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Abstract. Recent advancements in numerical weather pre-
dictions have improved forecasting performance at longer
lead times. Seasonal weather forecasts, providing predictions
of weather variables for the next several months, have gained
significant attention from researchers due to their potential
benefits for water resources management. Many efforts have
been made to generate seasonal flow forecasts (SFFs) by
combining seasonal weather forecasts and hydrological mod-
els. However, producing SFFs with good skill at a finer catch-
ment scale remains challenging, hindering their practical ap-
plication and adoption by water managers. Consequently,
water management decisions in both South Korea and numer-
ous other countries continue to rely on worst-case scenarios
and the conventional ensemble streamflow prediction (ESP)
method.

This study investigates the potential of SFFs in South Ko-
rea at the catchment scale, examining 12 reservoir catch-
ments of varying sizes (ranging from 59 to 6648 km2) over
the last decade (2011–2020). Seasonal weather forecast data
(including precipitation, temperature and evapotranspiration)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF SEAS5) are used to drive the Tank model
(conceptual hydrological model) to generate the flow ensem-
ble forecasts. We assess the contribution of each weather
variable to the performance of flow forecasting by isolating
individual variables. In addition, we quantitatively evaluate
the “overall skill” of SFFs, representing the probability of
outperforming the benchmark (ESP), using the continuous
ranked probability skill score (CRPSS). Our results highlight
that precipitation is the most important variable in determin-
ing the performance of SFFs and that temperature also plays
a key role during the dry season in snow-affected catchments.

Given the coarse resolution of seasonal weather forecasts, a
linear scaling method to adjust the forecasts is applied, and
it is found that bias correction is highly effective in enhanc-
ing the overall skill. Furthermore, bias-corrected SFFs have
skill with respect to ESP up to 3 months ahead, this being
particularly evident during abnormally dry years. To facili-
tate future applications in other regions, the code developed
for this analysis has been made available as an open-source
Python package.

1 Introduction

Over the last decade, numerical weather prediction systems
have improved their forecasting performance at longer lead
times ranging from 1 to several months ahead (Bauer et al.,
2015; Alley et al., 2019). The water management sector may
benefit considerably from these advances. In particular, pre-
dictions of weather variables such as precipitation and tem-
perature several months ahead (from now on referred to as
seasonal weather forecasts) might be exploited to anticipate
upcoming dry periods and implement management strategies
for mitigating future water supply deficits (Soares and Des-
sai, 2016).

To increase relevance for water resource management,
seasonal weather forecasts can be translated into seasonal
flow forecasts (SFFs) via a hydrological model. SFFs can
be provided and evaluated at different temporal and spa-
tial resolutions: a coarser resolution, e.g. magnitude of to-
tal next-month runoff over a certain region (Prudhomme et
al., 2017; Arnal et al., 2018), or a finer resolution, e.g. dai-
ly/weekly flow at a particular river section over the next
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month (Crochemore et al., 2016; Lucatero et al., 2018).
This distinction is important here because coarser-resolution
SFFs can only be applied to inform water management in
a qualitative way, whereas finer-resolution SFFs can also be
used to force a water resource system model for a quantita-
tive appraisal of different management strategies. Proof-of-
principle examples of the latter approach are provided by
Chiew et al. (2003), Boucher et al. (2012) and Peñuela et
al. (2020). These papers have demonstrated, through model
simulations, the potential of using SFFs to improve the op-
eration of supply reservoirs (Peñuela et al., 2020), irriga-
tion systems (Chiew et al., 2003) and hydropower systems
(Boucher et al., 2012).

Obviously, generating SFFs with good skill at finer scales
is challenging and the lack of forecast performance is often
cited as a key barrier to real-world applications of SFFs by
water managers (Whateley et al., 2015; Soares and Dessai,
2016; Jackson-Blake et al., 2022). In practice, if a water re-
source system (WRS) model is used to simulate and compare
different operational decisions, this is done by forcing the
WRS model to repeat of a historical low flow event (“worst-
case” scenario) (Yoe, 2019) or against the ensemble stream-
flow prediction (ESP). ESP is a widely used operational fore-
casting method whereby an ensemble of flow forecasts is
generated by forcing a hydrological model by historical me-
teorological observations (Day, 1985; Baker et al., 2021).
Since the hydrological model is initialized at current hydro-
logical conditions, ESP is expected to have a certain level of
performance, particularly in “long-memory” systems, where
the impact of initial conditions last over long time periods (Li
et al., 2009). Previous simulation studies that examined the
use of SFFs to enhance the operation of WRS (e.g. Peñuela
et al., 2020, as cited above) did indeed show that ESP serves
as a hard-to-beat benchmark. Similar to other countries, in
South Korea, the worst-case scenario and ESP are used to
inform water management activities, whereas SFFs are not
currently applied. Before the use of SFFs can be proposed to
practitioners, it is thus crucial to understand the skill of such
products with respect to ESP.

Numerous studies have been conducted on the skill of
SFFs in different regions of the world. Some of these stud-
ies focused on the “theoretical skill”, which is determined
by comparing SFFs with pseudo-observations produced by
the same hydrological model when forced by observed tem-
perature and precipitation. This experimental setup enables
the isolation of the contribution of the weather forecast skill
to the flow forecast skill, regardless of structural errors that
may be present in the hydrological model. In general, most
studies have found that the theoretical skill of SFFs may be
only marginally better than that of ESP in specific regions
and lead time. For example, Yossef et al. (2013) analysed
multiple large river basins worldwide and found that SFFs
generally perform worse than ESP. Likewise, the findings of
Greuell et al. (2019) indicated that SFFs are more skilful than
ESP for the first lead month only. Across Europe, the theoret-

ical skill of SFFs was found to be higher than ESP in coastal
and mountainous regions (Greuell et al., 2018).

Although important to how the information content of sea-
sonal weather forecasts varies across regions with different
climatic characteristics, from a water management perspec-
tive, the theoretical skill may not be the most appropriate
metric, as it reflects the performance within the modelled
environment (Pechlivanidis et al., 2020) rather than the real
world. The “actual skill”, which is determined by comparing
SFFs to flow observations, would be more informative for
water managers to decide on whether to use SFFs and when.
Previous studies that investigated the actual skill showed that,
as expected, the actual skill is lower than the theoretical skill
due to errors in the hydrological model and in the weather in-
put observations (Van Dijk et al., 2013; Greuell et al., 2018).

In addition, due to the coarse horizontal resolution of sea-
sonal weather forecasts, particularly of precipitation fore-
casts, the forecast skill can be significantly improved through
bias correction (e.g. Crochemore et al., 2016; Lucatero et al.,
2018; Tian et al., 2018). However, even after bias correction,
SFFs were found to be unable to surpass ESP in many pre-
vious applications (e.g. Crochemore et al., 2016; Lucatero et
al., 2018; Greuell et al., 2019).

Previous studies reviewed above have mainly used the sea-
sonal weather forecasts provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF). Here, it
is important to note that the majority of these studies have
utilized ECMWF’s System 3 (e.g. Yossef et al., 2013) or 4
(e.g. Crochemore et al., 2016; Lucatero et al., 2018; Tian
et al., 2018; Greuell et al., 2019). A few studies compar-
ing the performance of SFFs and ESP have been conducted
based on ECMWF’s cutting-edge forecasting system SEAS5,
which became operational in November 2017. These include
Peñuela et al. (2020) and Ratri et al. (2023), which, however,
did not analyse the skill of SFFs in much detail but rather fo-
cused on their operational implementation. Given that the up-
grade of forecasting systems can lead to substantial enhance-
ment in the performance (e.g. Johnson et al., 2019; Köhn-
Reich and Bürger, 2019), it is interesting to assess whether
the improved skill of weather forecasts delivered by SEAS5
translates into the improved skill of flow forecasts.

Our previous research (Lee et al., 2023) on the skill of
seasonal precipitation forecasts across South Korea showed
that, among various forecasting centres, ECMWF provides
the most skilful seasonal precipitation forecasts, outperform-
ing the climatology (based on historical precipitation obser-
vations). This is particularly evident during the wet season
(June to September) and in dry years, where skill can also be
high at longer lead times beyond the first month.

Building on these previous findings, this study aims to in-
vestigate the performance of SFFs compared to ESP in pre-
dicting flow. Specifically, we focus on 12 catchments of var-
ious sizes (from 59 to 6648 km2), which include the most
important multipurpose reservoirs across South Korea and
where the use of SFFs may be considered for assisting oper-
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ational decisions and mitigating impacts of droughts. Given
this practical long-term goal, our study focuses on assessing
the “overall skill”, which represents the long-term probabil-
ity that SFFs outperform the benchmark (ESP) when com-
paring the flow forecasts with historical flow observations.
As a hydrological model, we use the lumped Tank model
(Sugawara et al., 1986) which is the rainfall-runoff model
currently in use for national water management and plan-
ning. For all catchments, we briefly analyse the hydrologi-
cal model performance and also investigate which weather
forcing input (precipitation, temperature and potential evap-
otranspiration) contributes most to the performance of SFFs
across different catchments before and after bias correction.
Finally, we look at how the overall skill varies across sea-
sons, years and catchments to draw conclusions on when and
where SFFs may be more informative than ESP for practi-
cal water resources management. In doing so, we develop a
workflow for SFFs analysis implemented in a Python Jupyter
Notebook, which can be utilized by other researchers for
evaluating and testing SFFs in various regions.

