Articles | Volume 28, issue 9
https://doi.org/10.5194/hess-28-2107-2024
https://doi.org/10.5194/hess-28-2107-2024
Research article
 | 
14 May 2024
Research article |  | 14 May 2024

Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach

Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin

Related authors

SPATIAL RESOLUTION ENHANCEMENT OF LAND COVER MAPPING USING DEEP CONVOLUTIONAL NETS
Q. Yu, W. Liu, and J. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 85–89, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-85-2020,https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-85-2020, 2020

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary
Assessing the adequacy of traditional hydrological models for climate change impact studies: a case for long short-term memory (LSTM) neural networks
Jean-Luc Martel, François Brissette, Richard Arsenault, Richard Turcotte, Mariana Castañeda-Gonzalez, William Armstrong, Edouard Mailhot, Jasmine Pelletier-Dumont, Gabriel Rondeau-Genesse, and Louis-Philippe Caron
Hydrol. Earth Syst. Sci., 29, 2811–2836, https://doi.org/10.5194/hess-29-2811-2025,https://doi.org/10.5194/hess-29-2811-2025, 2025
Short summary
Assessing the value of high-resolution data and parameter transferability across temporal scales in hydrological modeling: a case study in northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 2633–2654, https://doi.org/10.5194/hess-29-2633-2025,https://doi.org/10.5194/hess-29-2633-2025, 2025
Short summary
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Arsenault, R., Martel, J.-L., Brunet, F., Brissette, F., and Mai, J.: Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models, Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, 2023. 
Bindas, T., Tsai, W. P., Liu, J., Rahmani, F., Feng, D., Bian, Y., Lawson, K., and Shen, C.: Improving River Routing Using a Differentiable Muskingum-Cunge Model and Physics-Informed Machine Learning, Water Resour. Res., 60, e2023WR035337, https://doi.org/10.1029/2023WR035337, 2024. 
Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., and Arnault, J.: Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system, Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, 2020. 
Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G., Lee, K., Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon, A. P., and Tolson, B. A.: Flexible watershed simulation with the Raven hydrological modelling framework, Environ. Model. Softw., 129, 104728, https://doi.org/10.1016/J.ENVSOFT.2020.104728, 2020. 
Download
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Share