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Abstract. Deep learning (DL) algorithms have previously
demonstrated their effectiveness in streamflow prediction.
However, in hydrological time series modelling, the perfor-
mance of existing DL methods is often bound by limited
spatial information, as these data-driven models are typically
trained with lumped (spatially aggregated) input data. In this
study, we propose a hybrid approach, namely the Spatially
Recursive (SR) model, that integrates a lumped long short-
term memory (LSTM) network seamlessly with a physics-
based hydrological routing simulation for enhanced stream-
flow prediction. The lumped LSTM was trained on the basin-
averaged meteorological and hydrological variables derived
from 141 gauged basins located in the Great Lakes region of
North America. The SR model involves applying the trained
LSTM at the subbasin scale for local streamflow predictions
which are then translated to the basin outlet by the hydro-
logical routing model. We evaluated the efficacy of the SR
model with respect to predicting streamflow at 224 gauged
stations across the Great Lakes region and compared its per-
formance to that of the standalone lumped LSTM model. The
results indicate that the SR model achieved performance lev-
els on par with the lumped LSTM in basins used for training
the LSTM. Additionally, the SR model was able to predict
streamflow more accurately on large basins (e.g., drainage
area greater than 2000 km2), underscoring the substantial in-
formation loss associated with basin-wise feature aggrega-
tion. Furthermore, the SR model outperformed the lumped
LSTM when applied to basins that were not part of the LSTM
training (i.e., pseudo-ungauged basins). The implication of
this study is that the lumped LSTM predictions, especially in

large basins and ungauged basins, can be reliably improved
by considering spatial heterogeneity at finer resolution via
the SR model.

1 Introduction

Reliable streamflow prediction is critical in water resources
management. Following recent developments in artificial in-
telligence (AI), an increasing number of hydrological stud-
ies have focused on adopting deep learning (DL) techniques,
such as long short-term memory (LSTM), to improve basin-
scale streamflow prediction compared with traditional phys-
ically based hydrological models and conventional machine
learning (ML) algorithms (Kratzert et al., 2018; Frame et al.,
2021; Gauch et al., 2021). LSTM is a type of recurrent neural
network (RNN) that can capture long-term dependencies in
hydrological time series data and has demonstrated promis-
ing results in tasks such as streamflow prediction (Kratzert
et al., 2018; Gauch et al., 2021), precipitation forecasting
(Tao et al., 2021), and drought monitoring (Wu et al., 2022).
A recent large-sample model intercomparison study, namely
the Great Lakes Runoff Intercomparison Project in the Great
Lakes region (GRIP-GL; Mai et al., 2022a), showed that a
LSTM model exhibited significant superiority in streamflow
predictions compared with 12 other physically based hydro-
logical models, regardless of whether they were lumped or
spatially distributed (Mai et al., 2022a). The development of
LSTM in hydrology has been driven by the need for more ac-
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curate and sophisticated models that can handle the complex
and non-linear relationships in hydrological processes.

Despite the recent popularity of data-driven modelling
(e.g., ML and DL models) in hydrological modelling studies,
process-based hydrological models (physically based or con-
ceptual models) continue to be used for operational stream-
flow forecasting. In contrast with data-driven prediction, tra-
ditional process-based models often rely more on a spatially
distributed representation of the region or basin being simu-
lated. They utilize gridded meteorological forcings and, more
importantly, break the basin up into various smaller response
units, such as grid cells (fully distributed model) or subbasins
(semi-distributed model). Compared with lumped models,
distributed models consider spatial variability at a finer res-
olution and also incorporate the routing process within the
simulated basin. With the recognition that data-driven mod-
els and process-based models possess distinct advantages,
the hybridization of these two types of models has drawn
growing attention in environmental modelling studies. Hy-
brid models can be categorized into two primary structural
types: serial and parallel. In most cases, a serial hybrid model
involves the sequential coupling of one data-driven model
and one process-based model (Hunt et al., 2022). This is
typically achieved by feeding (to train) a data-driven model
with the outputs of a process-based model (Frame et al.,
2021; Liu et al., 2021; Nevo et al., 2022), which implies
that the data-driven model usually serves as a post-processor
within a hybrid modelling workflow. On the contrary, a re-
cent study by Bindas et al. (2024) employed a DL network
to infer the parameterizations of a river routing model for en-
hanced streamflow prediction. In a parallel hybrid model, the
data-driven model and process-based model are integrated
in parallel with each simulating different processes (Slater
et al., 2023). In general, these hybrid modelling approaches
allow researchers, to a certain extent, to incorporate spatial
variability in input variables into the data-driven prediction
scheme.

It is widely acknowledged that having ample training data
is advantageous for DL models. Kratzert et al. (2018) argued
that training a local LSTM streamflow model at an individual
gauged basin is an inferior approach compared with train-
ing a regional LSTM model over many gauged basins. They
trained a single LSTM model for lumped rainfall–runoff sim-
ulation on a large sample of 241 basins using meteorological
forcing data and static basin attributes and then compared
the performance of this regionally trained LSTM streamflow
model to that of individual local LSTM streamflow models
trained separately for each of the 241 basins. The results re-
vealed that the regionally trained LSTM model was able to
outperform the local LSTM models. Nevertheless, in previ-
ous studies regarding LSTM-based streamflow prediction (to
the best of our knowledge), most regionally trained LSTM
models only consider the spatial heterogeneity between train-
ing basins where LSTM inputs are at the lumped training
basin scale. That is, each attribute (i.e., LSTM input variable)

is computed for the entire basin and the basin is considered a
single response unit such that streamflow is only predicted at
the outlet of the basin (Kratzert et al., 2018, 2019; Feng et al.,
2020; Gauch et al., 2021; Xie et al., 2022; Arsenault et al.,
2023; Tang et al., 2023; Pokharel et al., 2023). Typically, this
involves cropping the gridded dynamic input variables (e.g.,
precipitation and temperature) to the basin polygon and cal-
culating a basin average (or weighted average) to produce
the lumped time series of the dynamic input variables (Lees
et al., 2022).