2 Material and methodology

2.1 Study site and data

2.1.1 Study site

The spatial scope of this study is defined as the catchments
upstream of 12 multipurpose reservoirs across South Korea.
While there are 20 multipurpose reservoirs nationwide (K-
water, 2022), we have specifically selected 12 reservoirs with
at least 10 years of flow observation and no external flows
from other rivers or reservoirs. The locations of the catch-
ments and the mean annual precipitation, temperature and
potential evapotranspiration (PET) are shown in Fig. 1a–c.
The weather data for the selected reservoir catchments are
reported in Table 1.

Figure 1d–f shows the monthly precipitation and PET
(Fig. 1d), temperature (Fig. 1e), and flow (Fig. 1f), aver-
aged over the 12 selected catchments for the period 2001
to 2020. Generally, the catchments located in the southern
region exhibit higher mean annual precipitation, tempera-
ture, and PET. In order to examine how the skill of seasonal
weather and flow forecasts varies across a year, we divide the
year into four seasons based on monthly precipitation (Lee
et al., 2023): dry season (December to February), dry-to-wet
transition (March to May), wet season (June to September)
and wet-to-dry transition (October to November). As shown
in this figure, most of the total annual precipitation (and the
corresponding flow) occurs during the hot and humid wet
season, while the dry season is characterized by cold and dry
conditions. Figure 1d–f also shows high inter-catchment vari-
ability during the wet season in both precipitation (Fig. 1d)
and flow (Fig. 1f), whereas the inter-catchment variability in Ta
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Figure 1. Top row shows mean annual (a) precipitation, (b) temperature and (c) PET across South Korea over the period 1967–2020. Black
lines are the boundaries of the 12 reservoir catchments analysed in this study (all maps obtained by interpolating point measurements using
the inverse distance weighting method). Bottom row shows (d) cumulative monthly precipitation and PET, (e) mean monthly temperature,
and (f) cumulative monthly flow. These three variables are averaged over the 12 reservoir catchments from 2001 to 2020. Boxplots show the
inter-catchment variability.

temperature (Fig. 1e) is more obvious during the dry season.
Additionally, there is a high inter-annual variability in pre-
cipitation and flow in South Korea, which is attributed to the
impacts of typhoons and monsoons (Lee et al., 2023).

2.1.2 Hydrological data and seasonal weather forecasts

Precipitation, temperature and potential evapotranspiration
are the key variables required to simulate flow using a hy-
drological model. To this end, daily precipitation data from
1318 in situ stations from the Ministry of Environment; the
Korea Meteorologic Administration (KMA); and the national
water resources agency, the Korea Water Resources Corpo-
ration (K-water) (Ministry of Environment, 2021) and daily
temperature data from 683 in situ stations from the KMA
were obtained. Both precipitation and temperature data cover

the period from 1967 to 2020 (see Fig. 1). Potential evapo-
transpiration (PET) data were computed using the standard-
ized Penman–Monteith method suggested by the UN Food
and Agriculture Organization (Allen et al., 1998). The pre-
cipitation and temperature measurements have been quality-
controlled by the Ministry of Environment. We used the
Thiessen polygon method to calculate the catchment average
precipitation and temperature.

The flow data used in this study refer to the flow into the
reservoir from its respective upstream catchment (see Ta-
ble 1 and Fig. 1). K-water generates daily inflow data us-
ing a water-balance equation, which takes into account the
daily changes in reservoir volume (from the storage-elevation
curve) caused by the water level fluctuations and releases
from the reservoir. However, to date, reservoir evaporation
has not been considered in the flow estimation process. In

Hydrol. Earth Syst. Sci., 28, 3261–3279, 2024 https://doi.org/10.5194/hess-28-3261-2024
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this study, quality-controlled daily flow data for each reser-
voir produced by K-water are used.

Several weather forecasting centres, including ECMWF,
UK Met Office and German Weather Service, provide sea-
sonal weather forecast datasets through the Copernicus Cli-
mate Data Store (CCDS). According to our previous study
(Lee et al., 2023), ECMWF was found to be the most skil-
ful provider of seasonal precipitation forecasts for South
Korea. Since precipitation is one of the most important
weather forcings in hydrological forecasting (Kolachian and
Saghafian, 2019), we have utilized the seasonal weather fore-
cast datasets from ECMWF SEAS5 (Johnson et al., 2019) in
this study. Since 1993, ECMWF has been providing 51 en-
semble forecasts (a set of multiple forecasts that are equally
as likely) on a monthly basis (25 ensembles prior to 2017)
with a horizontal resolution of 1°× 1° and daily temporal
resolution of up to 7 months ahead. In this study, the time pe-
riod from 1993 to 2020 was selected and the ensemble fore-
casts for the selected catchments were downloaded from the
CCDS. Here, we utilized data from 1993 to 2010 to generate
bias correction factors and data from 2011 to 2020 to assess
the skill (see Fig. S1 in the Supplement).

2.2 Methodology

The methodology of our analysis is summarized in the
schematic diagram shown in Fig. 2. Firstly, we compiled a
seasonal weather forecast ensemble from ECMWF for pre-
cipitation (P ), temperature (T ) and PET over the 12 reser-
voirs for 10 years, from 2011 to 2020. To downscale the
datasets, a linear scaling method was applied to each weather
forcing (Sect. 2.2.1). Secondly, we estimated the parame-
ters of the hydrological model and validated its performance
(Sect. 2.2.2). Utilizing the seasonal weather forecast dataset
as input data to the hydrological model, we generated an en-
semble of SFFs, and using historical weather observations
as input, we produced ESP. Specifically, to calculate ESP,
45 ensemble members of each weather variable were also se-
lected from historical observations (1966–2010; see Fig. S1).
Each ensemble member represents the simulated flow using
a hydrological model initialized with observed meteorolog-
ical data to simulate current conditions and forced by his-
torical meteorological observations for the forecasting pe-
riod. The continuous ranked probability score (CRPS) and
the continuous ranked probability skill score (CRPSS) were
applied (Sect. 2.2.3) to calculate the absolute performance
(score) of each forecast product (Sect. 3.1 and 3.2) and the
relative performance (overall skill) of SFFs with respect to
ESP (Sect. 3.3 and 3.4).

Specifically, in Sect. 3.1, we analyse the contribution of
hydrological modelling uncertainty to the performance of
SFFs by comparing the actual score calculated using flow
observations to the theoretical score calculated using pseudo
flow observations. Here, pseudo-observation refers to the
flow time series obtained by feeding the hydrological model

with weather observations, i.e. where errors due to hydrolog-
ical model are removed. In Sect. 3.2, we investigate which
weather variable mostly influences the performance of SFFs.
To do so, we first calculate the “isolated score” of the flow
forecasts generated by forcing the hydrological model by
seasonal weather forecasts for one meteorological variable
while using observational data for the other two variables.
For instance, to assess the contribution of precipitation, we
calculated the isolated score of precipitation using seasonal
precipitation forecasts and observations for temperature and
PET. Then, we computed the “integrated score” using sea-
sonal weather forecasts for all three variables and determined
the “relative scores” for each variable as the ratio of the iso-
lated score over the integrated score. This workflow is illus-
trated in Fig. S2. In Sect. 3.3 to 3.5, we examine the regional
and seasonal variations and the characteristics of overall skill
under extreme climate conditions.

2.2.1 Bias correction (statistical downscaling)

The seasonal weather forecast datasets from CCDS have a
spatial resolution of 1°× 1°, which is too coarse for the
catchment-scale analysis. Previous studies also have reported
that seasonal weather forecasts generated from general cir-
culation models contain systematic biases and that this can
cause forecast uncertainty (Maraun, 2016; Manzanas et al.,
2017; Tian et al., 2018). Moreover, the usefulness of bias
correction in enhancing the forecast skill has been shown
in many previous studies (Crochemore et al., 2016; Tian et
al., 2018; Pechlivanidis et al., 2020; Ferreira et al., 2022).
Hence, it is imperative to investigate the potential enhance-
ment in the skill of hydrological forecasts resulting from the
bias correction of weather forcings.

Numerous bias correction methods have been developed,
including the linear scaling method, local intensity scaling
and quantile mapping (Fang et al., 2015; Shrestha et al.,
2017). Thanks to its simplicity and low computational cost
(Melesse et al., 2019), the linear scaling method is widely
adopted. Despite its simplicity, this method has demonstrated
practical usefulness in various studies (Crochemore et al.,
2016; Shrestha et al., 2017; Azman et al., 2022), including
our previous study on seasonal precipitation forecasts across
South Korea (Lee et al., 2023). Therefore, the linear scaling
method was utilized in this study.

Previous studies found that additive correction is prefer-
able for temperature, whereas multiplicative correction is
preferable for variables such as precipitation, evapotranspira-
tion and solar radiation (Shrestha et al., 2016). Consequently,
the equations for the linear scaling method for each variable
can be expressed as

P ∗forecasted = Pforecasted · (bP)m = Pforecasted

·

[
µm (Pobserved)

µm (Pforecasted)

]
, (1)

https://doi.org/10.5194/hess-28-3261-2024 Hydrol. Earth Syst. Sci., 28, 3261–3279, 2024
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Figure 2. Schematic diagram illustrating the analysis method of the study.

