo.12800811, 2023a.
University of Bristol: SEAFLOW, Zenodo [code], https://doi.org/10.5281/zenodo.12800917, 2023b.
Van Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield, J., and Beck, H. E.: Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide, Water Resour. Res., 49, 2729–2746, https://doi.org/10.1002/wrcr.20251, 2013.
Weisheimer, A. and Palmer, T. N.: On the reliability of seasonal climate forecasts, J. Roy. Soc. Interface, 11, 20131162, https://doi.org/10.1098/rsif.2013.1162, 2014.
Whateley, S., Palmer, R. N., and Brown, C.: Seasonal hydroclimatic forecasts as innovations and the challenges of adoption by water managers, J. Water Resour. Plan. Manage., 141, 1–13, https://doi.org/10.1061/(asce)wr.1943-5452.0000466, 2015.
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data, J. Hydrol., 181, 23–48, https://doi.org/10.1016/0022-1694(95)02918-4, 1996.
Yoe, C. E.: Principles of risk analysis: decision making under uncertainty, CRC Press, Boca Raton, Taylor And Francis, Florida, ISBN 9781138478206, 2019.
Yossef, N. C., Winsemius, H., Weerts, A., van Beek, R., and Bierkens, M. F. P.: Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing, Water Resour. Res., 49, 4687–4699, https://doi.org/10.1002/wrcr.20350, 2013.
Yuan, X. and Wood, E. F.: Downscaling precipitation or bias-correcting streamflow? Some implications for coupled general circulation model (CGCM)-based ensemble seasonal hydrologic forecast, Water Resour. Res., 48, 1–7, https://doi.org/10.1029/2012WR012256, 2012.
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Following recent advancements in weather prediction technology, we explored how seasonal weather...