The rationale behind employing a lumped model is the ar-
chitectural limitation of LSTM networks: they are not com-
patible with gridded data (i.e., image-like data) with various
shapes (i.e., basin outlines) as inputs. Additionally, a lumped
model enables effective learning of static basin attributes,
such as drainage area and frequency of high precipitation
(Kratzert et al., 2019). However, the aggregation of climatic
forcings results in neglecting the heterogeneous spatial dis-
tribution of various rainfall events. A study by Hunt et al.
(2022) explained that a lumped LSTM probably failed to ap-
propriately characterize rainfall over a large and arid basin
due to averaging rainfall to the basin scale. Wang and Karimi
(2022) argued that lumped LSTM rainfall–runoff models are
unable to fully utilize the spatial variability in input features.
In their experiments, the spatial variability in rainfall was
represented by a 20-element vector feature. For each of the
10 basins where they trained the LSTM, the vector consists
of rainfall data at all hydrological response units within the
basin. Their results show that LSTM models trained on spa-
tially distributed rainfall data outperformed those driven by
basin-averaged rainfall data. Nonetheless, their method does
not clarify how to generalize the process of supplying the
LSTM model with spatially distributed rainfall information
in the context of predicting outcomes in ungauged basins
(PUB).

Conceptually, the predictive accuracy of lumped hydro-
logical modelling will eventually degrade as basin size in-
creases. This is due to the fact that meteorological forcing
inputs are simply not well approximated by assuming they
are constant over space. For example, in their paper present-
ing the CAMELS (Catchment Attributes and Meteorology
for Large-sample Studies) dataset of attributes for 671 basins
in the contiguous United States, Addor et al. (2017) cau-
tioned against using the largest of these basins for lumped
hydrological modelling. They argued that the significance of
basin-averaged input attributes diminishes with an increase
in basin drainage area, because a larger basin tends to ne-
cessitate a heightened consideration of spatial heterogeneity,
requiring the incorporation of a spatially distributed repre-
sentation. Nevertheless, the threshold at which basin area
leads to poor lumped model performance is not precisely
known and will likely vary by watershed location. In a study
of benchmarking multiple hydrological models, Newman
et al. (2017) excluded basins in the CAMELS dataset over
2000 km2 in drainage area. Additionally, a lumped LSTM
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modelling study by Kratzert et al. (2019) and the original
set of basins in the Caravan lumped global large-sample hy-
drology dataset (Kratzert et al., 2023) both employ 2000 km2

as an upper threshold. Given the past use of the 2000 km2

threshold, we apply this criterion to define a “large basin” in
our study.

Hydrological routing across a drainage network is a gen-
eral technique commonly used in distributed hydrological
models, and it allows the model to represent the transport
of water more accurately throughout large, heterogeneous
basins. A recent study by Bindas et al. (2024) presented
a novel differentiable river routing method to improve the
streamflow prediction in a single large basin. They em-
ployed a regionally trained LSTM to predict discharge at the
subbasin-level and then map the LSTM predictions to a river
network for routing. The results of the final routing model
showed promise by simulating predicted subbasin-level dis-
charge from a lumped LSTM. However, their study presented
limited empirical evidence demonstrating the superiority of
their routing model over the lumped LSTM. Specifically, the
comparison was conducted within one single basin for a short
testing period of 1 year, and the routing model outperformed
the lumped LSTM in one of the three untrained gauges with
more than 2000 km2 of drainage area. As for methodology,
an intermediate (scale-specific and basin-specific) process is
required to translate the LSTM predictions into lateral flow
inputs for each reach in the river network. Furthermore, the
routing model requires the training of a multilayer perceptron
network to update the parameters. As such, their basin-scale
approach is challenging to directly generalize to new basins
or to different spatial scales for modelling.

Our study aims to identify an easy-to-implement, general-
izable, regional-scale (or larger) approach for applying spa-
tially distributed inputs to effectively improve upon lumped
data-driven streamflow prediction, especially in large, un-
gauged basins. In pursuit of this goal, we propose the Spa-
tially Recursive (SR) model. The SR model first employs a
lumped data-driven prediction model (regionally trained on
a large sample of basins) to predict local streamflow at sub-
basins discretized from the basin of interest. Then, it utilizes
a semi-distributed hydrological routing-only model, capable
of explicit lake simulation, to route subbasin streamflow to
the basin outlet. The data-driven prediction model is consid-
ered spatially recursive because it is trained at the basin scale
and further applied at the subbasin scale to incorporate finer-
resolution forcing data and subbasin attributes.

The paper is structured as follows: Sect. 2 provides a de-
scription of the SR model, datasets, and experimental de-
sign; Sect. 3 presents key results and discussion; and, finally,
Sect. 4 concludes the findings and outlines future work.

2 Material and methods

2.1 Overview of the Spatially Recursive (SR) model

The proposed SR model is composed of three workflow
components (see Fig. 1): a regional LSTM for basin out-
let streamflow prediction that is trained using a large sam-
ple of basins, a vector-based lake–river routing network that
breaks up basins into subbasins, and a process-based routing
model that only simulates the movement of LSTM-predicted
subbasin-level streamflow through the routing network. The
fundamental concept of the SR model is to firstly employ
a regional LSTM to predict local streamflow at each sub-
basin outlet (delineated in the lake–river routing network) for
a basin where streamflow at the basin outlet is of interest.
Note that local streamflow for a subbasin is defined as the
streamflow at the subbasin outlet that would occur if there
were no upstream subbasins. Then, the predicted streamflow
at each subbasin outlet serves as input to the routing-only
model, which simulates how water is transported through the
lake–river routing network and, ultimately, the streamflow at
the basin outlet.

In general, none of the three workflow components are
novel when considered individually, as numerous existing
studies have explored and assembled them in various ways.
The distinctive aspect of our research lies in the smooth cou-
pling of the LSTM and the routing model. The regionally
trained LSTM is applied to directly produce the local stream-
flow at the subbasin scale (i.e., the spatial scale of the rout-
ing model); thus; there is no need for scale transformation
when we use the LSTM prediction as the direct input to the
routing model. Additionally, the SR model does not require
any further training/calibration of either the regional LSTM
or the routing model, making it generalizable to any desig-
nated gauge or basin outlet within the LSTM training re-
gion. The lake–river routing product, such as the MERIT Hy-
dro global database (Yamazaki et al., 2019) and the North
American Lake–River Routing Product (NALRP; Han et al.,
2020), which features vector-based watershed discretization,
should typically have a finer spatial resolution to break up
each basin polygon into subbasins, at least for the majority
of the streamflow gauging stations used for LSTM training.
The following subsections explain the specifics of the com-
ponents that we selected in this study to demonstrate the spa-
tially recursive modelling approach.