PET∗forecasted = PETforecasted · (bPET)m = PETforecasted

·

[
µm (PETobserved)

µm (PETforecasted)

]
, (2)

T ∗forecasted = Tforecasted+ (bT )m = Tforecasted

+ [µm (Tobserved)−µm (Tforecasted)], (3)

where Y ∗forecasted is the bias-corrected forecast variable Y
(such as P , PET and T ) at a daily timescale, Yforecasted is the
original forecast variable before bias correction and (bY )m is
the bias correction factor for each variable at month m.
µm represents the monthly mean, and Yobserved is the ob-
served daily data for the variable. In this study, daily precip-
itation forecasts were bias corrected using the monthly bias
correction factor (bY )m for each month (m= 1 to 12). The
bias correction factor was computed using the observations
and original forecast datasets from 1993 to 2010, and these
were then applied to adjust each seasonal weather forecast
for later years (2011 to 2020).

2.2.2 Hydrological modelling

The Tank model was first developed by Sugawara of Japan
in 1961 (Sugawara et al., 1986; Sugawara, 1995) and has be-
come a widely used conceptual hydrological model in many
countries (Ou et al., 2017; Goodarzi et al., 2020). A modified

version of the Tank model, incorporating soil moisture struc-
tures and snowmelt modules, is commonly used in South Ko-
rea for long-term water resources planning and management
purposes due to its good performance (Kang et al., 2004; Lee
et al., 2020). As shown in Fig. 3, the modified Tank model
used in this study comprises four storage tanks representing
the runoff and baseflow in the target catchment (Shin et al.,
2010; Phuong et al., 2018) and incorporates a water-balance
module suggested by the United States Geological Survey
(McCabe and Markstrom, 2007).

This model has 21 parameters (see Table S1 in the Sup-
plement), which were calibrated based on historical obser-
vations. We calibrated the model using observations for the
period from 2001 to 2010, and the validation was done using
the time period from 2011 to 2020. To estimate the model pa-
rameters, the Shuffled Complex Evolution (SCE-UA) global
optimization algorithm, developed at the University of Ari-
zona (Duan et al., 1992, 1994), is utilized. This algorithm has
widely been used for the calibration of hydrological models
and has shown more robust and efficient performance com-
pared to many traditional optimization methods, such as ge-
netic algorithm, differential evolution and simulated anneal-
ing (Yapo et al., 1996; Rahnamay-Naeini et al., 2019). The
following objective function (OF), proposed by Sugawara
(Sugawara et al., 1986), is applied for the SCE-UA algo-
rithm because a previous study demonstrated that this objec-
tive function generally shows superior results in calibrating
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Figure 3. The structure of modified Tank model (left) and its water-balance module (right).

the Tank model in South Korean catchments with calibration
periods longer than 5 years (Kang et al., 2004):

OF=
N∑
t=1

∣∣∣qobs
t − q

sim
t

∣∣∣/qobs
t , (4)

where t and N represent time (in days) and total number of
time steps and qobs

t and qsim
t represent the observed and sim-

ulated flow at time t , respectively. The optimal parameter set
is the one that produces the lowest value from the objective
function.

In order to evaluate the model performance in diverse
perspectives, we used three different evaluation indica-
tors: Nash–Sutcliffe efficiency coefficient (NSE), percentage
bias (PBIAS) and ratio of volume (ROV). The calculation of
each indicator was carried out as described by the following
equations:

NSE= 1−
N∑
t=1

(
qobs
t − q

sim
t

)2
/

N∑
t=1

(
qobs
t − q

obs
mean

)2
, (5)

PBIAS=
N∑
t=1

(
qobs
t − q

sim
t

)2
/

N∑
t=1

qobs
t × 100, (6)

ROV=
N∑
t=1

qsim
t /

N∑
t=1

qobs
t , (7)

where t , N , qobs
t and qsim

t are as defined in Eq. (4) and
qobs

mean represents the observed mean flow across the total
number of time steps (N ).

The NSE can range from −∞ to 1. A value of 1 indi-
cates a perfect correspondence between the simulated and
the observed flow. NSE values between 0 and 1 are gener-
ally considered acceptable levels of performance (Moriasi et
al., 2007). PBIAS is a metric used to measure the average
deviation of the simulated values from the observation data.
The optimal value of PBIAS is 0, and low-magnitude val-
ues indicate accurate simulation. Positive (negative) values of
PBIAS indicate a tendency to overestimate (underestimate)
in hydrological modelling (Gupta et al., 1999). ROV repre-
sents the ratio of total volume between the simulated and ob-
served flow. An optimal ROV value is 1, and a value greater
(lower) than 1 suggests overestimation (underestimation) of
total flow volume (Kang et al., 2004).

2.2.3 Score and skill assessment

As a score metric, we adopted the CRPS developed by Math-
eson and Winkler (1976), which measures the difference be-
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tween the cumulative distribution function of the forecast en-
semble and the observations. The CRPS has the advantage of
being sensitive to the entire range of the forecast and being
clearly interpretable, as it is equal to the mean absolute error
for a deterministic forecast (Hersbach, 2000). For these rea-
sons, it is a widely used metric in assessing the performance
of ensemble forecasts (Leutbecher and Haiden, 2020). The
CRPS can be calculated as

CRPS=
∫
[F(x)−H(x ≥ y)]2dx, (8)

where F(x) represents the cumulative distribution of the SFF
ensemble; x and y are, respectively, the forecasted and ob-
served flow; H is called the Heaviside function and is equal
to 1 when x ≥ y and 0 when x < y. If SFFs were perfect,
i.e. all the ensemble members would exactly match the ob-
servations, CRPS would be equal to 0. Conversely, a higher
CRPS indicates a lower performance, as it implies that the
forecast distribution is further from the observation. Note that
the CRPS measures the absolute performance (score) of fore-
cast without comparing it to a benchmark.

Along with the CRPS, we also employed the CRPSS,
which presents the forecast performance in a relative manner
by comparing it to a benchmark forecast. It is defined as the
ratio of the forecast and benchmark score and is expressed as
follows:

CRPSS= 1−
CRPSSys

CRPSBen , (9)

where CRPSSys is the CRPS of the forecasting system (SFFs
in our case) and CRPSBen is the CRPS of the benchmark.
The values of CRPSS can range from −∞ to 1. A CRPSS
value between 0 and 1 indicates that the forecasting system
has skill with respect to the benchmark. Conversely, when the
CRPSS is negative, i.e. from−∞ to 0, the system has a lower
performance than the benchmark. Here, we utilize ESP as a
benchmark due to its extensive application in flow forecast-
ing (Pappenberger et al., 2015; Peñuela et al., 2020) and its
computational efficiency (Harrigan et al., 2018; Baker et al.,
2021). ESP is generated using the Tank model fed with his-
torical daily meteorological records from 1966 to 2010. As
this period covers 45 years, ESP is composed of 45 members
for each catchment.

Since the CRPSS ranges from −∞ to 1, simply averag-
ing the CRPSS values over a period can result in low or no
skill due to the presence of few extremely negative values. To
address this issue, here we employ the overall skill metric in-
troduced by Lee et al. (2023). The overall skill represents the
probability with which a forecasting system (in our case, the
SFFs) outperforms the benchmark (i.e. has CRPSS greater
than 0) over a specific period. It is calculated as

Overall skill(%)=

Ny∑
y=1
[H(CRPSS)(y)]

Ny
× 100(%), (10)

whereNy is the total number of years and the Heaviside func-
tion, H , is equal to 1 when CRPSS (y)> 0 (SFFs have skill
with respect to ESP in year y) and 0 when CRPSS (y)≤ 0
(ESP outperforms SFFs). If the overall skill is greater than
50 %, we can conclude that SFFs generally have skill over
ESP during the period.

3 Results

3.1 Contribution of hydrological model to the
performance of SFFs

Figure 4a shows the NSE of the modified Tank model for
each catchment during the calibration period, 2001–2010
(blue bars), and the validation period, 2011–2020 (orange
bars). As seen in this figure, the NSE values for the 12 catch-
ments are generally high (within the range of 0.7 to 0.9)
during both the calibration and validation periods, and the
relative difference in performance between the two periods
is small for all catchments. Specifically, the NSE results
indicate a good performance through comparative analysis
(Chiew and Mcmahon, 1993; Moriasi et al., 2015). How-
ever, the last three catchments (Namgang, Buan and Imha)
exhibit a relatively greater gap between calibration and vali-
dation periods. Among all 12 catchments, these three exhibit
the most distinctive hydrological characteristics: Imha is the
driest, while Namgang is the wettest catchment, and Buan is
located along the coast, with the smallest catchment area. A
detailed model performance evaluation, including other met-
rics such as PBIAS and ROV (refer to Fig. S3), also supports
this result. Overall, Fig. 4 demonstrates that the Tank model
utilized in this study shows an excellent performance in sim-
ulating flow, with relatively higher modelling challenges ob-
served in those three catchments.

Figure 4b and c represent the actual and theoretical scores
(mean CRPS) over the period 2011–2020. Again, these are
calculated by comparing the simulated flows with the ob-
served flows (actual score) and with pseudo-observations
(theoretical score), respectively. Since the CRPS is computed
based on accumulated monthly flow at a given lead time,
forecast errors also accumulate over time. Therefore, both
scores considerably deteriorate as the lead time increases.
Generally, the theoretical scores are slightly smaller than the
actual scores, but the difference is marginal.

