Articles | Volume 28, issue 14
https://doi.org/10.5194/hess-28-3261-2024
https://doi.org/10.5194/hess-28-3261-2024
Research article
 | 
25 Jul 2024
Research article |  | 25 Jul 2024

Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea

Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez

Related authors

Value of seasonal flow forecasts for enhancing reservoir operation and drought management in South Korea
Yongshin Lee, Andres Peñuela, Francesca Pianosi, and Miguel Angel Rico-Ramirez
EGUsphere, https://doi.org/10.5194/egusphere-2024-1985,https://doi.org/10.5194/egusphere-2024-1985, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024,https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Large-sample hydrology – a few camels or a whole caravan?
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024,https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024,https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, United Irrigation and drainage paper 56, Nations Food and Agriculture Organization, Rome, Italy, ISBN 92-5-104219-5, 1998. 
Alley, R. B., Emanuel, K. A., and Zhang, F.: Advances in weather prediction, Science, 363, 342–344, https://doi.org/10.1126/science.aav7274, 2019. 
Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. 
Azman, A. H., Tukimat, N. N. A., and Malek, M. A.: Analysis of Linear Scaling Method in Downscaling Precipitation and Temperature, Water Resour. Manage., 36, 171–179, https://doi.org/10.1007/s11269-021-03020-0, 2022. 
Baker, S. A., Rajagopalan, B., and Wood, A. W.: Enhancing ensemble seasonal streamflow forecasts in the upper Colorado river basin using multi-model climate forecasts, J. Am. Water Resour. Assoc., 57, 906–922, https://doi.org/10.1111/1752-1688.12960, 2021. 
Download
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.