2.1.1 GRIP-GL lumped LSTM

In this study, we precisely replicated the lumped LSTM built
for streamflow prediction in the Great Lakes region of North
America by Mai et al. (2022a). That is, we trained our ver-
sion of the lumped LSTM model using the same hyper-
parameters and input features as the LSTM model trained
in the GRIP-GL project. The decision to employ an exist-
ing lumped LSTM for streamflow prediction, rather than at-
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Figure 1. The Spatially Recursive model workflow for an arbitrary basin of interest. Note that the workflow is conceptually model-agnostic
(e.g., the lumped LSTM can be replaced by another data-driven model), while each component needs to generate outputs compatible with
other components. Components with multiple arrows are utilized multiple times throughout the workflow.

tempting to add more basins and retrain a new LSTM, was in-
tentional, as we wanted to explicitly demonstrate that the pro-
posed spatially distributed methodology works to improve
upon an existing lumped LSTM without the need for LSTM
retraining.

A brief summary of the model setup, training, and test-
ing procedures of the lumped LSTM is presented here. Sec-
tion S3 in the Supplement details the hyperparameter set-
tings and the full list of all model input features. Following
the training procedures outlined by Mai et al. (2022a), our
trained model is an ensemble of 10 LSTM models with the
same architecture but different random seeds, and the final
prediction is the average of the 10 models’ outputs. Each
LSTM model was simultaneously trained on 141 gauged
basins (also referred to as “calibration basins” in the GRIP-

GL project) located in the Great Lakes region, over the period
from January 2000 to December 2010 (referred to as the “cal-
ibration period” in GRIP-GL). The LSTM model was con-
structed using the NeuralHydrology Python library (Kratzert
et al., 2022). It was implemented to conduct sequence-to-one
prediction – that is, the LSTM model predicts the average
streamflow for a single day based on the input sequence of
the previous 365 d of data.

The input features were derived for each basin, which
include the target variable (observational streamflow at the
daily timescale), 9 dynamic variables (meteorologic forc-
ings; listed in Table S2 in the Supplement), and 30 static
basin attributes describing soils, topography, land cover
types, and climate. The observed discharge data are from
either Water Survey Canada (WSC) or the United States
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Geological Survey (USGS). The meteorologic forcings and
climatic attributes were taken from the Canadian Surface
Reanalysis Version 2 (CaSR-v2; previously known as the
Regional Deterministic Reanalysis System, or “RDRS” for
short; Gasset et al., 2021). CaSR-v2 is a gridded reanaly-
sis product that covers North America with a 10 km× 10 km
spatial resolution on an hourly time step; this product was
downloaded for the region from the Canadian Surface Pre-
diction Archive (CaSPAr; Mai et al., 2020). Soil attributes
were derived from the Global Soil Dataset for Earth Sys-
tem Models (GSDE; Shangguan et al., 2014). Topological
attributes (e.g., mean elevation, mean slope) were computed
from the HydroSHEDS digital elevation model (DEM) prod-
uct (Lehner et al., 2008). The North American Land Change
Monitoring System (NALCMS) product was used to de-
rive the land cover attributes. The target variable and dy-
namic variables were aggregated from an hourly to a daily
timescale. All dynamic variables and static attributes were
spatially averaged for each gauged basin in the study. All
input features derived for our replication of the GRIP-GL
LSTM model were completely consistent with the derived in-
put features in the original GRIP-GL study. This consistency
check against GRIP-GL was important because our LSTM
input derivation scripts are reapplied here for numerous and
generic smaller subbasin polygons. Most importantly, the re-
sultant trained GRIP-GL LSTM model rebuilt here gener-
ated practically identical quality hydrographs to the GRIP-
GL LSTM in Mai et al. (2022a), with differences in the me-
dian Kling–Gupta efficiency (KGE) performance metric of
less than 0.01 (due only to different random seeds used in
training).

After the model training, the lumped LSTM model was
evaluated in three validation experiments according to the
testing procedures outlined by Mai et al. (2022a). These three
validation experiments are used consistently throughout this
study and are listed as follows:

1. temporal validation – conducted for 141 calibration
basins that were used to train the LSTM, predicting the
daily streamflow over the period from January 2011 to
December 2017 (referred as the “validation period” in
GRIP-GL);

2. spatial validation – conducted for 71 basins that were
not used for model training (referred as the “valida-
tion basins” in GRIP-GL), predicting the daily stream-
flow over the training/calibration period (January 2000
to December 2010);

3. spatiotemporal validation – conducted for the 71 vali-
dation basins, predicting the daily streamflow over the
validation period (January 2011 to December 2017).

Note that we used the term “validation” and “testing” in-
terchangeably in this study in order to be consistent with the
experimental design of GRIP-GL; it is not same as the “val-

idation” terminology normally used in machine learning ap-
plications.

2.1.2 Spatially distributed prediction based on a
lake–river routing network

The lake–river routing network for an arbitrary basin defines
the connectivity between the lakes/reservoirs (river channels
and subbasins) as well as initial values for subbasin, lake,
and channel characteristics required for running a spatially
distributed hydrological simulation. A routing product is de-
fined as a collection of routing networks covering large geo-
graphic regions, and all included networks in a routing prod-
uct should be delineated using the same source geographic
information system (GIS) products (e.g., Lake polygons and
DEM) (Han et al., 2023).