To facilitate comparison, the ratio between the actual score
and the theoretical score is shown in Fig. 4d. For most catch-
ments, the ratio values are close to 1, confirming the small
gap between the actual and theoretical score. The noticeable
exception is only seen in the Imha catchment, characterized
by being the driest among the catchments and exhibiting the
lowest modelling performance (Fig. 4a).
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Figure 4. (a) Nash–Sutcliffe efficiency (NSE) of the hydrological models for the 12 catchments analysed in this study, (b) the actual score
and (c) the theoretical score of SFFs, and (d) the score ratio (theoretical / actual) in terms of mean CRPS at different lead times (x axis) (the
scores are calculated before the bias correction of weather forcings). The actual score is determined by comparing SFFs to flow observations.
The theoretical score is determined by comparing SFFs to pseudo-observations produced by the same hydrological model forced by observed
precipitation, temperature and PET.

3.2 Contribution of weather forcings to the
performance of SFFs

In this section, we quantify the contribution of each weather
forcing forecast to the performance of SFFs, as measured by
the CRPS (see Sect. 2.2 and Fig. S2 for details on the under-
pinning methodology). Figure 5 shows the relative scores for
each non-bias-corrected weather forcing across all seasons
(Fig. 5a), dry season (Fig. 5b) and wet season (Fig. 5c) at
different lead times (1, 3 and 6 months). The relative score is
calculated as the ratio of the integrated score (computed us-
ing seasonal weather forecasts for all weather forcings) to the
isolated score (when SFFs are computed using seasonal fore-
casts for one weather forcing and observations for the other
two). The closer the isolated score to the integrated score, the
larger the contribution of that weather forcing to the overall
performance (or lack of performance) of the SFFs.

As shown in Fig. 5a, the contribution of each weather forc-
ing to the performance of SFFs varies with catchment and
lead time, but overall precipitation forecast plays a dominant
role. Specifically, the contribution of the precipitation fore-
cast (in red) accounts for almost 90 % of the integrated score,
which is forced by seasonal weather forecasts for all weather

forcings. Meanwhile, PET (in orange) and temperature (in
blue) contribute a similar level, ranging between 30 % and
40 %.

During the dry season (Fig. 5b), however, PET and temper-
ature show comparable levels of contribution to precipitation.
This is more evident in the Soyanggang and Hoengseong
catchments, which are both located in the northernmost re-
gion of South Korea (see Fig. 1). These catchments are char-
acterized by low temperatures and heavy snowfall in the dry
(winter) season. The correct prediction of temperature is thus
crucial here as temperature controls the partitioning of pre-
cipitation into rain and snow and hence the generation of
a fast or delayed flow response. Further analysis (shown in
Fig. S4) reveals that temperature forecasts in these two catch-
ments are consistently lower than those in the observation,
which means that the hydrological model classifies rain as
snow for several events, and hence retains that “snow” in
the simulated snowpack, which in reality should produce a
flow response. This explains the significant increase in per-
formance when forcing the model with bias-corrected tem-
perature instead (Fig. S4b).

In order to enhance the forecasting performance, we
applied bias correction to each weather forcing and re-
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Figure 5. Relative score (in %) of each weather forcing (precipitation in red, PET in orange and temperature in blue) before bias correction
compared to the score of SFFs averaged over 10 years (2011–2020) during (a) all seasons, (b) dry season and (c) wet season at 1, 3 and 6 lead
months from top to bottom. Catchments are in order of their location, from the northernmost (Soyanggang) to the southernmost (Jangheung)
one, in clockwise direction; see Fig. 1.
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generated SFFs with bias-corrected weather forcings. In
most catchments and lead times, the overall skill is improved
after correcting biases. The overall skill increases by 46 %
to 54 % on average across all seasons and more specifically
from 31 % to 50 % in the dry season and from 54 % to 55 % in
the wet season. The largest increase in overall skill is found
in the Imha catchment, which has the lowest skill before cor-
recting biases. For a detailed account of overall skill before
and after bias correction, see Figs. S5 and S6.

Figure 6 illustrates the change in the relative score of each
weather forcing after bias correction, focusing on the dry sea-
son and the first forecasting lead month. One notable finding
is that, in the snow-affected catchments (Soyanggang and
Hoengseong), there is a significant decrease in the relative
score of temperature after applying bias correction. As shown
in detail in Fig. S4, this is due to the correction of systematic
underestimation biases in temperature forecasts, which leads
to a more correct partitioning of precipitation into snow and
rain and thus better flow predictions. The relative score of the
forecasts for all seasons and lead times after bias correction
is reported in Fig. S7.

3.3 Comparison between SFFs and ESP across seasons
and catchments

In order to comprehensively compare the performance of
SFFs and ESP, we employed the overall skill, which quan-
tifies the frequency at which SFFs outperform ESP, as out-
lined in Sect. 2.2.3 (Eq.10). Figure 7 shows the seasonal and
regional variations in overall skill (after bias correction) for
all seasons (Fig. 7a), for the dry season (Fig. 7b) and for the
wet season (Fig. 7c). For each catchment, the results are vi-
sualized as a table showing the overall skill at lead times of
1 to 6 months. The table cells are coloured in green (pink)
when SFFs outperform ESP (ESP outperforms SFFs). Yellow
colour indicates that the system and benchmark have equiva-
lent performance. In principle, this happens when the overall
skill is equal to 50 %; however, in order to avoid misinterpret-
ing small differences in overall skill, we classified all cases as
equivalent when the overall skill is between 45 % and 55 %.
While the choice of the range (±5 %) is subjective, we find
it helpful to assist analysis in avoiding spurious precision in
a simple and intuitive manner.

As shown in Fig. 7a, the overall skill of SFFs varies ac-
cording to the lead time, season and catchment. SFFs gen-
erally outperform ESP, particularly up to 3 months ahead.
At longer lead times, the results vary from catchment to
catchment. For instance, in some catchments generally lo-
cated in the southern region, such as Jangheung, Namgang
and Hapcheon, SFFs outperform ESP for longer lead times.
On the other hand, in some catchments, such as Imha and
Buan, ESP generally exhibits a higher performance than
SFFs. Specifically, two catchments, Buan, which is located
in the western coastal region and has the smallest catchment
area, and Imha, which is the driest catchment, show the low-

est skill. Nevertheless, we could not identify a conclusive
correlation between catchment characteristics such as size or
mean annual precipitation and overall skill.

Comparing the results for the dry and wet seasons, Fig. 7b
and c show that SFFs are much more likely to outperform
ESP in the wet season, particularly in the catchments in the
northernmost region. During the dry season, the overall skill
of SFFs is lower, and particularly in the Buan, Imha and
Sumjingang catchments, SFFs outperform ESP only for the
first lead month.

3.4 Comparison between SFFs and ESP in dry and wet
years

We now assess the influence of exceptionally dry and wet
conditions on the overall skill of SFFs. Based on the mean
annual precipitation across 12 catchments within the period
2011–2020, we classified the years 2015 and 2017 as dry
(P < 900 mm) and the years 2011 and 2020 as wet (P >
1500 mm). Figure 8 shows the overall skill of SFFs aver-
aged over 12 catchments for the entire period (Fig. 8a), dry
years (Fig. 8b) and wet years (Fig. 8c) during all seasons
(solid black line), dry season (dashed red line) and wet sea-
son (dashed blue line), respectively.

Figure 8a shows that SFFs generally outperform ESP for
lead times of up to 3 months and maintain equivalent perfor-
mance levels thereafter. In addition, it is evident that SFFs are
more skilful during the wet season than during the dry sea-
son. In dry years (Fig. 8b), in contrast to the typical decrease
in the overall skill with lead time, we find that SFFs main-
tain a significantly higher skill at all lead times, particularly
during the wet season (blue line). On the other hand, during
wet years (Fig. 8c), the overall skill is generally poor, and
ESP generally has higher performance than SFFs, especially
during the wet season.

Last, we analyse the spatial variability in the overall skill
by looking at the spread of individual catchments (grey dots).
We see that the spread in dry and wet years (Fig. 8b and c)
is larger than in all years (Fig. 8a). This confirms that un-
der extreme weather conditions, the uncertainty and vari-
ability in the forecasting performance increase depending on
the catchment. A more detailed analysis of the overall skill
for each catchment (described in Fig. S8) shows that the
catchments located in the southern region consistently ex-
hibit higher skill regardless of lead times and whether the
years are dry/wet.

3.5 Example of flow forecasts time series

Figure 9 shows an example of the flow into the Chungju
reservoir, which holds the largest storage capacity in South
Korea. The overall skill of this catchment is the highest for
a 1-month lead time; however, from the second lead month
onward, it shows a moderate level of overall skill compared
to other catchments (see Fig. S8). In this section, we com-
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Figure 6. Relative score (in %) of each weather forcing – (a) precipitation, (b) PET and (c) temperature) – before (solid line) and after
(dashed line) bias correction compared to the score of SFFs averaged over 10 years (2011–2020) during the dry season and first lead month.