In this study, we tested our SR model with two routing
products: the GRIP-GL common routing product (used in
Mai et al., 2022a) and the North American Lake–River Rout-
ing Product v2.1 (NALRP; Han et al., 2020). Both products
were generated by the BasinMaker Python library (Han et al.,
2023), which supports the delineation of vector-based rout-
ing networks from any DEM and user-defined lake polygons.
The GRIP-GL common routing product was derived from the
HydroSHEDS DEM, with a spatial resolution of 3 arcsec.
The river network and subbasin (discretization) were de-
fined by a constant flow accumulation threshold of 5000;
that is, for a given point of interest, the contributing drainage
area would be at least 5000 DEM cells, which corresponds
to approximately 40.5 km2. On the other hand, the NALRP
was produced based on the MERIT DEM (Yamazaki et al.,
2019) with the same 3 arcsec resolution, and the value of
flow accumulation threshold is 2000 DEM cells (approxi-
mately 16.2 km2). Additionally, attributes of lakes were taken
from the HydroLAKES database (Messager et al., 2016) for
both the GRIP-GL routing product and the NALRP. While
the NALRP product included all lakes in HydroLAKES, the
GRIP-GL routing product does not include small lakes with
an area of less than 5 km2.

We use the GRIP-GL routing product directly in order to
replicate in our SR model the precise routing networks that
Mai et al. (2022a) used for their semi-distributed hydrolog-
ical models. The average subbasin size in the routing net-
works of all GRIP-GL basins is approximately 131 km2. In
contrast, we used the NALRP product here to provide flex-
ibility to run our SR model in Non-GRIP-GL basins and to
evaluate SR model sensitivity to alternative routing model
configuration decisions. The BasinMaker library includes
post-processing functions to further simplify the routing net-
works in the NALRP. When applying simplification to the
routing network, the resolution of the routing network was
reduced (Han et al., 2023) by incorporating fewer vector
elements (e.g., river channels and subbasin polygons) into
the routing network. For example, users can specify a min-
imum lake area threshold, to remove the lakes with an area
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Figure 2. An example lake–river routing network for the Ontonagon River watershed (USGS gauge ID: 04040000), which is one of the
GRIP-GL calibration basins: (a) the network from the default GRIP-GL common routing product; (b) the network from the initial NALRP
without simplification; (c) the simplified NALRP network delineated by a minimum lake area of 5 km2 and a minimum subbasin drainage
area of 500 km2.

smaller than the threshold, and a minimum subbasin drainage
area (MDA) threshold, to merge upstream subbasins (with
a drainage area smaller than the MDA threshold) to their
downstream subbasin. It should be noted that the subbasin
will not be merged if there is a lake or gauge located within it.
Figure 2 shows a single basin discretized into three example
lake–river routing networks, including the GRIP-GL routing
network in Fig. 2a, the original high-resolution NALRP net-
work in Fig. 2b, and a simplified NALRP network in Fig. 2c
(derived from the original NALRP network by applying Bas-
inMaker functions). Note that our lake subbasins include
only one lake that is completely contained within the sub-
basin boundary and our non-lake subbasins only have a sin-
gle channel reach.

As shown in Fig. 1, given the trained LSTM and the corre-
sponding lake–river routing network discretizing a basin into
subbasins, LSTM input features at the subbasin level need to
be derived. This derivation is based on the original geospa-
tial data and spatiotemporal data (see Sect. 2.1.1) and, thus,
leverages the inherent spatial variability in the original data
(as opposed to simply applying the basin-scale average input
features in a basin to all the subbasins in that basin). With
subbasin-level LSTM input features, the lumped LSTM is
then deployed in each subbasin to predict the local subbasin
outlet streamflow.

2.1.3 Routing-only mode in the Raven hydrological
modelling framework

In this study, we constructed a physically based routing-
only model in the Raven hydrological modelling framework
(Craig et al., 2020) to move local subbasin outlet streamflow
through the routing network in each basin. Note that the lake–
river routing network generated by BasinMaker incorporates
all of the necessary Raven routing model inputs and param-
eters (e.g., channel roughness and lake outlet characteriza-
tion).

The intermediate results from our previous step in
Sect. 2.1.2 (i.e., the LSTM local streamflow predictions at the
subbasin level) can be seen as distributed subbasin-specific
streamflow fluxes at various points within a routing net-
work of streams and lakes (if there are any). The routing-
only mode in the Raven framework can simulate the routing
of distributed surface runoff (Han et al., 2020; Craig et al.,
2020), but here we use it for the first time to route local sub-
basin outlet streamflow. This is accomplished within Raven
by representing the local streamflow input (at each subbasin)
as hourly precipitation instantly flushing to the subbasin out-
let.

The routing model combines this local streamflow at an
hourly time step with the upstream subbasin streamflow that
was routed from the subbasin inlet to the subbasin out-
let. This process continues from upstream to downstream
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subbasins to the basin outlet. The routing model time step
is hourly, even though input streamflow from the LSTM
comprises daily averages. We transformed the daily LSTM
streamflow predictions to hourly routing simulation inputs
by assuming that the streamflow is constant over the day.
That is, for a given date, the LSTM-predicted streamflow is
assigned to all 24 hourly time steps. The simulated hourly
streamflow at each basin outlet (stream gauge) is aggregated
to daily streamflow, which is the final prediction of the SR
model.

The routing model is initialized with the lakes filled to the
crest outlet elevation (point of zero outflow). For lake sub-
basins, the flushing operation sends all local subbasin stream-
flow into the lake instantly (rather than the subbasin outlet at
the outlet of the lake), and it then becomes subject to the
lake routing process in Raven. As water area is an input at-
tribute in our LSTM, the LSTM has implicitly been trained
to at least partially reflect lake routing impacts. Hence, our
approach within Raven means that, for lake subbasins, the
local subbasin streamflow delivery to the subbasin outlet is
only approximate, as this typically small fraction of the total
streamflow reaching the subbasin outlet has lake routing im-
pacts applied in two ways instead of only one. This approx-
imation is unavoidable within the Raven modelling system;
however, to be clear, the impacts are negligible given that, for
most lakes, local subbasin streamflow is only a small fraction
of the total streamflow entering the lake considering all up-
stream subbasins.

The Raven framework provides the option to manipulate
the routing algorithms and to calibrate routing-related pa-
rameters. In this study, we utilized the default configurations
of the Raven framework and refrained from calibrating the
routing-only model. We selected the diffusive wave chan-
nel routing option (where an analytical solution to the dif-
fusive wave equation is used to relate inflow and outflow
in each reach), and level-pool outflows from lakes are as-
sumed to be governed by the broad-crested weir equation.
As subbasin-level streamflow is predicted by a calibrated
(trained) lumped LSTM model, we assume that routing cali-
brated fluxes through a reasonably configured default routing
model will typically yield reasonable quality results. Effec-
tively, this approach provides a lower-bound estimate of the
SR model performance given that the routing model param-
eters are uncalibrated.

2.2 Selection of additional gauging locations for
concept validation

We posit that the effective scale of LSTM prediction (i.e.,
generalizability to various watershed sizes) might be affected
by the range and distribution of the drainage area of the train-
ing/calibration basins, due to the variation in streamflow pat-
terns in watersheds with different sizes. For instance, hy-
drological responses in small watersheds tend to be raging
and flashy (Camera et al., 2020). The lumped LSTM was

trained exclusively on basins with a drainage area exceeding
200 km2, in accordance with the selection criteria of gaug-
ing basins in the GRIP-GL project. Considering the water-
shed delineation schemes (GRIP-GL routing and simplified
NALRP) deployed in this study, many of the delineated sub-
basins would have a drainage area smaller than 100 km2. Fur-
thermore, the GRIP-GL basins show a skewed distribution in
terms of size, with 109 of the 141 calibration basins having
a drainage area of between 200 and 2000 km2. Similarly, 56
of the 71 validation basins fall within this range. To assess
the LSTM performance at the subbasin level (smaller than
200 km2) and for larger watersheds (greater than 2000 km2),
we selected 12 additional gauging basins (not used in the
GRIP-GL) in the Great Lakes region (within the bounding
box defined by the minimum and maximum latitudes and
longitudes of the GRIP-GL drainage basin) for spatial and
spatiotemporal validation. These basins (summarized in Ta-
ble 1) include four small basins with a drainage area below
100 km2 and eight large basins ranging in size from 2000 to
7000 km2.

All Non-GRIP-GL gauged basins are selected based on the
following additional criteria:

1. the basin is not heavily regulated by dams or reservoirs;

2. the basin has less than 5 % of missing data in streamflow
observation for the study period;

3. the gauge ID at the basin outlet is included in NALRP
and, thus, defines a pre-existing routing network.

These criteria, along with the obvious requirement that
none of the 212 existing GRIP-GL gauges could be used
as additional testing basins, functioned to eliminate more
than 1000 streamflow gauges in the region from considera-
tion and, hence, resulted in a relatively small sample size of
additional test basins.

2.2.1 Comparison of different routing structures

This analysis aims to investigate the sensitivity of the SR
model prediction quality to the chosen delineation method
(i.e., the routing network source and spatial resolution). Bas-
inMaker post-processing functions were applied to simplify
the initial NALRP routing network for the eight large Non-
GRIP-GL basins. Firstly, small lakes were removed using
the same minimum lake area threshold as that used for the
GRIP-GL routing product (5 km2). Secondly, subbasins were
merged by specifying the MDA threshold. For each basin, we
delineated seven routing networks, which are defined as fol-
lows:

1. Mimic GRIP-GL routing – the same discretization strat-
egy as the GRIP-GL routing product;

2. NALRP_10 % – MDA threshold is calculated as 10 % of
each basin’s total drainage area;
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Table 1. Summary of the 12 Non-GRIP-GL gauging basins selected for this study.

WSC or USGS station no. Description Drainage area (km2)

02HC017 Etobicoke Creek at Brampton, ON, Canada 69
01415000 Tremper Kill near Andes, NY, USA 86
04LA006 Mollie River at Highway no.144, ON, Canada 93
04105700 Augusta Creek near Augusta, MI, USA 95
05129115 Vermilion River near Crane Lake, MN, USA 2343
02KF001 Mississippi River at Ferguson’s Falls, ON, Canada 2660
02KJ004 Dumoine (Riviere) A La Sortie Du Lac Robinson, QC, Canada 3760
02KB001 Petawawa River near Petawawa, ON, Canada 4120
04260500 Black River at Watertown, NY, USA 4827
01529950 Chemung River at Corning, NY, USA 5195
04LA002 Mattagami River near Timmins, ON, Canada 5570
04LF001 Kapuskasing River at Kapuskasing, ON, Canada 6760

3. NALRP_100 – MDA threshold is 100 km2 for all basins;

4. NALRP_300 – MDA threshold is 300 km2 for all basins;

5. NALRP_500 – MDA threshold is 500 km2 for all basins;

6. NALRP_800 – MDA threshold is 800 km2 for all basins;

7. NALRP_1000 – MDA threshold is 1000 km2 for all
basins.

2.3 Performance metrics

In this study, the KGE (Gupta et al., 2009) is used to eval-
uate the performance of the lumped LSTM model and the
proposed SR model. The KGE measures the degree of corre-
spondence between two time series (e.g., observations versus
a model prediction of those observations). Here, it is com-
puted for daily average streamflow time series and is defined
as follows:

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (α− 1)2, (1)

where r is the Pearson correlation coefficient, which mea-
sures the linear correlation between the observed time series
and predicted time series; β denotes the bias term, which in-
dicates whether the model is prone to overestimate or under-
estimate the streamflow; and α denotes error in flow vari-
ability. The range of the KGE is (−∞,1], where KGE= 1
signifies a perfect prediction. It is common to use KGE= 0
as the threshold for determining whether a model exhibits
good predictive performance (Knoben et al., 2019). On the
other hand, in the GRIP-GL project paper, Mai et al. (2022a)
carefully argued that a KGE less than 0.48 would generally
be considered a poor model and that models with higher KGE
values are of medium or higher quality.

2.4 Experimental design

Three sets of experiments are used to evaluate the quality of
the SR model. The first experimental set involved implement-
ing the SR model using the four small Non-GRIP-GL basins.

The main objective of this task was to validate the predictive
capabilities of the lumped LSTM model with respect to es-
timating streamflow at a local subbasin-level (LSTM extrap-
olation to small basins). This was conducted by testing the
lumped LSTM on basins that are much smaller than the min-
imum drainage area in the training dataset. Additionally, we
also implemented a single-subbasin routing model in Raven
to ensure that our approach to push local streamflow into
Raven worked as expected.