Figure 7. Map of the overall skill of bias-corrected SFFs for 10 years (2011–2020) over (a) all seasons, (b) dry season and (c) wet season.
The colours represent whether SFFs outperform ESP or not for each catchment and lead time (1 to 6 months).

pare the observed and forecasted cumulative flow forced by
seasonal weather forecasts (SFFs; green lines) and historical
weather records (ESP; pink lines) for lead times of 1, 3 and
6 months from April during the wettest (2011) and the driest
year (2015), respectively.

In this specific catchment and during these years, SFFs
show equivalent or slightly higher performance than ESP at
a 1-month lead time. However, as the lead time increases,
the performance of both methods tends to deteriorate. Essen-

tially, there is an underestimation in the wettest year (2011)
and an overestimation in the driest year (2015) at the scale
of the season. In particular, considerably higher performance
was found in SFFs compared to ESP in the driest year
(Fig. 9b). On the other hand, it is obvious that the perfor-
mance of both methods is insufficient in forecasting flow in
the wettest year for lead times of 3 and 6 months.

Examining each ensemble member of both SFFs and ESP,
we found higher variability in ESP. Furthermore, since ESP
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Figure 8. Overall skill of bias-corrected SFFs over 12 catchments averaged over (a) all years (2011 to 2020), (b) dry years (mean annual
P < 900 mm) and (c) wet years (mean annual P > 1500 mm) during all seasons (black lines), dry seasons (dashed red lines) and wet seasons
(dashed blue lines). The grey points represent the overall skill in each catchment. Here, mean annual precipitation is averaged across the
catchments and years.

utilizes the same weather forcings, the forecasted flows are
generally similar in terms of its quantity and patterns regard-
less of the wettest and driest years. Conversely, the forecasted
flow ensemble members of SFFs show distinctive patterns for
each year.

Although these results are confined to a single catchment
and specific years, this analysis is valuable in quantitatively
illustrating the forecasted flow results under dry and wet con-
ditions and different lead times. Furthermore, these features
are generally shown in other catchments and align with our
previous findings described in Sect. 3.4.

4 Discussion

4.1 The skill of seasonal flow forecasts

This study offers a comprehensive view of the overall skill of
SFFs, benchmarked to the conventional – and easier to imple-
ment – ESP method. In contrast to the majority of previous
studies, which assessed the skill of SFFs at the continental or
national level or over large river basins, our study focuses on
12 relatively small catchments (59–6648 km2) across South
Korea.

Table 2 summarizes the key findings of this study regard-
ing the overall skill of SFFs across different seasons and
years. It demonstrates that SFFs outperform ESP in almost
all the cases for forecasting lead times of 1 month. This re-
sult is consistent with previous literature (e.g. Yossef et al.,
2013; Lucatero et al., 2018). In addition, the higher skill of
SFFs is also shown at lead times of 2 and 3 months in several
situations, as shown in Table 2, and at even longer lead times
in dry years. This is more surprising as this considerable per-
formance of SFFs was not found in previous studies.

Similarly to our study, earlier studies (Crochemore et al.,
2016; Lucatero et al., 2018) have explored the skill com-
pared with real flow observations at a catchment scale. There-
fore, the comparison between their results and our findings
holds interest. In brief, their results suggest that ESP re-
mains a hard-to-beat method compared to SFFs even after
bias correction. Crochemore et al. (2016) showed that SFFs
using bias-corrected precipitation have an equivalent level of
performance with ESP up to 3 months ahead. Lucatero et
al. (2018) concluded that SFFs still face difficulties in outper-
forming ESP, particularly at lead times longer than 1 month.

The difference in our results compared to the literature
stems from a combination of several important factors. First,
it is worth noting that these two previous studies were con-
ducted at the catchment scale, with a specific focus on Eu-
rope – namely France (Crochemore et al., 2016) and Den-
mark (Lucatero et al., 2018). The skill of SFFs varies accord-
ing to the geographical locations and meteorological condi-
tions in a given study area, as confirmed by numerous studies
(e.g. Yossef et al., 2013; Greuell et al., 2018; Pechlivanidis et
al., 2020). Therefore, the skill of SFFs could also be influ-
enced by distinct spatial and meteorological conditions be-
tween Europe and South Korea.

Second, we can attribute the difference to the utilization
of a more advanced seasonal weather forecasting system.
Unlike previous studies which applied ECMWF System 4,
our study is conducted based on version 5 of ECMWF’s
cutting-edge forecasting system. It is reported that ECMWF
SEAS5 has improved significantly compared to the previ-
ous version, including the predictive skill of the El Niño–
Southern Oscillation (ENSO) (Johnson et al., 2019) and rain-
fall inter-annual variability (Köhn-Reich and Bürger, 2019).
Specifically, ENSO is known to be a key driver affecting the
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Figure 9. Observed cumulative flow (black lines) and forecasted cumulative flow representing SFFs after bias correction (green lines in left
panels) and ESP (pink lines in right panels) in the Chungju reservoir for 1, 3 and 6 months of lead time over (a) the wettest year (2011;
1884 mm yr−1) and (b) the driest year (2015; 74 mm yr−1).

skill of seasonal weather forecasts (Weisheimer and Palmer,
2014; Shirvani and Landman, 2015; Ferreira et al., 2022);
therefore, its improvement can result in notable changes in
forecasting skill. Although the relationship between seasonal
weather patterns in South Korea and ENSO is not fully un-
derstood, some previous research has shown good correla-
tions in certain regions and seasons (Lee and Julien, 2016;
Noh and Ahn, 2022). In this study, it is challenging to quan-
titatively evaluate the impact of system advancements. How-
ever, given the significance of meteorological forecasts in
hydrological forecasts, it is highly probable that the devel-
opment of the system has had a positive influence on the re-
sults. Although a few studies have analysed the skill of SFFs

based on ECMWF SEAS5 (e.g. Peñuela et al., 2020; Ratri et
al., 2023), direct comparisons with our research were deemed
difficult due to differences in spatial scale and analysis meth-
ods, such as the absence of a comparison with ESP.

Lastly, the performance of the hydrological model also
contributes to differences in the results. To evaluate the im-
pact of the hydrological model on SFFs, we compared the ac-
tual score (forecast performance compared to observed flow
data) with the theoretical score (forecast performance com-
pared to pseudo flow observations) and found that the actual
scores are slightly higher than theoretical scores (i.e. theoret-
ical scores show a higher performance). This finding is con-
sistent with previous studies, and the gap between the actual
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Table 2. Summary of key findings regarding the overall skill at different lead times, seasons and years.

and theoretical score is highly linked to the performance of
the hydrological model (Van Dijk et al., 2013; Greuell et al.,
2018). When a model’s actual score closely approximates its
theoretical score, it may suggest that the model is operating
at the best possible level given the inherent uncertainties and
limitations associated with the available data and methods.
Although our results demonstrated that the theoretical score
shows higher performance than the actual score, their differ-
ence was generally marginal. This close agreement between
the two scores indicates that the model is well calibrated and
capable of effectively capturing the underlying hydrological
processes in those catchments.

Our findings on the impact of bias correction quantita-
tively showed that generally precipitation controls the per-
formance of SFFs; however, we also found that temperature
plays a substantial role in specific seasons and catchments.
Specifically, the Hoengseong and Soyanggang catchments,
located in the northernmost part of South Korea and affected
by snowfall in the dry (winter) season (December to Febru-
ary), exhibit a higher temperature contribution than precipi-
tation for a forecasting lead time of 1 month during the dry
season. The main reason for this is the underestimation of
temperature forecasts. Our supplementary experiments pro-
vide evidence that using bias-corrected temperature forecasts
significantly improves the performance of flow forecasts (see
Fig. S4). Although the positive impact of bias correction
of precipitation forecasts on enhancing the performance of
SFFs has been well documented in numerous previous stud-
ies (Crochemore et al., 2016; Lucatero et al., 2018; Tian et
al., 2018; Pechlivanidis et al., 2020), our result demonstrates
the importance of bias correction of temperature too, at least
in snow-affected catchments.

An alternative approach to bias correction has been pro-
posed by Yuan and Wood (2012) and Lucatero et al. (2018),
who argue that directly correcting the biases in the flow fore-

casts may result in a better performance at a lower compu-
tational cost. However, we tested this approach and found
conflicting outcomes (Fig. S9). Therefore, caution should be
exercised when directly correcting biases for flow as this ap-
proach may exclude the contribution of initial conditions,
which is one of the most crucial factors in hydrological mod-
elling. In the cases where the performance of hydrological
model is the major source of error, bias correction of the
flow might be useful; however, if the model shows an accept-
able performance, as demonstrated in this study, incorporat-
ing bias correction into the simulated flow could add more
errors.