In the second set of experiments, we utilized the SR model
to predict streamflow on the 212 GRIP-GL basins. This task
aims to evaluate the overall performance of the SR model
compared with the lumped LSTM. Following the evalua-
tion scheme of the GRIP-GL project, the KGE was calcu-
lated separately for temporal validation (trained locations
and untrained period), spatial validation (untrained locations
and trained period), and spatiotemporal validation (untrained
locations and untrained period). Moreover, for validation
basins (untrained locations), we calculated the KGE for the
whole study period (2001–2017). As mentioned earlier, only
the GRIP-GL common routing product was used as the rout-
ing structure in this task.

For the third set of experiments, the SR model was applied
to the eight large Non-GRIP-GL basins. These basins are
equivalent to the validation basins in the GRIP-GL project,
where we had no previous knowledge or experience apply-
ing the LSTM. Each basin was tested with the seven routing
structures described in Sect. 2.2.1, in order to investigate the
impacts of using alternative routing networks. Note that these
routing networks derived from the MERIT DEM differ from
those in the second set of experiments, which were derived
from the HydroSHEDS DEM, as described in Sect. 2.1.2.

For all experiments, the KGE metric was calculated for
the lumped LSTM model predictions and for the semi-
distributed SR model predictions, respectively. The lumped
LSTM is the benchmark model for comparison with the in-
tegrated SR model.
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Figure 3. Comparison of observation (grey), lumped LSTM prediction (red), and SR model prediction (blue) for the four small Non-GRIP-
GL basins. KGE values over the period from 2001 to 2017 are given for each basin.

3 Results and discussion

Regarding all hydrographs (line plots) in this section, only
the data from January 2009 to December 2012 were plot-
ted (i.e., 2 years in the calibration period and 2 years in the
validation period) for better visualization, and the displayed
KGE for each basin was calculated for the whole study pe-
riod (2001–2017). Note that the lumped LSTM and SR mod-
els both make predictions starting from the year 2001, as
their LSTM models take the year 2000 as the initial input
sequence.

3.1 Extrapolating LSTM to small Non-GRIP-GL
basins

The lumped LSTM prediction quality for the four small
basins (69–95 km2) is quite good, with KGE values for these
new test locations of 0.785, 0.812, 0.634, and 0.489, re-
spectively. These KGE values compare favourably with the
median GRIP-GL validation performance level of 0.767 re-
ported in Mai et al. (2022a) for the same LSTM applied
to much larger basins. Figure 3 shows the daily observed
streamflow and the respective predicted streamflow from the
lumped LSTM and SR model at each of these four small
basins. The predictions from the SR model (blue) are not
visible because, as expected, they are the virtually the same
as the predictions from the lumped LSTM (red). This can
be explained by the fact that the delineation is geometrically
identical to the basin outline (i.e., no spatial discretization
and each basin is only a single subbasin). In the routing sim-
ulation, the LSTM-predicted subbasin streamflow would be

directly flushed without delay to the basin outlet, making it
equivalent to a lumped prediction.

Overall, these results indicate that the lumped LSTM ad-
equately extrapolates to much smaller basins than those it
was trained for and that the translation of LSTM-predicted
streamflow into the routing model is correct.

3.2 Comparing the lumped LSTM and the SR model
on GRIP-GL basins

The SR modelling approach should be able to outperform the
lumped LSTM for basins with large drainage areas, as spa-
tially distributed modelling will mitigate the information loss
caused by feeding the lumped LSTM with basin-averaged
features, and the SR model will take advantage of main-
taining such spatial heterogeneity. Therefore, the results are
evaluated in two ways: results first include all basins (cor-
responding to the validation experiment in the GRIP-GL
study), while the second way focuses solely on basins larger
than 2000 km2.

The performance results of the lumped LSTM and the SR
model for GRIP-GL basins are summarized in Table 2 and vi-
sually compared in Fig. 4. In the temporal validation exper-
iment, the SR model predictions shows a comparable level
of quality to those of the lumped LSTM. The interquartile
range of the lumped LSTM is slightly narrower than that of
the SR model, suggesting less variability in the KGE score
distribution. The results indicate that the lumped LSTM bet-
ter captures the temporal trends and seasonal patterns at
trained locations, while the SR model, relying on an uncali-
brated process-based routing model, shows no improvement
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Table 2. Median KGE for the predictive performance of the lumped LSTM and the SR models. The top performing model is indicated by
bold font.

Validation experiment No. of Best of other 12 models Lumped LSTM SR model
basins in GRIP-GL∗

Temporal validation 141 0.790 0.819 0.804
Temporal validation (drainage area over 2000 km2) 32 0.824 0.840 0.836
Temporal validation (drainage area below 2000 km2) 109 0.773 0.810 0.794
Spatial validation 71 0.607 0.767 0.779
Spatial validation (drainage area over 2000 km2) 15 0.598 0.708 0.821
Spatial validation (drainage area below 2000 km2) 56 0.627 0.778 0.777
Spatiotemporal validation 71 0.589 0.744 0.732
Spatiotemporal validation (drainage area over 2000 km2) 15 0.614 0.663 0.747
Spatiotemporal validation (drainage area below 2000 km2) 56 0.597 0.758 0.729

∗ The 12 models are physically based/physically inspired models.

Figure 4. Box plots of KGE validation scores for the SR model (blue) and the lumped LSTM (red): (a) the results of all basins participating
in each validation experiment; (b) the results of basins with a size larger than 2000 km2.

(slightly reduced KGE values) relative to the lumped LSTM
results for both large (> 2000 km2) and small (< 2000 km2)
basins. However, the SR model results for all basins are bet-
ter than the best of 12 physically based/physically inspired
GRIP-GL hydrological models (see Table 2).

In the spatial validation and spatiotemporal validation ex-
periments, both the SR model and the lumped LSTM exhibit
similar performance degradation relative to temporal valida-
tion performance (considering all basins). These two exper-
iments primarily focus on assessing the models’ robustness
with respect to predicting streamflow in an ungauged basin
scenario (where no local streamflow observations were used
to train the model). It is worth mentioning that the LSTM
prediction at each subbasin is practically also a prediction of
streamflow in an ungauged basin (refer to the first task de-
scribed in Sect. 3.1).

As with the temporal validation, when considering all
basins in spatial or spatiotemporal validation, the SR model
shows no real difference in median KGE values relative to

the lumped LSTM results. However, the advantage of the SR
model in larger basins becomes apparent in these untrained
locations. Compared with the lumped LSTM, for large basins
over 2000 km2, the median KGE of the SR model is 0.113
KGE units higher for the spatial validation and 0.084 KGE
units higher for the spatiotemporal validation. These im-
provements for large basins came with no real performance
drops for small basins (< 2000 km2), as the median KGE val-
ues for both the SR model and the lumped LSTM were within
0.030 KGE units difference across all three validation modes
(0.016 for temporal validation, 0.001 for spatial validation,
and 0.029 for spatiotemporal validation). Furthermore, the
SR model results are substantially better than the best of
12 physically based/physically inspired GRIP-GL hydrolog-
ical models for all basins. This is notable given that 7 of
these 12 models in GRIP-GL were spatially distributed (not
lumped) and utilized the same routing network discretization
as the SR model for each basin.
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Figure 5. Comparison of time series of observation (grey), lumped LSTM prediction (red), and SR model prediction (blue) for representative
GRIP-GL validation basins, over the selected period from 2009 to 2012. KGE values over the whole study period from 2000 to 2017 are
given for each basin. (a) The two basins that show the most significant improvement compared with the lumped LSTM. (b) The two basins
that show the most significant degradation compared with the lumped LSTM. (c) The two basins where the SR model achieves the highest
KGE scores. (d) The two basins where the SR model achieves the lowest KGE scores.

Figure 5 displays the time series of observations, model
predictions, and KGE scores for representative GRIP-GL
validation basins. Figure 5a shows the hydrographs of the
two basins where the SR model demonstrates the largest im-
provement (better by more than 0.5 KGE units) compared
with the lumped LSTM. Among them, 02KF005 (Ottawa
River at Britannia) is the largest basin studied in the GRIP-
GL project, with an almost 90 000 km2 drainage area. The
other basin is approximately 6923 km2 in size (WSC gauge

02LG005, Gatineau Riviere Aux Rapides Ceizur). The de-
ficiency in the lumped LSTM model is evident, as it fails
to capture the peaks and seasonal variations in these two
large watersheds and predicts constantly low flow throughout
the study period. Figure 5b compares hydrographs at WSC
gauges 02HM010 (Salmon River at Tamworth) and 02LB007
(South Nation River at Spencerville), where the prediction
accuracy of the SR model shows the worst degradation rel-
ative to the lumped model (by 0.17 and 0.12 KGE units,
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Figure 6. Overall model performance when adopting different routing network delineations in the eight large Non-GRIP-GL basins, during
the whole study period 2000–2017. The basins are sorted (from left to right) in ascending order according to size, from smallest (2343 km2)
to largest (6760 km2).

respectively). These two gauges are small (588 km2 broken
into nine subbasins in the SR model and 277 km2 broken
into three subbasins in the SR model) and within the range of
training basin sizes. It is important to note that the spatial res-
olution of the CaSR-v2 dataset is 10 km × 10 km; thus, each
grid covers an area of approximately 100 km2, and breaking
these small basins up into a handful of smaller subbasins is
likely unnecessary in terms of representing the spatial rainfall
patterns. In general, the SR model aligns with the overall pat-
tern of the observed streamflow, but it tends to underestimate
peak flows, and the lumped LSTM predicts larger peaks for
these small basins. This underestimation of peak flow events
is not evident in most of the high-quality SR model hydro-
graphs; in fact, in the larger two basins shown in Fig. 5c,
the SR model predicts higher peaks than the lumped LSTM.
Figure 5c shows the two basins where the SR model achieves
the highest KGE scores (both over 0.9 and both large basins),
and these are both notably improved over the lumped LSTM.
The hydrographs of two basins where the SR model achieves
the lowest KGE scores (both around 0) are shown in Fig. 5d.
It is evident that both the lumped LSTM and the SR model
were unable to simulate flow in these basins, which, accord-
ing to the observed hydrograph, appear to be substantially
impacted by regulation. The failure of both models in regu-
lated basins is not surprising given that none of the LSTM
attributes measure or indicate the degree of regulation within
a basin.

3.3 New testing basins and the impact of routing
network delineation

Eight large basins (not used in the GRIP-GL study) were
identified as suitable additional independent testing basins
according to the criteria in Sect. 2.2 in order to conduct fur-
ther comparisons between the lumped LSTM and the SR

model built with varying routing networks. Like the GRIP-
GL validation basins, neither model was trained on these
eight new basins.

Figure 6 summarizes the comparative results and shows
the KGE of each model in each of the eight basins. From
Fig. 6, it can be seen that the choice of the delineation method
(routing network resolution) has a minor impact on predic-
tive performance. In general, the differences in overall KGE
scores among the seven different resolution routing networks
are not significant at each basin. This could be attributed to
the consistent representation of lakes across all of the rout-
ing networks (all resolutions retain lakes more than 5 km2 in
area in the network) combined with the crucial role that these
lakes play in modelling the transport of water.

In terms of relative model performance, the SR model
outperforms the lumped LSTM model in seven of the
eight tested basins (improved by an average of 0.160 KGE
units, using the GRIP-GL routing network resolution). This
result strongly reinforces the findings in Sect. 3.1, showing
that the SR model tends to exhibit better relative performance
in basins with larger drainage areas. The SR model achieved
the worst KGE score in the basin identified by the USGS
gauge 05129115 (Vermilion River near Crane Lake), and this
is the only basin where the lumped LSTM (KGE score of
0.716) outperformed the SR model (KGE scores from 0.534
to 0.600). As depicted in Fig. 6, the KGE scores at this basin
exhibit a gradual decrease as the resolution of the routing
network becomes coarser, such as with NALRP_800 and
NALRP_1000. Figure 7 shows the hydrographs for USGS
gauge 05129115; while it is evident that the SR model suc-
cessfully captures the timing of the peaks, it consistently un-
derestimates their magnitude in comparison with the obser-
vations and the lumped LSTM.
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Figure 7. Comparison of the time series of observation (grey), lumped LSTM prediction (red), and SR model predictions with different
routing networks for the Vermilion River basin 05129115. Note that the lines of NALRP time series all follow extremely similar trends to
the GRIP-GL routing series and, thus, are not distinguishable.