Due to limited data availability, conducting additional val-
idation across a larger number of extreme events is not pos-
sible. Nevertheless, our research findings suggest a potential
correlation between the overall skill and dry/wet conditions,
which should be further validated if new data become avail-
able. Specifically, in the period analysed here, SFFs consid-
erably outperform ESP for all lead times during the wet sea-
son in dry years. Conversely, the overall skill during the wet
season in wet years was not satisfactory. This is because the
overall skill is commonly dominated by precipitation fore-
casting skill, and we previously found that the skill of pre-
cipitation forecasts is the lowest in wet years (Lee et al.,
2023). The systematic biases of seasonal precipitation fore-
casts, which tend to underestimate (overestimate) the precip-
itation during the wet (dry) season, led to the consistent re-
sults in flow forecasts. This finding also hints at the fact that
SFFs hold the potential to provide valuable information for
effective water resources management during dry conditions,
which is crucial for drought management.
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4.2 Limitations and directions for future research

In this paper, we investigated the overall skill of SFFs at
the catchment scale using ECMWF’s seasonal weather fore-
casts (SEAS5) with a spatial resolution of 1°× 1°. Based on
our previous research, it has been demonstrated that among
four forecasting centres, ECMWF provides the most skilful
seasonal precipitation forecasts (Lee et al., 2023); thus, we
utilized seasonal weather forecast datasets from ECMWF
in this study. However, the skill to forecast other weather
forcings, such as temperature and PET, has not been tested
across South Korea. Additionally, while ECMWF originally
generates seasonal weather forecasts with high resolution
(36×36 km, which is approximately 0.3°×0.3°), we utilized
publicly available low-resolution data (1°× 1°) provided by
CCDS to maintain consistency with our previous work (Lee
et al., 2023). Our additional investigation indicates that the
difference in weather data between high and low resolutions
is not substantial (see Fig. S10). Nevertheless, prior studies
suggest that the skill of seasonal weather forecasts may vary
according to factors such as region, season and spatial reso-
lution. Therefore, broader research is required to determine
the seasonal weather forecasts provider as well as spatial res-
olution that can lead to skilful hydrological forecasts in the
regions or seasons of interest.

Given the distinct climatic conditions in South Korea, it is
important to acknowledge that our results may not be appli-
cable to other regions or countries. Therefore, further work
needs to be carried out to reproduce this analysis in dif-
ferent regions. To facilitate this process, two Python-based
toolboxes can be useful: SEAFORM (SEAsonal FORecasts
Management) and SEAFLOW (SEAsonal FLOW forecasts).
The SEAFORM toolbox, developed in our previous study
(Lee et al., 2023), offers multiple functions for manipulat-
ing seasonal weather forecast datasets (e.g. downloading the
datasets, generating the time series and correcting the bias).
On the other hand, the SEAFLOW toolbox, developed in this
study, is specifically designed for the analysis of SFFs based
on the modified Tank model (but it could be useful to apply
it to other hydrological models).

In terms of forecast skill, our study highlights the poten-
tial of SFFs at the catchment scale for real water resources
management. Nevertheless, it is crucial to recognize the dif-
ference between skill, which indicates how well hydrologi-
cal forecasts mimic observed data, and value, which refers
to the practical benefits obtained by utilizing those forecasts
in the real world. Previous studies have addressed this is-
sue, showing that better skill does not always result in higher
value (Chiew et al., 2003; Boucher et al., 2012). While earlier
findings suggest that the conventional method (ESP) gener-
ally outperforms SFFs in terms of skill (e.g. Yossef et al.,
2013; Lucatero et al., 2018), recent research demonstrates
that, in terms of value, the use of seasonal forecasts in semi-
arid regions offers significant economic benefits by mitigat-
ing hydropower losses in a dry year (Portele et al., 2021).

Therefore, our future research efforts should concentrate on
a quantitative evaluation of the value of SFFs for practical
reservoir operations, informing decision-making in water re-
sources management. This evaluation is of significant impor-
tance as it directly relates to assessing the potential utilization
of SFFs in practical water management.

5 Conclusions

This study assessed the overall skill of SFFs across 12 catch-
ments in South Korea using a hydrological model forced by
seasonal weather forecasts from ECMWF (SEAS5). By fo-
cusing on operational reservoir catchments with relatively
small sizes, our findings showed the potential of SFFs in
practical water resources management.

The results first demonstrate that the performance of the
hydrological model is crucial in flow forecasting, with the
Tank model used in this study exhibiting reliable perfor-
mance. Secondly, precipitation emerges as a dominant fac-
tor influencing the performance of SFFs compared to other
weather forcings, and this is more evident during the wet
season. However, temperature can also be highly important
in specific seasons and catchments, and this result high-
lights the significance of temperature bias correction as the
flow simulation with the bias-corrected temperature pro-
vides higher performance. Third, at the catchment scale,
which is more suitable for water resources management,
bias-corrected SFFs have skill with respect to ESP up to
3 months ahead. Notably, the highest overall skill during the
wet season in dry years highlights the potential of SFFs to
add value in drought management. Lastly, while our research
emphasizes the superior performance of SFFs at the catch-
ment scale in South Korea, it is important to note that out-
comes may vary depending on factors such as the type of
seasonal weather forecast system used, the study area and
the performance of the hydrological model.

As seasonal weather forecasting technologies continue to
progress, it is also crucial to concurrently pursue their appli-
cation and validation in flow forecasting. We hope that our
findings contribute to the ongoing validation efforts of the
skill of SFFs across various regions and, furthermore, serve
as a catalyst for their practical application in real-world wa-
ter management. At the same time, our proposed workflow
and the analysis package we have developed using a Python
Jupyter Notebook can offer valuable support to water man-
agers in gaining practical experience so that they could utilize
SFFs more effectively.

Code and data availability. The SEAFLOW (SEAsonal
FLOW forecasts) and SEAFORM (SEAsonal FORe-
cast Management) Python packages are available at
https://doi.org/10.5281/zenodo.12800811 (University of Bris-
tol, 2023a) and https://doi.org/10.5281/zenodo.128009 (University
of Bristol, 2023b), respectively. ECMWF’s seasonal weather
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forecast data are available under a range of licenses from
https://cds.climate.copernicus.eu/ (Copernicus, 2024). Reser-
voir and flow data are made available by K-water and can be
downloaded from https://www.water.or.kr/ (K-water, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-28-3261-2024-supplement.

Author contributions. YL designed the experiments, with sugges-
tions from the other co-authors. YL developed the workflow and
performed the simulation. FP and MARR participated in repeated
discussions on interpretations of results and suggested ways of mov-
ing forward in the analysis. AP provided YL with modelling tech-
nical support and reviewed the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Yongshin Lee is funded through a PhD schol-
arship by K-water (Korea Water Resources Corporation). We also
thank K-water and Shinuk Kang (K-water Institute, South Korea)
for sharing the data and hydrological model (modified Tank) ap-
plied in this study.

Financial support. This research has been supported by the
Engineering and Physical Sciences Research Council (grant
no. EP/R007330/1) and the European Research Executive Agency
(grant no. HORIZON-MSCA-2021-PF-01).

Review statement. This paper was edited by Micha Werner and re-
viewed by two anonymous referees.

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapo-
transpiration: Guidelines for computing crop water requirements,
United Irrigation and drainage paper 56, Nations Food and Agri-
culture Organization, Rome, Italy, ISBN 92-5-104219-5, 1998.

Alley, R. B., Emanuel, K. A., and Zhang, F.: Ad-
vances in weather prediction, Science, 363, 342–344,
https://doi.org/10.1126/science.aav7274, 2019.

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme,
C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful

seasonal forecasts of streamflow over Europe?, Hydrol. Earth
Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-
2018, 2018.

Azman, A. H., Tukimat, N. N. A., and Malek, M. A.: Anal-
ysis of Linear Scaling Method in Downscaling Precipita-
tion and Temperature, Water Resour. Manage., 36, 171–179,
https://doi.org/10.1007/s11269-021-03020-0, 2022.

Baker, S. A., Rajagopalan, B., and Wood, A. W.: Enhancing en-
semble seasonal streamflow forecasts in the upper Colorado river
basin using multi-model climate forecasts, J. Am. Water Resour.
Assoc., 57, 906–922, https://doi.org/10.1111/1752-1688.12960,
2021.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Boucher, M.-A., Tremblay, D., Delorme, L., Perreault, L.,
and Anctil, F.: Hydro-economic assessment of hydrolog-
ical forecasting systems, J. Hydrol., 416–417, 133–144,
https://doi.org/10.1016/j.jhydrol.2011.11.042, 2012.

Chiew, F. and Mcmahon, T.: Assessing the adequacy of catch-
ment streamflow yield estimates, Soil Res., 31, 665–680,
https://doi.org/10.1071/sr9930665, 1993.

Chiew, F. H. S., Zhou, S. L., and McMahon, T. A.: Use of seasonal
streamflow forecasts in water resources management, J. Hydrol.,
270, 135–144, https://doi.org/10.1016/s0022-1694(02)00292-5,
2003.

Copernicus: Climate Data Store, https://cds.climate.copernicus.eu/
(last access: 17 January 2024), 2024.

Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias cor-
recting precipitation forecasts to improve the skill of seasonal
streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618,
https://doi.org/10.5194/hess-20-3601-2016, 2016.

Day, G. N.: Extended streamflow forecasting using NWS-
RFS, J. Water Resour. Plan. Manage., 111, 157–170,
https://doi.org/10.1061/(asce)0733-9496(1985)111:2(157),
1985.

Duan, Q., Sorooshian, S., and Gupta, V. K.: Effective and
efficient global optimization for conceptual rainfall-
runoff models, Water Resour. Res., 28, 1015–1031,
https://doi.org/10.1029/91WR02985, 1992.

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the
SCE-UA global optimization method for calibrating watershed
models, J. Hydrol., 158, 265–284, https://doi.org/10.1016/0022-
1694(94)90057-4, 1994.

Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias
correction methods in downscaling meteorological variables for
a hydrologic impact study in an arid area in China, Hydrol. Earth
Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-
2015, 2015.