Figure 8. Comparison of the routing networks of three large Non-GRIP-GL basins to illustrate the variation in different lake densities:
(a) gauged basin 05129115 (5 lakes, 14 % of the basin is covered by lakes); (b) gauged basin 02KJ004 (11 lakes, 10 % of the basin is covered
by lakes); (c) gauged basin 04260500 (4 lakes, 4 % of the basin is covered by lakes). The three illustrated routing networks were delineated
to mimic the GRIP-GL routing delineation strategy.

The degradation in performance could be attributed to
the heavy presence of lakes within this basin (as shown in
Fig. 8a). Among the eight tested basins, 05129115 stands out
with the largest fraction of its area covered by lakes, account-
ing for approximately 14 % of its total area. In contrast, the
SR model shows significant improvement in basin 02KJ004,
which has the second highest proportion of lake coverage,
approximately 10 % (as depicted in Fig. 8b). However, the

lake areas are vastly different in these two basins. Lakes in
05129115 are mainly concentrated as one very large lake in
the middle of the basin, whereas the lakes in 02KJ004 are
more numerous, smaller, and generally long and narrow. On
the other hand, the SR model shows a substantial improve-
ment over the lumped LSTM (by over 0.347 KGE units) in
a lake-sparse basin gauged by USGS station 04260500 (see
Fig. 8c). Notably, this is also the additional testing basin
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where the SR model achieved the highest KGE score of
0.894.

4 Conclusions

In this study, we proposed a hybrid modelling approach
named the Spatially Recursive (SR) model that aims to
enhance the accuracy of streamflow predictions made by
lumped data-driven models. For a basin of interest, a re-
gionally trained lumped LSTM is used to predict the local
streamflow at the subbasin level (as delineated in the basin’s
lake–river routing network), and a process-based hydrolog-
ical routing-only model then simulates the transport of lo-
cal streamflow from the subbasin outlet to the basin outlet.
The novelty of the SR model is threefold: (1) it considers
the spatial variability in input variables at finer spatial res-
olution by having smaller response units than the training
dataset (i.e., in our case, this is from the basin scale to the
subbasin scale); (2) it integrates physically based lake–river
hydrological routing with data-driven learning to form a gen-
eralizable modelling approach for enhanced streamflow pre-
diction in large, ungauged basins; (3) it operates without the
need for further fine-tuning, parameter transfer, or training/-
calibration, given that the trained LSTM is available.

Three sets of experiments were conducted to examine the
applicability and performance of the SR model. First, we
validated the concept of predicting streamflow at the lo-
cal subbasin-level with an LSTM trained using much larger
basins. This was done by predicting streamflow at four small
testing basins (< 100 km2) which were used as mimic local
subbasins. The results revealed that the lumped LSTM can
indeed be applied to predict streamflow in basins below the
minimum drainage area threshold of the training dataset.

Subsequently, the SR model was evaluated on 212 basins
from the GRIP-GL project. The results showed that the SR
model is comparable to lumped LSTM in terms of over-
all performance across basins of all drainage areas. The
SR model exhibits a noticeable advantage with respect to
predicting streamflow in large basins (> 2000 km2), which
demonstrates that incorporating spatially distributed inputs
can be beneficial to the hydrological modelling in large
basins, due to the fact that the spatial heterogeneity is nat-
urally more significant in larger regions. The empirical per-
formance improvement over the lumped LSTM is most sig-
nificant in a PUB context. For the 15 large GRIP-GL vali-
dation basins, the median KGE levels over the 10-year train-
ing period and the 7-year testing period, are 0.11 and 0.08
KGE units higher, respectively, than those of the lumped
LSTM. Importantly, for smaller basins (< 2000 km2), the
performance gains for large basins do not result in significant
performance drops, as the median KGE difference between
the SR model and the lumped LSTM were within 0.03 KGE
units in all three validation modes.

Lastly, we investigated the impacts of the routing network
delineation by testing the SR model in eight additional large
basins (2343–6760 km2). This out-of-sample testing showed
that the SR model was substantially better (by an average
of 0.16 KGE units) than the lumped LSTM for seven of
eight basins over the 17-year period. It further corroborated
the superiority of our method for modelling large, heteroge-
neous basins. Results also clearly show that the substantial
performance gains of the SR model over the lumped LSTM
are not sensitive to a range of routing network configurations,
and these performance gains occur in basins with both large
and small fractions of the basin covered by lakes.

Moreover, these improvements in the SR model relative
to the lumped data-driven model did not require calibration
or additional training after the original lumped LSTM was
trained. In fact, the reported results of the SR model reflect
a conservative estimate (i.e., lower bound) of performance,
considering the following factors: (1) the regional LSTM
within the SR model could be improved with additional train-
ing data (Kratzert et al., 2024); (2) the SR model routing pa-
rameters could be calibrated and regionalized to further im-
prove validation results; and (3) the regional LSTM could be
purpose-built to train on a sufficient number of small basins
better matching the subbasin-level spatial scale at which the
lumped LSTM would be applied within the SR model (e.g.,
131 km2 as the average subbasin size of the GRIP-GL rout-
ing product).

The findings of this study highlight the importance of con-
sidering spatially distributed inputs to streamflow prediction
and demonstrate a new way that data-driven models can ben-
efit from such information. This research opens up new av-
enues for future research regarding hybrid modelling in hy-
drology, by improving an existing data-driven model with
an uncalibrated hydrological routing approach. The simplic-
ity of our approach, combined with the explosive growth of
regionally trained LSTM models for streamflow prediction,
means that our approach should be accessible to all hydrolog-
ical modellers. Future refinement of the proposed SR mod-
elling approach could focus on two key aspects: the train-
ing strategy of the lumped data-driven predictor (e.g., larger
dataset, targeted training basin sizes, and different neural
networks) and the calibration of hydrological-routing-related
parameters.

Code and data availability. All code used to imple-
ment and validate the models is available on Zenodo
(https://doi.org/10.5281/zenodo.11115929, Yu, 2024). The
GRIP-GL calibration data are made available on the Federated Re-
search Data Repository (FRDR; https://doi.org/10.20383/103.0598,
Mai et al., 2022b); the access procedure for GRIP-GL validation
data is also described there. The BasinMaker library is available
at https://hydrology.uwaterloo.ca/basinmaker/ (last access: 8 May
2024). The Raven hydrological modelling framework is available
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al., 2020).
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