Ferreira, G. W. S., Reboita, M. S., and Drumond, A.: Eval-
uation of ECMWF-SEAS5 seasonal temperature and precip-
itation predictions over South America, Climate, 10, 128,
https://doi.org/10.3390/cli10090128, 2022.

Goodarzi, M., Jabbarian Amiri, B., Azarneyvand, H., Khazaee,
M., and Mahdianzadeh, N.: Assessing the performance of a hy-
drological Tank model at various spatial scales, J. Water Man-
age. Model., 29, 665–680, https://doi.org/10.14796/jwmm.c472,
2020.

https://doi.org/10.5194/hess-28-3261-2024 Hydrol. Earth Syst. Sci., 28, 3261–3279, 2024

https://cds.climate.copernicus.eu/
https://www.water.or.kr/
https://doi.org/10.5194/hess-28-3261-2024-supplement
https://doi.org/10.1126/science.aav7274
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.1007/s11269-021-03020-0
https://doi.org/10.1111/1752-1688.12960
https://doi.org/10.1038/nature14956
https://doi.org/10.1016/j.jhydrol.2011.11.042
https://doi.org/10.1071/sr9930665
https://doi.org/10.1016/s0022-1694(02)00292-5
https://cds.climate.copernicus.eu/
https://doi.org/10.5194/hess-20-3601-2016
https://doi.org/10.1061/(asce)0733-9496(1985)111:2(157)
https://doi.org/10.1029/91WR02985
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.5194/hess-19-2547-2015
https://doi.org/10.5194/hess-19-2547-2015
https://doi.org/10.3390/cli10090128
https://doi.org/10.14796/jwmm.c472


3278 Y. Lee et al.: Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea

Greuell, W., Franssen, W. H. P., Biemans, H., and Hutjes, R. W. A.:
Seasonal streamflow forecasts for Europe – Part I: Hindcast ver-
ification with pseudo- and real observations, Hydrol. Earth Syst.
Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018,
2018.

Greuell, W., Franssen, W. H. P., and Hutjes, R. W. A.: Seasonal
streamflow forecasts for Europe – Part 2: Sources of skill, Hy-
drol. Earth Syst. Sci., 23, 371–391, https://doi.org/10.5194/hess-
23-371-2019, 2019.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of au-
tomatic calibration for hydrologic models: Comparison with
multilevel expert calibration, J. Hydrol. Eng., 4, 135–143,
https://doi.org/10.1061/(asce)1084-0699(1999)4:2(135), 1999.

Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and
Tanguy, M.: Benchmarking ensemble streamflow prediction
skill in the UK, Hydrol. Earth Syst. Sci., 22, 2023–2039,
https://doi.org/10.5194/hess-22-2023-2018, 2018.

Hersbach, H.: Decomposition of the Continuous Ranked Prob-
ability Score for ensemble prediction systems, Weather
Forecast., 15, 559–570, https://doi.org/10.1175/1520-
0434(2000)015<0559:dotcrp>2.0.co;2, 2000.

Jackson-Blake, L., Clayer, F., Haande, S., James, E. S., and Moe, S.
J.: Seasonal forecasting of lake water quality and algal bloom risk
using a continuous Gaussian Bayesian network, Hydrol. Earth
Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-
2022, 2022.

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M.
A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D.,
Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K.,
Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF
seasonal forecast system, Geosci. Model Dev., 12, 1087–1117,
https://doi.org/10.5194/gmd-12-1087-2019, 2019.

Kang, S. U., Lee, D. R., and Lee, S. H.: A study on calibration of
Tank model with soil moisture structure, J. Korea Water Resour.
Assoc., 37, 133–144, 2004.

Köhn-Reich, L. and Bürger, G.: Dynamical prediction of Indian
monsoon: Past and present skill, Int. J. Climatol., 39, 3574–3581,
https://doi.org/10.1002/joc.6039, 2019.

Kolachian, R. and Saghafian, B.: Deterministic and proba-
bilistic evaluation of raw and post processed sub-seasonal
to seasonal precipitation forecasts in different precipi-
tation regimes, Theor. Appl. Climatol., 137, 1479–1493,
https://doi.org/10.1007/s00704-018-2680-5, 2019.

K-water – Korea Water Resources Corporation: My water, http://
water.or.kr (last access: 4 October 2022), 2022.

Lee, J. H. and Julien, P. Y.: Teleconnections of the ENSO and
South Korean precipitation patterns, J. Hydrol., 534, 237–250,
https://doi.org/10.1016/j.jhydrol.2016.01.011, 2016.

Lee, J. W., Chegal, S. D., and Lee, S. O.: A review of Tank model
and its applicability to various Korean catchment conditions, Wa-
ter, 12, 3588, https://doi.org/10.3390/w12123588, 2020.

Lee, Y., Peñuela, A., Pianosi, F., and Rico-Ramirez, M. A.:
Catchment-scale skill assessment of seasonal precipitation fore-
casts across South Korea, Int. J. Climatol., 43, 5092–5111,
https://doi.org/10.1002/joc.8134, 2023.

Leutbecher, M. and Haiden, T.: Understanding changes of the con-
tinuous ranked probability score using a homogeneous Gaus-
sian approximation, Q. J. Roy. Meteorol. Soc., 147, 425–442,
https://doi.org/10.1002/qj.3926, 2020.

Li, H., Luo, L., Wood, E. F., and Schaake, J.: The role
of initial conditions and forcing uncertainties in seasonal
hydrologic forecasting, J. Geophys. Res., 114, D04114,
https://doi.org/10.1029/2008jd010969, 2009.

Lucatero, D., Madsen, H., Refsgaard, J. C., Kidmose, J., and Jensen,
K. H.: Seasonal streamflow forecasts in the Ahlergaarde catch-
ment, Denmark: the effect of preprocessing and post-processing
on skill and statistical consistency, Hydrol. Earth Syst. Sci., 22,
3601–3617, https://doi.org/10.5194/hess-22-3601-2018, 2018.

Manzanas, R., Lucero, A., Weisheimer, A., and Gutiérrez, J. M.:
Can bias correction and statistical downscaling methods improve
the skill of seasonal precipitation forecasts?, Clim. Dynam., 50,
1161–1176, https://doi.org/10.1007/s00382-017-3668-z, 2017.

Maraun, D.: Bias correcting climate change simulations –
a critical review, Curr. Clim. Change Rep., 2, 211–220,
https://doi.org/10.1007/s40641-016-0050-x, 2016.

Matheson, J. E. and Winkler, R. L.: Scoring rules for contin-
uous probability distributions, Manage. Sci., 22, 1087–1096,
https://doi.org/10.1287/mnsc.22.10.1087, 1976.

McCabe, G. J. and Markstrom, S. L.: A monthly water-
balance model driven by a graphical user interface, US Ge-
ological Survey, 1–2, https://pubs.usgs.gov/of/2007/1088/pdf/
of07-1088_508.pdf (last access: 5 February 2023), 2007.

Melesse, A. M., Abtew, W., and Senay, G.: Extreme hydrology
and climate variability: monitoring, modelling, adaptation and
mitigation, Elsevier, Amsterdam, the Netherlands, ISBN 978-0-
128159-98-9, 2019.

Ministry of Environment: 2020 Korea annual hydrological report,
South Korea, https://www.mois.go.kr/frt/bbs/type001 (last ac-
cess: 28 August 2022), 2021.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L.,
Harmel R. D., and Veith T. L.: Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations,
J. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153,
2007.

Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.:
Hydrologic and water quality models: Performance mea-
sures and evaluation criteria, J. ASABE, 58, 1763–1785,
https://doi.org/10.13031/trans.58.10715, 2015.

Noh, G.-H. and Ahn, K.-H.: Long-lead predictions of early win-
ter precipitation over South Korea using a SST anomaly pat-
tern in the North Atlantic Ocean, Clim. Dynam., 58, 3455–3469,
https://doi.org/10.1007/s00382-021-06109-9, 2022.

Ou, X., Gharabaghi, B., McBean, E., and Doherty, C.: Investigation
of the Tank model for urban storm water management, J. Water
Manage. Model., 25, 1–5, https://doi.org/10.14796/jwmm.c421,
2017.

Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F.,
Alfieri, L., Bogner, K., Mueller, A., and Salamon, P.: How
do I know if my forecasts are better? Using benchmarks in
hydrological ensemble prediction, J. Hydrol., 522, 697–713,
https://doi.org/10.1016/j.jhydrol.2015.01.024, 2015.

Pechlivanidis, I. G., Crochemore, L., Rosberg, J., and Bosshard,
T.: What are the key drivers controlling the quality of sea-
sonal streamflow forecasts?, Water Resour. Res., 56, 1–19,
https://doi.org/10.1029/2019wr026987, 2020.

Peñuela, A., Hutton, C., and Pianosi, F.: Assessing the value of sea-
sonal hydrological forecasts for improving water resource man-
agement: insights from a pilot application in the UK, Hydrol.

Hydrol. Earth Syst. Sci., 28, 3261–3279, 2024 https://doi.org/10.5194/hess-28-3261-2024

https://doi.org/10.5194/hess-22-3453-2018
https://doi.org/10.5194/hess-23-371-2019
https://doi.org/10.5194/hess-23-371-2019
https://doi.org/10.1061/(asce)1084-0699(1999)4:2(135)
https://doi.org/10.5194/hess-22-2023-2018
https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
https://doi.org/10.5194/hess-26-3103-2022
https://doi.org/10.5194/hess-26-3103-2022
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.1002/joc.6039
https://doi.org/10.1007/s00704-018-2680-5
http://water.or.kr
http://water.or.kr
https://doi.org/10.1016/j.jhydrol.2016.01.011
https://doi.org/10.3390/w12123588
https://doi.org/10.1002/joc.8134
https://doi.org/10.1002/qj.3926
https://doi.org/10.1029/2008jd010969
https://doi.org/10.5194/hess-22-3601-2018
https://doi.org/10.1007/s00382-017-3668-z
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1287/mnsc.22.10.1087
https://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf
https://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf
https://www.mois.go.kr/frt/bbs/type001
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/trans.58.10715
https://doi.org/10.1007/s00382-021-06109-9
https://doi.org/10.14796/jwmm.c421
https://doi.org/10.1016/j.jhydrol.2015.01.024
https://doi.org/10.1029/2019wr026987


Y. Lee et al.: Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea 3279

Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-
6059-2020, 2020.

Phuong, H. T., Tien, N. X., Chikamori, H., and Okubo, K.: A hy-
drological Tank model assessing historical runoff variation in
the Hieu river basin, Asian J. Water Environ. Pollut., 15, 75–86,
https://doi.org/10.3233/ajw-180008, 2018.

Portele, T., Lorenz, C., Dibrani, B., Laux, P., Bliefernicht, J., and
Kunstmann, H.: Seasonal forecasts offer economic benefit for
hydrological decision making in semi-arid regions, Sci. Rep., 11,
10581, https://doi.org/10.1038/s41598-021-89564-y, 2021.

Prudhomme, C., Hannaford, J., Alfieri, L., Boorman, D. B.,
Knight, J., Bell, V., Jackson, C. A.-L., Svensson, C., Parry,
S., Bachiller-Jareno, N., Davies, H., Davis, R. A., Mackay, J.
D., Andrew, Rudd, A. C., Smith, K., Bloomfield, J. P., Ward,
R., and Jenkins, A.: Hydrological outlook UK: an operational
streamflow and groundwater level forecasting system at monthly
to seasonal time scales, Hydrolog. Sci. J., 62, 2753–2768,
https://doi.org/10.1080/02626667.2017.1395032, 2017.

Rahnamay-Naeini, M. Analui, B., Gupta, H. V., Duan, Q., and
Sorooshian, S.: Three decades of the Shuffled Complex Evolu-
tion (SCE-UA) optimization algorithm: Review and applications,
Scientia Iranica, 26, 2015–2031, 2019.

Ratri, D. N., Weerts, A., Muharsyah, R., Whan, K., Tank, A. K.,
Aldrian, E., and Hariadi, M. H.: Calibration of ECMWF SEAS5
based streamflow forecast in seasonal hydrological forecasting
for Citarum river basin, West Java, Indonesia, J. Hydrol., 45,
101305, https://doi.org/10.1016/j.ejrh.2022.101305, 2023.

Shin, S. H., Jung, I. W., and Bae, D. H.: Study on estimation of
optimal parameters for Tank model by using SCE-UA, J. Korea
Water Resour. Assoc., 1530–1535, 2010.

Shirvani, A. and Landman, W. A.: Seasonal precipitation
forecast skill over Iran, Int. J. Climatol., 36, 1887–1900,
https://doi.org/10.1002/joc.4467, 2015.

Shrestha, M., Acharya, S. C., and Shrestha, P. K.: Bias cor-
rection of climate models for hydrological modelling – are
simple methods still useful?, Meteorol. Appl., 24, 531–539,
https://doi.org/10.1002/met.1655, 2017.

Shrestha, S., Shrestha, M., and Babel, M. S.: Modelling the potential
impacts of climate change on hydrology and water resources in
the Indrawati River Basin, Nepal, Environ. Earth Sci., 75, 280,
https://doi.org/10.1007/s12665-015-5150-8, 2016.

Soares, M. B. and Dessai, S.: Barriers and enablers to the use
of seasonal climate forecasts amongst organisations in Europe,
Climatic Change, 137, 89–103, https://doi.org/10.1007/s10584-
016-1671-8, 2016.

Sugawara, M.: “Tank model.” Computer models of watershed hy-
drology, edited by: Singh, V. P., Water Resources Publications,
Highlands Ranch, Colorado, ISBN 978-1-887201-74-2, 1995.

Sugawara, M., Watanabe, I., Ozaki, E., and Katsuyama, Y.: Tank
model programs for personal computer and the way to use,
National Research Centre for Disaster Prevention, Japan,
https://dil-opac.bosai.go.jp/publication/nrcdp/nrcdp_report/
PDF/37/37sugawara.pdf (last access: 11 October 2022), 1986.

Tian, F., Li, Y., Zhao, T., Hu, H., Pappenberger, F., Jiang, Y., and
Lu, H.: Evaluation of the ECMWF system 4 climate forecasts for
streamflow forecasting in the upper Hanjiang river basin, Hydrol.
Res., 49, 1864–1879, https://doi.org/10.2166/nh.2018.176, 2018.

University of Bristol: SEAFORM, Zenodo [code],
https://doi.org/10.5281/zenodo.12800811, 2023a.

University of Bristol: SEAFLOW, Zenodo [code],
https://doi.org/10.5281/zenodo.12800917, 2023b.

Van Dijk, A. I. J. M., Peña-Arancibia, J. L., Wood, E. F., Sheffield,
J., and Beck, H. E.: Global analysis of seasonal streamflow pre-
dictability using an ensemble prediction system and observations
from 6192 small catchments worldwide, Water Resour. Res., 49,
2729–2746, https://doi.org/10.1002/wrcr.20251, 2013.

Weisheimer, A. and Palmer, T. N.: On the reliability of sea-
sonal climate forecasts, J. Roy. Soc. Interface, 11, 20131162,
https://doi.org/10.1098/rsif.2013.1162, 2014.

Whateley, S., Palmer, R. N., and Brown, C.: Seasonal hydrocli-
matic forecasts as innovations and the challenges of adoption
by water managers, J. Water Resour. Plan. Manage., 141, 1–13,
https://doi.org/10.1061/(asce)wr.1943-5452.0000466, 2015.

Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Automatic calibra-
tion of conceptual rainfall-runoff models: sensitivity to calibra-
tion data, J. Hydrol., 181, 23–48, https://doi.org/10.1016/0022-
1694(95)02918-4, 1996.

Yoe, C. E.: Principles of risk analysis: decision making under un-
certainty, CRC Press, Boca Raton, Taylor And Francis, Florida,
ISBN 9781138478206, 2019.

Yossef, N. C., Winsemius, H., Weerts, A., van Beek, R., and
Bierkens, M. F. P.: Skill of a global seasonal streamflow
forecasting system, relative roles of initial conditions and
meteorological forcing, Water Resour. Res., 49, 4687–4699,
https://doi.org/10.1002/wrcr.20350, 2013.

Yuan, X. and Wood, E. F.: Downscaling precipitation or
bias-correcting streamflow? Some implications for coupled
general circulation model (CGCM)-based ensemble sea-
sonal hydrologic forecast, Water Resour. Res., 48, 1–7,
https://doi.org/10.1029/2012WR012256, 2012.

https://doi.org/10.5194/hess-28-3261-2024 Hydrol. Earth Syst. Sci., 28, 3261–3279, 2024

https://doi.org/10.5194/hess-24-6059-2020
https://doi.org/10.5194/hess-24-6059-2020
https://doi.org/10.3233/ajw-180008
https://doi.org/10.1038/s41598-021-89564-y
https://doi.org/10.1080/02626667.2017.1395032
https://doi.org/10.1016/j.ejrh.2022.101305
https://doi.org/10.1002/joc.4467
https://doi.org/10.1002/met.1655
https://doi.org/10.1007/s12665-015-5150-8
https://doi.org/10.1007/s10584-016-1671-8
https://doi.org/10.1007/s10584-016-1671-8
https://dil-opac.bosai.go.jp/publication/nrcdp/nrcdp_report/PDF/37/37sugawara.pdf
https://dil-opac.bosai.go.jp/publication/nrcdp/nrcdp_report/PDF/37/37sugawara.pdf
https://doi.org/10.2166/nh.2018.176
https://doi.org/10.5281/zenodo.12800811
https://doi.org/10.5281/zenodo.12800917
https://doi.org/10.1002/wrcr.20251
https://doi.org/10.1098/rsif.2013.1162
https://doi.org/10.1061/(asce)wr.1943-5452.0000466
https://doi.org/10.1016/0022-1694(95)02918-4
https://doi.org/10.1016/0022-1694(95)02918-4
https://doi.org/10.1002/wrcr.20350
https://doi.org/10.1029/2012WR012256

	Abstract
	Introduction
	Material and methodology
	Study site and data
	Study site
	Hydrological data and seasonal weather forecasts

	Methodology
	Bias correction (statistical downscaling)
	Hydrological modelling
	Score and skill assessment


	Results
	Contribution of hydrological model to the performance of SFFs
	Contribution of weather forcings to the performance of SFFs
	Comparison between SFFs and ESP across seasons and catchments
	Comparison between SFFs and ESP in dry and wet years
	Example of flow forecasts time series

	Discussion
	The skill of seasonal flow forecasts
	Limitations and directions for future research

	Conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

